Fifth Force Searches in Galaxies

Harry Desmond

PONT Avignon

Galaxy morphology rules out astrophysically relevant Hu-Sawicki f(R) gravity

Harry Desmond^{1,*} and Pedro G. Ferreira¹

arXiv: 2009.08743

Harry Desmond

PONT Avignon

Fifth Forces

- Generic extensions to the standard model couple new dynamical fields to matter
- \rightarrow New (*fifth*) forces, described by strength and range

$$\Phi_{\rm tot} = -\frac{G_N M}{r} \left(1 + \frac{\Delta G}{G_N} e^{-mr} \right) = \Phi_N - \frac{\Delta G M}{r} e^{-mr}$$

Fifth Forces

- Generic extensions to the standard model couple new dynamical fields to matter
- \rightarrow New (*fifth*) forces, described by strength and range

$$\Phi_{\rm tot} = -\frac{G_N M}{r} \left(1 + \frac{\Delta G}{G_N} e^{-mr} \right) = \Phi_N - \frac{\Delta G M}{r} e^{-mr}$$

- Strongly constrained by local tests
 - Lab: torsion balance, atom interferometry...
 - Solar system: Lunar Laser Ranging, planetary orbits, Cassini...

Screening Mechanisms

Fifth force goes away in dense environments

Screening Mechanisms

Fifth force goes away in dense environments

- Chameleon: $m_{eff} \rightarrow \infty$ (e.g. f(R))
- Kinetic: $\partial \phi \rightarrow \infty$ (e.g. K-mouflage)
- Symmetron & Vainshtein: $\Delta G \rightarrow 0$ (e.g. Galileons, DGP)

Searching for Screening

Mechanism	Dominant term at high ρ	Observational proxy
Chameleon	Mass	Newtonian potential Φ
Kinetic/K-mouflage	Kinetic	Acceleration a
Vainshtein	Higher-order	Curvature K

Khoury 2013

Searching for Screening

Mechanism	Dominant term at high ρ	Observational proxy		
Chameleon	Mass	Newtonian potential Φ		
Kinetic/K-mouflage	Kinetic	Acceleration a		
Vainshtein	Higher-order	Curvature K		
Khoury 2013	Cabre+ 2012	F-6 -9 -11 12 13 14 15		

Searching for Screening

Mechanism	Dominant term at hig	h ρ Observational proxy
Chameleon	Mass	Newtonian potential Φ
Kinetic/K-mouflage	Kinetic	Acceleration a
Vainshtein	Higher-order	Curvature K
 Map Ф, <i>a</i>, <i>K</i> ov Forward-model 	er local universe signals	-5 (2) -6 (2) -7 -8 -8
 Constrain fifth-f range by Bayes 	Force strength & California Calif	abre+ 2012 ⁻⁹ ¹¹ ¹² ¹³ ¹⁴ ¹⁵ ^{log(Mdyn)}

Gravitational Mapmaking

$$\Phi_j \sim \sum_i GM_i/r_{ij} \qquad \vec{a}_j \sim \sum_i GM_i \hat{\vec{r}}_{ij}/r_{ij}^2 \qquad K_j \sim \sum_i GM_i/r_{ij}^3$$

Three contributions to each:

1) Halo mass associated with 2M++ or SDSS galaxies

2) Halos hosting faint galaxies from N-body simulation

3) Mass in long-wavelength modes (BORG)

Results: maps and distributions

potential

acceleration

curvature

Application to Hu-Sawicki f(R)

$$\lambda_{C} = 32\sqrt{f_{R0}}/10^{-4} Mpc \quad (n=1)$$
$$\chi \equiv \frac{\Phi_{c}}{c^{2}} = \frac{3}{2}f_{R0}$$
$$.g. \quad f_{R0} = 10^{-6} \Rightarrow \lambda_{C} = r_{max} \simeq 3Mpc$$
$$f_{R0} = 10^{-5} \Rightarrow \lambda_{C} = r_{max} \simeq 10Mpc$$

Signal #1: Separation of stars and gas

 In unscreened galaxies, stars self-screen and lag behind gas & dark matter (Hui+ 2009, Jain & VanderPlas 2011)

Signal #1: Separation of stars and gas

 In unscreened galaxies, stars self-screen and lag behind gas & dark matter (Hui+ 2009, Jain & VanderPlas 2011)

• Equilibrium offset \vec{r}_* satisfies

$$\frac{G_{\rm N}M(r_*)}{r_*^2}\,\hat{r}_*=\vec{a}_5\;\frac{\Delta G}{G_{\rm N}}$$

Signal #2: Warps in galactic disks

- Potential gradient across disk bends it into U-shape
- Calculate shape by requiring each point on disk to have same z-acceleration

$$z(x)\simeq -a_{5,z}\,\frac{\Delta G}{G_{\rm N}^2}\frac{|x|^3}{M(x)}$$

Signal #2: Warps in galactic disks

- Potential gradient across disk bends it into U-shape
- Calculate shape by requiring each point on disk to have same z-acceleration

$$z(x)\simeq -a_{5,z}\,\frac{\Delta G}{G_{\rm N}^2}\frac{|x|^3}{M(x)}$$

Summarise by weighted average z:

$$w_1 \equiv \frac{1}{L_x^3} \int_{-L_x}^{L_x} |x| \, z(x) \, dx$$

Observational Data

- Gas–star offsets: ~16,000 galaxies cross-matched between ALFALFA and the Nasa Sloan Atlas (NSA)
- Warps: ~4,000 edge-on disk galaxies from the NSA

Likelihood Model I. Fifth-force expectation

- Forward-model r
 ₁ and w₁ for each galaxy as a function of
 1) fifth-force parameters, 2) gravitational environment, and
 3) internal galaxy/halo properties
- Assume power-law halo density across galaxy, with normalisation calibrated by abundance matching: $\rho(r) = \rho_{rs} (r/r_s)^{-\beta}$

Likelihood Model I. Fifth-force expectation

- Forward-model r
 ₁ and w₁ for each galaxy as a function of
 1) fifth-force parameters, 2) gravitational environment, and
 3) internal galaxy/halo properties
- Assume power-law halo density across galaxy, with normalisation calibrated by abundance matching: $\rho(r) = \rho_{rs} (r/r_s)^{-\beta}$

$$\vec{r}_* = \left(a_5 \frac{\Delta G}{G_N^2} \frac{3-\beta}{4\pi\rho_{rs}} r_s^{-\beta}\right)^{\frac{1}{1-\beta}} \hat{a}_5 \qquad w_1 = -\frac{\beta (3-\beta)}{(\beta+1)(\beta+2)} a_{5,z} \frac{\Delta G}{G_N^2} \frac{1}{4\pi\rho_{rs}} \frac{(3R_{\rm eff}/r_s)^{\beta}}{3R_{\rm eff}}$$

Likelihood Model II. Constructing the likelihood

 Probabilistic inputs → build likelihood empirically by Monte Carlo sampling, then fit with Gaussian Mixture Model

Likelihood Model II. Constructing the likelihood

 Probabilistic inputs → build likelihood empirically by Monte Carlo sampling, then fit with Gaussian Mixture Model

Predicted vs measured signals

Likelihood Model III. Noise component

 Convolve F5 likelihood with Gaussian of width σ describing measurement noise and astrophysical contributions to signals

$$\begin{split} \mathcal{L}_{i}(y_{i}|\Delta G/G_{\mathrm{N}},\lambda_{C},\sigma_{i}) &= (1-f_{i}) \; \frac{\exp\{-y_{i}^{2}/2\sigma_{i}^{2}\}}{\sqrt{2\pi} \,\sigma_{i}} + f_{i} \sum_{k=1}^{N_{\mathrm{G}}} \\ \frac{W_{ik}}{\sqrt{2\pi}(F[\Delta G/G_{\mathrm{N}}]^{2} \; s_{ik}^{2} + \sigma_{i}^{2})} \exp\left\{-\frac{(F[\Delta G/G_{\mathrm{N}}] \; \bar{y}_{ik} - y_{i})^{2}}{2(F[\Delta G/G_{\mathrm{N}}]^{2} \; s_{ik}^{2} + \sigma_{i}^{2})}\right\} \\ y \in \{r_{*,\alpha}, r_{*,\delta}, w_{1}\} \end{split}$$

Likelihood Model III. Noise component

 Convolve F5 likelihood with Gaussian of width σ describing measurement noise and astrophysical contributions to signals

$$\begin{split} \mathcal{L}_{i}(y_{i}|\Delta G/G_{\mathrm{N}},\lambda_{C},\sigma_{i}) &= (1-f_{i}) \; \frac{\exp\{-y_{i}^{2}/2\sigma_{i}^{2}\}}{\sqrt{2\pi} \,\sigma_{i}} + f_{i} \sum_{k=1}^{N_{\mathrm{G}}} \\ \frac{W_{ik}}{\sqrt{2\pi}(F[\Delta G/G_{\mathrm{N}}]^{2} \; s_{ik}^{2} + \sigma_{i}^{2})} \exp\left\{-\frac{(F[\Delta G/G_{\mathrm{N}}] \; \bar{y}_{ik} - y_{i})^{2}}{2(F[\Delta G/G_{\mathrm{N}}]^{2} \; s_{ik}^{2} + \sigma_{i}^{2})}\right\} \\ y \in \{r_{*,\alpha}, r_{*,\delta}, w_{1}\} \end{split}$$

• Parametrise σ_i and constrain along with ΔG and λ_c :

- $-\sigma_{i} = \sigma_{const}$ is the same for all galaxies
- $-\sigma_i = \sigma_D D_i$, i.e. fixed angular resolution
- $-\sigma_i$ a general function of galaxy parameters

Likelihood Model III. Noise component

 Convolve F5 likelihood with Gaussian of width σ describing measurement noise and astrophysical contributions to signals

$$\begin{split} \mathcal{L}_{i}(y_{i}|\Delta G/G_{\mathrm{N}},\lambda_{C},\sigma_{i}) &= (1-f_{i}) \; \frac{\exp\{-y_{i}^{2}/2\sigma_{i}^{2}\}}{\sqrt{2\pi} \,\sigma_{i}} + f_{i} \sum_{k=1}^{N_{\mathrm{G}}} \\ \frac{W_{ik}}{\sqrt{2\pi}(F[\Delta G/G_{\mathrm{N}}]^{2} \; s_{ik}^{2} + \sigma_{i}^{2})} \exp\left\{-\frac{(F[\Delta G/G_{\mathrm{N}}] \; \bar{y}_{ik} - y_{i})^{2}}{2(F[\Delta G/G_{\mathrm{N}}]^{2} \; s_{ik}^{2} + \sigma_{i}^{2})}\right\} \quad y \in \{r_{*,\alpha}, r_{*,\delta}, w_{1}\} \end{split}$$

• Parametrise σ_i and constrain along with ΔG and λ_c :

 $- \sigma_{i} = \sigma_{const} \text{ is the same for all galaxies } Warps \sigma_{w1}$ $- \sigma_{i} = \sigma_{D}D_{i}, \text{ i.e. fixed angular resolution } Offsets \sigma_{r^{*}}$ $- \sigma_{i} \text{ a general function of galaxy parameters}$

Results I. Degeneracy with noise terms

- Noise parameters constrained by widths of measured r_{*} and w₁ distributions
- Fifth-force constraints set by galaxy-by-galaxy correlation of measured and predicted signals

Results II. Constraints

Results III. Constraints on additional models

- 'warp no screening' constraint applies to F5 acting only in the dark sector: ΔG/G_N < 1e-4
- Varying χ at fixed λ_c corresponds to n ≠ 1 in Hu-Sawicki f(R), or freeing up 3rd chameleon parameter

Systematics

1 "Galaxy formation"/baryonic physics affects stars, gas & DM differently, so may be degenerate with F5

Systematics

1 "Galaxy formation"/baryonic physics affects stars, gas & DM differently, so may be degenerate with F5

2 Assumed ACDM for calculating density profiles and screening/fifth-force fields

Systematics

1 "Galaxy formation"/baryonic physics affects stars, gas & DM differently, so may be degenerate with F5

2 Assumed ACDM for calculating density profiles and screening/fifth-force fields

3 Uncertain DM distribution across galaxies

Conclusions

- Galaxy structure probes gravity in new regions of parameter space with potentially great sensitivity
- Environment dependence → require gravitational maps of the local universe
- Two tests of chameleon & symmetron screening:
 - Separation of stars and gas
 - Warping of stellar disks

 $f_{R0} < 1.4e-8$: $\Delta G/G_N < 1e-4$ for F5 only in dark sector

- Much promise for the future:
 - Several signals still to explore (Jain & Vanderplas 2011)
 - ++ quantity and quality of data with upcoming surveys

Extra slides

J115012.10+065956.9 - $w_1 = 1.7 \times 10^{-3}$ J0039

 $J003938.31+143951.2 - w_1 = -1.1 \times 10^{-4}$

Forecasting for future surveys

Predicted vs measured signals

Previous constraints

Measurement	redshift	scale	$ f_{R0} $ constraint
Integrated Sachs-Wolfe (ISW) effect	$\lesssim 10$	$\gtrsim 25 h^{-1} { m Mpc}$	$< 3.5 \times 10^{-1}$
Galaxy-ISW cross correlations	$\lesssim 5$	$\gtrsim 40 h^{-1}~{ m Mpc}$	$< 6.9 \times 10^{-2}$
Galaxy power spectrum (WiggleZ)	0.2 - 1	$\gtrsim 60 h^{-1} { m Mpc}$	$10^{-4} \lesssim f_{R0} \lesssim 2 \times 10^{-1}$
Galaxy power spectrum (WiggleZ)	0.2 - 1	$\gtrsim 30 h^{-1} { m Mpc}$	$\lesssim 1.4 \times 10^{-5}$
Redshift-space distortions (LRG)	0.16 - 0.47	$(15 - 300)h^{-1}$ Mpc	$\lesssim 10^{-4}$
E_G probe	0.32	$(10-50)h^{-1}$ Mpc	$\lesssim 10$
CMB lensing (ACT)	$\lesssim 6$	$(1-60)h^{-1} { m Mpc}$	$\lesssim 10^{-1}$
CMB lensing (SPT)	$\lesssim 6$	$(1-50)h^{-1}$ Mpc	$\lesssim 2 imes 10^{-2}$
CMB lensing (Planck)	$\lesssim 6$	$\gtrsim 1 h^{-1} \; { m Mpc}$	$\lesssim 10^{-2}$
Cluster abundance (Chandra)	< 0.15	$(1-10)h^{-1}$ Mpc	$<1.3\times10^{-4}$
Cluster abundance (MaxBCG)	$0.18, \ 0.25$	$(1-10)h^{-1} { m Mpc}$	$< 1.9 \times 10^{-4}$
Gravitational redshift of galaxies in clusters	0.1-0.55	$(0.5-10)h^{-1}$ Mpc	
Cluster density profiles (maxBCG)	0.23	$(0.2 - 20)h^{-1}$ Mpc	$< 3.6 \times 10^{-3}$
Coma gas measurements	0.02	$(0.1 - 1)h^{-1}$ Mpc	$< 6 \times 10^{-5}$
Strong gravitational lenses (SLACS)	0.06 - 0.36	$(1 - 10) \mathrm{kpc}$	$<2.5\times10^{-6}$
Solar System	0	$\lesssim 20~{ m au}$ / 8 kpc	$< 8 imes 10^{-7}$
Supernova monopole radiation	~ 0	$\sim 200 R_{\odot}$	$\lesssim 10^{-2}$
Distance indicators in dwarf galaxies	$\lesssim 0.002$	$\lesssim 100 R_{\odot}$	$< 5 \times 10^{-7}$
Relativistic effects in galaxy-clustering	$\lesssim 1$	$\gtrsim 200 h^{-1} { m Mpc}$	$\lesssim 10^{-1}$
21 cm intensity mapping + CMB	0.7-2.5	$\gtrsim 50 h^{-1}~{ m Mpc}$	$\lesssim 10^{-5}$
CMB ISW-lensing bispectrum	$\lesssim 5$	$\gtrsim 40 h^{-1}~{ m Mpc}$	$\lesssim 10^{-2}$
Matter bispectrum	~ 0	$\lesssim 30 h^{-1} { m Mpc}$	$10^{-6} \lesssim f_{R0} \lesssim 10^{-4}$
Stacked phase-space distribution	0.2 - 0.4	$(1-20)h^{-1}$ Mpc	$\lesssim (10^{-6} - 10^{-5})$
Galaxy infall kinematics	0.25	$(0.5 - 30)h^{-1}$ Mpc	$\lesssim (10^{-5} - 10^{-4})$
Dwarf galaxies	~ 0	$\sim 1 \; { m kpc}$	$\lesssim 10^{-7}$

Lombriser 2015

- 1 "Galaxy formation"/baryonic physics affects stars & gas differently, so may be degenerate with F5
 - Unlikely to correlate \vec{r}_{\star} with gravitational environment and halo density in same way as screened fifth force (?)
 - Check with cosmological hydro sims
- 2 Assumed ACDM for calculating density profiles and screening/fifth-force fields
 - Difference should be small for { ΔG , λ_c } as low as here
 - Repeat self-consistently in mod. grav. sims
- 3 Calculation of DM density within ~100pc of halo centre
 - Affects inference of ΔG but not $\Delta \log(L) \lambda_{C}$
 - Repeat for galaxies with kinematics at small r

1. Gas-star offsets in the Horizon-AGN simulation

Simulated \vec{r}_{*} consistent with Gaussian random noise

Uncertainty introduced by Monte Carlo sampling

