
Thermal production 

and interaction rates

in the Early Universe

Jacopo Ghiglieri, SUBATECH, Nantes

PONT2020, Avignon, December 9 2020



2.2. The Hot Thermal Phase

Figure 2.1: Timeline of the hot thermal phase of the early universe illustrating (i) the

relation between the temperature of the thermal bath T and the cosmic time t (cf. Eq. (2.23)),

(ii) the chronology of several important, partly hypothetical nonequilibrium processes, (iii)

a representative selection of those forms of matter or energy that are respectively involved

in these processes, and (iv) several possibilities for the reheating temperature after inflation

(cf. Sec. 3.1).

2.2 The Hot Thermal Phase

The hot early universe represents the stage for a great variety of physical processes taking

place over an enormous range of energy scales (cf. Fig. 2.1 for an overview of the main events

in its thermal history). As a final preparation before turning to our own scenario, we shall

now discuss in more detail the decoupling of the CMB, primordial nucleosynthesis, the QCD

and the electroweak phase transition as well as electroweak sphalerons.

2.2.1 The Cosmic Microwave Background

Towards the end of the radiation-dominated phase, at temperatures of O(1) eV, protons,

i.e. hydrogen nuclei, are kept in thermal equilibrium via the steady interplay of radiative

recombination and photoionization processes. However, as the plasma cools in the course

of the expansion, photoionization becomes less efficient, the hydrogen nuclei begin to bind
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Rates in the early universe

Picture: K. Schmitz

• Over the long thermal history,  
many phenomena enter and/or  
leave equilibrium


• DM candidates


• Mechanisms for the BAU


• Thermal relics


• ….


• governed by rates (production,  
equilibration, interaction) competing with H



• Recent progress in defining and computing (some of) these rates using 
modern Thermal Field Theory (TFT) techniques (connection to previous 
approaches)


• Slowly-varying modes over a fast background


• Massless states: the example of gravitational waves


• Massive states: the example of right-handed neutrinos and NLO 
corrections


• Not shown:


• Thermodynamics (phase transitions, the Hubble rate itself,…)

In this talk



• Factor the system into “fast” and “slow” modes, and integrate out the 
former to obtain evolution eqs. for the latter


• For instance


•  for 130 GeV≲T≲105 GeV, all SM interactions are in thermal 
equilibrium


• O(GeV) RHNs have ~10-7 Yukawas: non-eq. ensemble


• Lepton (and baryon) densities also evolve slowly

General approach



Production and equilibration



• A particle φ is weakly coupled (coupling h) to an equilibrated bath with its 
internal couplings g 
J built of bath fields, one can prove to first order in h and all orders in g 
 
 
 

• Single-particle phase-space distribution: f(t,k), sensible only for sufficiently 
weakly interacting particles


• For conserved charges, equations for the density n can similarly be defined 
with no quasiparticle assumptions Bödeker Laine (2014)

L = L� + h�⇤J + h⇤J⇤�+ LbathL = L� + h�⇤J + h⇤J⇤�+ LbathL = L� + h�⇤J + h⇤J⇤�+ Lbath

Bödeker Sangel Wörmann PRD93 (2016)
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• The derivation is based (and relies) on a separation of timescales between 
production/equilibration and the plasma dynamics


• All-order proof of the equivalence of production and equilibration rates, 
Γprod=Γ(k) feq(k0). Goes beyond previous statements based on detailed balance 
in a leading-order Boltzmann approach.


• When doing perturbative expansions, Boltzmann expressions are recovered 
where applicable (LO). Higher orders are possible and natural in this form


• Easier to include non-perturbative input in this framework if needed 
e.g. S. Biondini’s talk yesterday
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• Applications of this TFT result to heavy ions (e.g. photon production, 
thermalisation) and cosmology. Not in this talk:

• Non-equilibrium Kadanoff-Baym equations yield similar results Drewes 
(2010) Drewes Mendizabal Weniger (2013) Garny Hohenegger Kartavtsev (2010-13)


• Cases where f(t,k)≫1 (e.g. bosonic fields during reheating) and 
classical non-perturbative methods are used  
Figueroa Florio Torrenti Valkenburg (2020)



• If scale separation is present and g≪1, perturbative expansion of Γ(k≳T) can 
reproduce standard Boltzmann. But quasiparticle picture is not necessary!


• Caution needed in extrapolating Γ(k≳T) to k≪T 

• When using these equations in cosmology, the l.h.s is modified to include 
Hubble expansion 
 
and often (number, energy) densities are the quantity of interest, e.g. 
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Massless particles: gravitational waves

JG Laine JCAP1507 (2015) JG Jackson Laine Zhu JHEP2007 (2020)  
Ringwald Schütte-Engel Tamarit 2011.04731



Many potential sources of GWs

• Inflation 


• Reheating 


• Phase transitions 


• … 

 
All model-dependent and/or speculative to a degree 
Review: Caprini Figueroa Class. Quant. Grav. 35 (2018)

2.2. The Hot Thermal Phase

Figure 2.1: Timeline of the hot thermal phase of the early universe illustrating (i) the

relation between the temperature of the thermal bath T and the cosmic time t (cf. Eq. (2.23)),

(ii) the chronology of several important, partly hypothetical nonequilibrium processes, (iii)

a representative selection of those forms of matter or energy that are respectively involved

in these processes, and (iv) several possibilities for the reheating temperature after inflation

(cf. Sec. 3.1).

2.2 The Hot Thermal Phase

The hot early universe represents the stage for a great variety of physical processes taking

place over an enormous range of energy scales (cf. Fig. 2.1 for an overview of the main events

in its thermal history). As a final preparation before turning to our own scenario, we shall

now discuss in more detail the decoupling of the CMB, primordial nucleosynthesis, the QCD

and the electroweak phase transition as well as electroweak sphalerons.

2.2.1 The Cosmic Microwave Background

Towards the end of the radiation-dominated phase, at temperatures of O(1) eV, protons,

i.e. hydrogen nuclei, are kept in thermal equilibrium via the steady interplay of radiative

recombination and photoionization processes. However, as the plasma cools in the course

of the expansion, photoionization becomes less efficient, the hydrogen nuclei begin to bind
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Gravitational waves in the early universe



• GWs can be produced from eq. too. Weinberg


• Now J∝Tμν/mPl, so as long as Tmax<mPl  the GW-plasma coupling is indeed 
weak: freeze-in production over the history of the early universe?


• By the previous arguments: 
 

• Γ(k) also determines the absorption rate of previously emitted GWs from 
other sources 
Baym Patil Pethick PRD96 (2017) Flauger Weinberg PRD99 (2019)

However, all of these rely on yet-to-be-established models, unlike the Standard Model back-

ground that we are interested in.

Restricting for a moment to locally Minkowskian spacetime, the rate of change of the

polarization-averaged phase space distribution of gravitons (fGW) has the form [5]

ḟGW(t,k) = Γ(k)
[
nB(k)− fGW(t,k)

]
+O

(
1

m4
Pl

)
, (1.1)

where k ≡ |k| and nB(k) ≡ 1/(ek/T − 1) is the Bose distribution. The differential energy

density is given by deGW = 2k fGW
d3k
(2π)3 . Adopting a logarithmic scale, the production rate

of gravitational energy density can thus be expressed as

deGW

dt d ln k
=

k4ḟGW

π2
. (1.2)

In the following we are interested in estimating the rate Γ(k) defined by eq. (1.1) in the

frequency range in which deGW peaks. This range is given by the typical thermal scale

k ∼ πT [2], corresponding after red shift to the same microwave range at which most CMB

photons lie. In this frequency range, the gravitational wave abundance is expected to be

much below equilibrium, fGW $ nB(k), so that the right-hand side of eq. (1.1) evaluates to

Γ(k)nB(k). However, the same coefficient Γ(k) also governs other phenomena, for instance

the damping of a gravitational wave as it passes through a thermal plasma, if produced by

some astrophysical source before (cf., e.g., refs. [6, 7] for recent works).

We start by describing in some detail the technical steps of the computation, which we

have implemented in two complementary ways, viz. by taking the cut of a retarded 2-point

correlator of the energy-momentum tensor (secs. 2.1–2.3), and by considering Boltzmann

equations for graviton production (sec. 2.4). After phase space integration (sec. 2.5) and

thermal resummation (sec. 2.6), the result is evaluated numerically (sec. 3) and embedded in

a cosmological environment (sec. 4). Conclusions and an outlook are offered in sec. 5. Two

appendices explain why two classes of contributions, frequently considered in the literature,

are of subleading order for the present observable.

2. Steps of the computation

2.1. Setup

Assuming that a system is spatially homogeneous and stationary on the time scales observed,

and aligning the z-axis with the momentum (k = k ez), the production rate of the energy

density carried by gravitational waves can be related to the Wightman correlator

G<
12;12 ≡

∫

X
eik(t−z)

〈
T12(0)T12(X )

〉
, X ≡ (t,x) . (2.1)

2

JG Laine JCAP1507 (2015)
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• What it means: cut two-point function with thermal propagators. A naive example: at 
LO T12 is bilinear in the fields of the QFT, so 
 
 
 
 
thermal distribution functions x matrix element x on-shell kinematics


• Kinematically forbidden: need extra scatterings


• A complete LO calculation for k~T requires all 2↔︎2 scatterings between SM particles 
yielding a graviton

⇠
Z

d4P n(p0)n(p0 + k0)
��M

��2 �(P 2)�((P +K)2)

Leading order for k∼T
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• Work from this def, compute all two-loop graphs in the SM for the TT correlator and 
take the cuts


• Powerful method to 
get thermal spectral 
functions at thermal  
frequencies and nonzero  
virtualities too 
Laine Zhu Jackson et al  
(2010-20)

Φs : Φf : Φg :

Φs(s) :

Φg(g) :

Φs(f) : Φf(s) : Φs|f :

Φs(g) :

Φg(s) : Φs|g :

Φf(g) :

Φg(f) : Φf |g :

Figure 1: The 1 and 2-loop graphs contributing to eq. (2.8). Each subset is gauge independent.

Dashed lines denote scalars; solid lines fermions; wiggly lines gauge fields; dotted lines ghosts; blobs

the operator Tµν . Graphs obtained by symmetrizations have been omitted.

ifghabcde ≡
[ T

p]
f [ T

q]
g[ T

q−p]
h[K2]y

[P 2]a[Q2]b[(Q− P )2]c[(K − P )2]d[(K −Q)2]e
, (2.10)

where {P} denotes a fermionic Matsubara four-momentum. The indices x ≡ a + b − c and

y ≡ a + b + c + d + e − f − g − h − 2 guarantee the overall dimensionality GeV4. In the

fermionic cases the representation is not unique; for the class of masters discussed in sec. 2.3,

which have a cut corresponding to a 2↔ 2 scattering, we have ordered the indices such that

a, c, e are non-negative.

The reduction of the energy-momentum tensor correlator to the basis of eqs. (2.9) and

(2.10) has been carried out with a self-designed algorithm implemented in FORM [10]. After

the use of symmetries related to substitutions of integration variables, and noting that terms

with odd numbers of γ5-matrices do not contribute at this order, the results read

Φs = 4(D − 3)J2
11 , (2.11)
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• Work from this def, compute all two-loop graphs in the SM for the TT correlator and 
take the cut


• Cutting the two-loop diagrams  
gives rise to the squares of these  
diagrammatic structures  
(crossings not shown)


Φg(g) ⇔

Φs(f) + Φf(s) + Φs|f ⇔

Φs(g) + Φg(s) + Φs|g ⇔

Φf(g) + Φg(f) + Φf |g ⇔

Figure 2: t-channel 2↔ 2 scatterings contributing to gravitational wave production (further processes

are obtained with u and s-channel reflections). The notation is as in fig. 1, with the double line

indicating a graviton. Up to numerical prefactors, the amplitudes squared originating from these

processes, after summing over the physical polarization states of the gravitons and Standard Model

particles, correspond to the cuts shown in eqs. (2.36)–(2.38) (cf. sec. 2.4).

where the breaking of Lorentz invariance through the medium manifests itself only through

the distribution functions Nτ1;σ1σ2
:

CΦg(g) = 4C
[
Φs(g) + Φg(s) + Φs|g

]
= 2N+;++

{
−2

(
s2 + u2

t
+

t2

s

)}
, (2.36)

C
[
Φs(f) + Φf(s) + Φs|f

]
= 2N−;−+

{
2t
}
+ 2N+;−−

{
s
}
, (2.37)

C
[
Φf(g) + Φg(f) + Φf |g

]
= 4N−;−+

{
s2 + u2

t

}
+ 4N+;−−

{
t2

s

}
. (2.38)

We note that eq. (2.36) could be written in a more symmetric form, but for later conve-

nience we prefer to use the same structures as in eq. (2.38). Eqs. (2.36)–(2.38) correspond to

amplitudes squared for processes illustrated in fig. 2 (cf. sec. 2.4).

The drastic simplification that we have observed when going on the light-cone has a known

precedent: it also takes place for photon production from a thermal medium. Furthermore, in

that case it is well understood. The transverse correlator to which physical photons couple,

ImGR
T, can be replaced by the full vector correlator, ImGR

V = ImGR
T + ImGR

L , because a

Ward identity guarantees the vanishing of ImGR
L for zero virtuality. We are not aware of a

similar operator relation between the tensor channel correlator in eq. (2.3) and one without

any T’s, even if intriguing relations between photon and graviton production amplitudes

are known to exist (cf. sec. 2.4).

10

<latexit sha1_base64="4PlAT+nGmD8H1B4RbhCZ4lhSKs4="></latexit>

�(k) =
8⇡

km2
Pl

Z
d4Xeik(t�z)h[T12(X), T12(0)]i

Leading order for k∼T



• Hence, at LO for k~T, equivalence with kinetic theory 
 

• The phase space integration runs over log-IR divergent soft gauge boson exchanges 
 

 

• Sensitivity to collectivity: screening, plasma oscillations and Landau damping. 
Treated by Hard Thermal Loop resummation: based on recent developments in TFT 
we implement a well-behaved subtraction and replacement with the HTL 
resummed evaluation JG Laine (2015-16)

2.4. Connection to Boltzmann equations

The 2↔ 2 cuts of sec. 2.3 can also be obtained from kinetic theory and Boltzmann equations.

As a starting point, we may, for k ∼ πT , write the leading-order contribution to eq. (1.1) as

ḟGW(t,k) = Γ(k)nB(k) =
1

8k

∫
dΩ2→2

∑

abc

∣∣∣Mab
cG(p1,p2;k1,k)

∣∣∣
2
fa(p1) fb(p2) [1± fc(k1)] ,

(2.39)

where we have neglected fGW(t,k) on the right-hand side. The sum runs over all abc ∈ SM

(Standard Model) particle and antiparticle degrees of freedom and thus over all ab → cG

processes, with G denoting the graviton. |Mab
cG(p1,p2;k1,k)|2 is the corresponding matrix

element squared, summed over all degeneracies of each species. For the SM in the symmetric

phase, these are spin, polarization, colour, weak isospin and generation. For k ∼ πT the

contribution of thermal masses is suppressed, so the external states can be considered massless

(thermal masses are only needed for the IR-divergent part of the squared amplitudes, cf.

sec. 2.6). The prefactor 1/8k is a combination of 1/2k from the phase space measure, 1/2

for the graviton polarization degeneracy, and 1/2 for the symmetry factor for identical initial

state particles; in the cases where a %= b this factor is compensated for by their being counted

twice in the sum over abc. The thermal distributions fi correspond to nB and nF for bosons

and fermions, respectively, with [1 ± fc(k1)] implying [1 + nB(k1)] in the former case and

[1− nF(k1)] in the latter.

The main challenge is the determination of the matrix elements squared, which requires

the derivation of Feynman rules for all graviton-SM couplings and the computation of the

tree-level amplitudes. Given the large number of vertices and processes, and the associated

opportunities for error, we have adopted automated techniques, originally developed for col-

lider physics. We first used FeynRules [11], which can derive Feynman rules from a given

Lagrangian. We applied it to the Lagrangian describing the symmetric-phase SM coupled to

gravitons, i.e.

LSM+G = LSM −
√
32π

2mPl

hµνT
µν
SM , (2.40)

where the SM energy-momentum tensor T µν
SM contains also the trace part. The kinetic term

for gravitons can be omitted, as they are external states in our computation.

Using the appropriate interface [12], FeynRules can generate a model file for Feyn-

Arts [15] (unfortunately, sometimes manual fixes of the generation and SU(2) index assig-

ments were needed).4 This package and its companion FormCalc [16] were then used to

generate, evaluate and square all amplitudes, summing over the relevant degeneracies. The

handling of spin, vector boson polarization and colour is available in FormCalc, whereas

4We have also looked into other packages, notably CalcHEP [13] and MadGraph [14], however have not

identified a procedure that would be simpler than the one described here.
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d⌦2!2

k ∼ 3T

p ∼ 3T

Figure 1: Processes leading to a logarithmically enhanced graviton production rate. Wiggly lines

denote gauge bosons; arrowed lines fermions; dashed lines scalars; and a double line a graviton. By

k, p ∼ 3T we denote typical momenta of the scattering particles, whereas the filled blob indicates that

the vertical rung carries a soft spacelike momentum transfer (t ∼ −q2
⊥

∼ −g2T 2, where q⊥ · k = 0)

so that the gauge boson needs to be Hard Thermal Loop resummed.

are the most weakly interacting degrees of freedom, changing their momenta only through

reactions mediated by hypercharge gauge fields.

Omitting for the moment all particle species which equilibrate faster than right-handed

leptons, the shear viscosity can be extracted from refs. [37, 38]:

η #
16T 3

g41 ln(5T/mD1)
, (4.1)

where mD1 =
√

11/6 g1T is the Debye mass related to the hypercharge gauge field. Inserting

g1 ∼ 0.36 for the gauge coupling we obtain

η # 400T 3 . (4.2)

We use this value for order-of-magnitude estimates below.

If we increase the temperature above 160 GeV, the hypercharge coupling g1 grows and

the weak and strong couplings g2, g3 decrease. Presumably, the top Yukawa coupling ht and

the Higgs self-coupling λ are also of a similar magnitude. In this situation the analysis of

refs. [37, 38] should be generalized to include a scalar field and a more complicated set of

reactions. Even though conceptually straightforward, implementing and solving numerically

the corresponding set of rate equations is a formidable task and beyond the scope of the

present investigation. We note, however, that the shear viscosity is likely to decrease with

increasing g1, so that eq. (4.2) should represent the most “optimistic” estimate from the point

of view of detecting a thermally emitted low-frequency gravitational wave background.

5. Leading-logarithmic production rate at large momentum

Before turning to numerical estimates we wish to complete the qualitative picture concerning

the thermal graviton production rate by considering the case of “hard momenta”, k ∼ 3T . A

full computation of the rate in this regime represents a complicated task, similar to the full

7
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Figure 3: Left: examples of the interaction rate Γ(k) from eq. (2.2) at a few representative tempera-

tures, normalized to T 3/m2
Pl. The interaction rate decreases in these units with temperature, because

the most important running couplings become smaller. Right: the combination m2
Pl k

3 Γ(k)nB(k)/T
6

that plays a role for the production rate of the energy density carried by gravitational radiation.

3. Numerical results

Inserting the integrals from eqs. (2.60) and (2.71), with coefficients from eqs. (2.72)–(2.75),

into eq. (2.8), and adding the resummation from eq. (2.97), we can determine the interaction

rate Γ(k) from eq. (2.2). For the running couplings and Debye masses appearing in these

expressions, we use values specified in sec. 4 of ref. [30].

In fig. 3, Γ(k) is plotted both as m2
Pl Γ(k)/T

3 and in the combination appearing in the

energy density production rate, m2
Pl k

3 Γ(k)nB(k)/T
6, at T ≈ 103, 109, 1015 GeV. In the units

chosen, the rates decrease slowly with the temperature, due to the running of g22 , g
2
3 and h2t .

We remark that Γ(k) has a (barely visible) negative dip for k/T → 0. In this region

many of our approximations, taken under the assumption k ∼ πT , fail. Most importantly,

HTL resummation with one hard and one soft gauge boson in Φg, as described in sec. 2.6,

only works correctly for k $ mE.
9 This is neither new nor specific to graviton production:

previous calculations of gravitino [31–33], axion [34, 35] and axino [36] production saw the

same issue. In fact, the negative dips were typically much larger (cf., e.g., fig. 3 of ref. [36]).

9For k ! mE, we could actually replace the argument of the logarithm in eq. (2.96) with just 4k2/m2
E, as

the difference between these is parametrically of O(g4). For k " mE/2, however, ln(1+ 4k2/m2
E) is small and

positive, whereas ln(4k2/m2
E) is large and negative. That said, our result is formally incomplete for k <∼mE,

as is practically any available thermal production rate as of today, including that of photons from QCD.
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Figure 3: Left: examples of the interaction rate Γ(k) from eq. (2.2) at a few representative tempera-

tures, normalized to T 3/m2
Pl. The interaction rate decreases in these units with temperature, because

the most important running couplings become smaller. Right: the combination m2
Pl k

3 Γ(k)nB(k)/T
6

that plays a role for the production rate of the energy density carried by gravitational radiation.

3. Numerical results

Inserting the integrals from eqs. (2.60) and (2.71), with coefficients from eqs. (2.72)–(2.75),

into eq. (2.8), and adding the resummation from eq. (2.97), we can determine the interaction

rate Γ(k) from eq. (2.2). For the running couplings and Debye masses appearing in these

expressions, we use values specified in sec. 4 of ref. [30].

In fig. 3, Γ(k) is plotted both as m2
Pl Γ(k)/T

3 and in the combination appearing in the

energy density production rate, m2
Pl k

3 Γ(k)nB(k)/T
6, at T ≈ 103, 109, 1015 GeV. In the units

chosen, the rates decrease slowly with the temperature, due to the running of g22 , g
2
3 and h2t .

We remark that Γ(k) has a (barely visible) negative dip for k/T → 0. In this region

many of our approximations, taken under the assumption k ∼ πT , fail. Most importantly,

HTL resummation with one hard and one soft gauge boson in Φg, as described in sec. 2.6,

only works correctly for k $ mE.
9 This is neither new nor specific to graviton production:

previous calculations of gravitino [31–33], axion [34, 35] and axino [36] production saw the

same issue. In fact, the negative dips were typically much larger (cf., e.g., fig. 3 of ref. [36]).

9For k ! mE, we could actually replace the argument of the logarithm in eq. (2.96) with just 4k2/m2
E, as

the difference between these is parametrically of O(g4). For k " mE/2, however, ln(1+ 4k2/m2
E) is small and

positive, whereas ln(4k2/m2
E) is large and negative. That said, our result is formally incomplete for k <∼mE,

as is practically any available thermal production rate as of today, including that of photons from QCD.
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• The rate is valid for k≳T. At smaller k our rate is not LO correct, but extrapolates to 
k=0 better than what was happening in similar calculations for gravitino and axion 
production 
(e.g. Pradler Steffen PRD75 (2007), Rychkov Strumia PRD75 (2007))
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• Well-defined vacuum-like particle external states, at 
most HTL internally 

• Longer-lived intermediate states, collinear and soft 
kinematics. Changes to simple particle picture 

• Duration of order mean free time: scattering picture 
completely breaks down, GW does not resolve the 
microscopic scale

• Nothing here specific to GW
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• Well-defined vacuum-like particle external states, at 
most HTL internally 

• Longer-lived intermediate states, collinear and soft 
kinematics. Changes to simple particle picture 

• Duration of order mean free time: scattering picture 
completely breaks down, GW does not resolve the 
microscopic scale

• Nothing here specific to GW
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• Well-defined vacuum-like particle external states, at 
most HTL internally 

• Longer-lived intermediate states, collinear and soft 
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• Duration of order mean free time: scattering picture 
completely breaks down, GW does not resolve the 
microscopic scale

• Nothing here specific to GW
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• TFT formalism shows that the IR rate is proportional to the shear viscosity of the 
plasma

Production from hydrodynamic fluctuations
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• For the SM at T>160 GeV η is dominated by the slowest processes in eq., those 
involving right-handed leptons only 
 
 
 
g1 hypercharge coupling with screening mass 
Only a leading-log estimate, no complete LO for T>160 GeV 
Arnold Moore Yaffe (2000-2003)


• TFT formalism shows that the IR rate is proportional to the shear viscosity of the 
plasma
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⌘ ' 16T 3
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k ∼ 3T

p ∼ 3T

Figure 1: Processes leading to a logarithmically enhanced graviton production rate. Wiggly lines

denote gauge bosons; arrowed lines fermions; dashed lines scalars; and a double line a graviton. By

k, p ∼ 3T we denote typical momenta of the scattering particles, whereas the filled blob indicates that

the vertical rung carries a soft spacelike momentum transfer (t ∼ −q2
⊥
∼ −g2T 2, where q⊥ · k = 0)

so that the gauge boson needs to be Hard Thermal Loop resummed.

are the most weakly interacting degrees of freedom, changing their momenta only through

reactions mediated by hypercharge gauge fields.

Omitting for the moment all particle species which equilibrate faster than right-handed

leptons, the shear viscosity can be extracted from refs. [37, 38]:

η #
16T 3

g41 ln(5T/mD1)
, (4.1)

where mD1 =
√

11/6 g1T is the Debye mass related to the hypercharge gauge field. Inserting

g1 ∼ 0.36 for the gauge coupling we obtain

η # 400T 3 . (4.2)

We use this value for order-of-magnitude estimates below.

If we increase the temperature above 160 GeV, the hypercharge coupling g1 grows and

the weak and strong couplings g2, g3 decrease. Presumably, the top Yukawa coupling ht and

the Higgs self-coupling λ are also of a similar magnitude. In this situation the analysis of

refs. [37, 38] should be generalized to include a scalar field and a more complicated set of

reactions. Even though conceptually straightforward, implementing and solving numerically

the corresponding set of rate equations is a formidable task and beyond the scope of the

present investigation. We note, however, that the shear viscosity is likely to decrease with

increasing g1, so that eq. (4.2) should represent the most “optimistic” estimate from the point

of view of detecting a thermally emitted low-frequency gravitational wave background.

5. Leading-logarithmic production rate at large momentum

Before turning to numerical estimates we wish to complete the qualitative picture concerning

the thermal graviton production rate by considering the case of “hard momenta”, k ∼ 3T . A

full computation of the rate in this regime represents a complicated task, similar to the full
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SM

Figure 1: Function (k/T )3 ⌘̂SM(T, k/T ) determining the background of stochastic gravitational
waves produced in the thermal SM plasma, showing the hydrodynamic contributions (straighter
solid lines for smallish k/T ), the microscopic contributions at full leading order (curved solid lines
for higher k/T ), and their leading-log approximations (dashed lines). The lines are colored for the
scales in which the calculations can be trusted, i.e. k < ↵2

1
T for the hydrodynamic contributions,

and k > m3(T ) for the microscopic ones. From top to bottom, the temperatures correspond to
T = 103 GeV (black), T = 108 GeV (red), T = 1013 GeV (green) and T = MP (violet). The
gauge and Yukawa couplings were evaluated at the renormalization µ̄ = 2⇡T using the respective
two-loop renormalization group equations.

2.3 CGMB in the SM

In the SM we assign n = 1, 2, 3 to the gauge groups U(1)Y , SU(2)L, SU(3). With the SM matter
content one has

Nspecies,SM =
11

2
, Nleptons,SM =

3

2
,

m̂2

1,SM(T ) =
11

6
g1(T )

2, m̂2

2,SM(T ) =
11

6
g2(T )

2, m̂2

3,SM(T ) = 2g3(T )
2.

(2.47)

With this one can fix ⌘̄ as well as the ⌘̂HTL contribution of Eqs. (2.5) and (2.8). Computing as
well the coe�cients of the loop functions in terms of the representations and couplings in the SM
leads to:

⌘̂SM

✓
T,

k

T
⌘ k̂

◆
'

8
>>>>>>>><

>>>>>>>>:

15.51

g4
1
ln(5/m̂1,SM)

, k̂ . ↵2

1
,

⌘̂HTL,SM(T, k̂) + (3g22 + 12g23)⌘gg(k̂)

+ (g21 + 3g22)⌘sg(k̂) + (5g21 + 9g22 + 24g23)⌘fg(k̂) k̂ & max {m̂n}.
+ (3|yt|2 + 3|yb|2 + |y⌧ |2) ⌘sf (k̂),

(2.48)

In the previous equations we omitted for simplicity the logarithmic T -dependence of the couplings
gi, yi and the rescaled Debye masses m̂i. We have also ignored the Yukawa couplings of the lightest
fermions.
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• Peak: frequency at k≈4T. Redshifts at decoupling to kdec≈4Tdec(3.9/106.75)1/3~Tdec. 
Today f≈100 GHz. Amplitude determined by Tmax. 

Cosmological implications



• Direct detection challenging in the medium term


• Thermal production stores energy in GWs. BBN and CMB observations constrain 
the energy density stored in radiation at those epochs: GW contribution to Neff 
Smith Pierpaoli Kamionkowski PRL97 (2006) Henrot-Versille et al Class. Quant. Grav. 32 
(2015) Caprini Figueroa Class. Quant. Grav. 35 (2018)

• The SM predictions have 10-3 uncertainty, the experimental accuracy 10-1, expected 
to increase with next-generation detectors CMB-S4


• Requiring ∆Neff =10-3 yields Tmax < 2 1017 GeV for a SM universe, 2x more than that 
for a MSSM scenario (the extra GW production from the larger number of thermal 
d.o.f.s is more than compensated by the extra dilution)

Cosmological implications

JG Jackson Laine Zhu JCHEP2007 (2020) Ringwald Schütte-Engel Tamarit 2011.04731



Massive particles



• n sterile (SM gauge singlet), Majorana neutrinos coupling to the three active lepton 
flavours and the (conjugate) Higgs field 
 

• Can address active neutrino masses (seesaw) and baryon  
asymmetry (leptogenesis) over a wide range of parameters  
Fukugita Yanagida PLB174 (1986)


• A specific realisation (νMSM) can also provide a keV-scale  
DM right-handed neutrino  
Asaka Blanchet Shaposhnikov PLB620, PLB631 (2005)


• Asymmetry generation and RHN production require  
rates from T≫MI to T≪MI

Massive particles: right-handed neutrinos

L = LSM +
1

2
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Many different parameter values can be envisaged.
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Massive particles: right-handed neutrinos
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Freeze-out 

leptogenesis

Decays

• Production, equilibration,  
freeze-out and decay rates from  
the formalism over many decades

JG Laine (2016-20)



• Symmetric phase


• T≪MI  Salvio Lodone Strumia (2011), Laine Schröder (2012), Biondini Brambilla Escobedo Vairo (2012)

• T~MI Laine (2013)

• T≫MI Anisimov Besak Bödeker (2010-12), Garbrecht Glowna Herranen (2013), Ghisoiu Laine (2014)

• Broken phase


• MI~GeV JG Laine (2016-20), Jackson Laine (2019)

• MI~keV Asaka Laine Shaposhnikov (2006), JG Laine (2015-20) Bödeker Klaus (2020)

• These calculations provide a pattern for models with many regimes to be followed
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<latexit sha1_base64="ctigQ2eoTMAt9MrLc5MdZOMVcnE="></latexit>

�(k) =
X

a

|hIa|2

2k0

Z
d4XeiK·Xh[�̃†aLl(X), l̄aR�̃(0)]i



Massive particles: the ultrarelativistic regime
<latexit sha1_base64="ctigQ2eoTMAt9MrLc5MdZOMVcnE="></latexit>

�(k) =
X

a

|hIa|2

2k0

Z
d4XeiK·Xh[�̃†aLl(X), l̄aR�̃(0)]iT≫MI
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Figure 1: (a) Examples of 1+n ↔ 2+n processes for the direct generation of right-handed neutrinos

from a Yukawa interaction. (b) Examples of 1 + n ↔ 2 + n processes for the generation of left-

handed neutrinos which subsequently oscillate into right-handed ones. Arrowed, dashed, and wiggly

lines correspond to Standard Model fermions, scalars, and gauge bosons, respectively, whereas right-

handed neutrinos are denoted by a double line. The closed blob denotes a Higgs expectation value.

(a) (b)

Figure 2: (a) Examples of 2 → 2 processes for the direct generation of right-handed neutrinos from

a Yukawa interaction. (b) Examples of 2 → 2 processes for the generation of left-handed neutrinos

which subsequently oscillate into right-handed ones. The notation is as in fig. 1. The complete set for

case (a) is shown in fig. 1 of ref. [29] and for case (b) in fig. 7 below.

At lower temperatures, Higgs and gauge bosons become non-relativistic and need to be de-

coupled from the computation (the top quark becomes non-relativistic already at a somewhat

higher temperature).

In the regime of eq. (2.10), there are two types of contributions to ImΠR. First, the Higgs

field φ̃ in eq. (2.2) can represent a propagating mode (Goldstone or Higgs). This leads to the

same processes as have previously been considered in the symmetric phase [27,28]; examples

of 1 + n ↔ 2 + n processes are shown in fig. 1(a) and of 2 ↔ 2 processes in fig. 2(a). Second,

the Higgs field could be replaced by its expectation value, φ̃ # (v 0)T /
√
2. Then we are left to

consider processes experienced by an active (left-handed) neutrino. Examples of amplitudes

are illustrated in figs. 1(b) and 2(b). We refer to first type as a “direct” contribution and to

the second as an “indirect” one.

When amplitudes such as those in figs. 1 and 2 are squared, there are no interference terms

between the direct and indirect sets, provided that we adopt a class of gauges (such as the

Rξ gauge) in which scalar and gauge fields do not transform to each other. Then the rate

can be written as

ImΠR = ImΠR|direct + ImΠR|indirect , (2.11)

where the “direct” processes are like in sets (a) of figs. 1 and 2. Like in the symmetric

phase [27, 28], the direct term has the parametric magnitude ImΠR|direct ∼ g2T 2 (recalling

5

• In a first approximation mass seems negligible


• Just 2↔︎2 processes (with fermion HTL included)?

Anisimov Besak Bödeker (2010-12) Ghisoiu Laine (2014)
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• Effective 1↔︎2 processes 
 
 

• Landau-Pomeranchuk-Migdal (LPM) interference of  
multiple soft scatterings, requires ladder resummation 


• Borrow techniques from hot QCD to deal with LPM resummation 
Baier Dokshitzer Mueller Peigné Schiff (1995-97) Zakharov (1996-97) Arnold Moore Yaffe (2001-2003) 
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Figure 2: Examples of processes for right-handed neutrino production: (a) a tree-level process pro-

ducing a massive right-handed neutrino (double line) out of a coalescence of a Higgs (dashed line) and

a left-handed lepton (solid line); (b) the same process after HTL resummation, generating thermal

self-energies or effective vertices (filled blobs); (c) processes contributing at the same order as (b), due

to exchanges of soft W±, Z0, γ bosons; (d) another channel allowed by the thermal masses generated

by HTL resummation (if mφ > M); (e) processes contributing at the same order as (d). In the

language of eq. (4.5), the processes (a)–(c) originate from the range k0 = ω1 + ω2, ω1 > 0, ω2 > 0,

whereas (d) and (e) correspond to ω2 = k0− ω1, ω1 < 0, where ω1 is the lepton, ω2 the Higgs, and k0
the right-handed neutrino energy.

Here we have defined

k± ≡
k0 ± k

2
. (3.3)

The result of eq. (3.2) can be evaluated (and is positive) both for M > mφ and M < mφ.

Once the NLO expression of ref. [9] is written as a sum of eq. (3.2) and a remainder, the

final result becomes
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]}

. (3.4)

The objects ρT
Ix

are “master” spectral functions, depending on k0, k and T and evaluated

numerically in refs. [18, 9]. Eq. (3.4) replaces eq. (3.14) of ref. [9]. It should be noted that

mφ = 0 in the terms shown in eq. (3.4), which will play a role in the following (cf. sec. 6).

Let us reiterate that even though expressed in a concise form in eq. (3.4), the NLO expres-

sion incorporates many types of physical processes. There are real 2→ 2 and 3→ 1 reactions

that can be assembled into compact expressions, given in appendix A, which could also have

been derived from a Boltzmann equation. In addition there are “virtual” corrections, i.e.

self-energy and vertex insertions into the 2 → 1 process, given in appendix B. These can
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Figure 3: Example for a self-energy diagram that needs to be taken into account in a
consistent leading order calculation of the production rate via Eq. (7).

corresponding coupling constants. Also, the thermal mass of the Majorana neutrinos

can be neglected.

The relevance of thermal masses for these processes was first realized in Ref. [14].

There, however, the thermal mass for soft fermionic excitations was used, by which

the rate is overestimated. In [15] it was argued that the lepton and/or the Higgs

momenta are soft, and that it is therefore necessary to do a Hard Thermal Loop

resummation for the Higgs and charged lepton lines. This is correct at the edge of the

threshold where the decay becomes kinematically allowed. Since the Hard Thermal

Loop gives the correct asymptotic mass even when the external momentum is hard,

the result of Ref. [15] contains the correct decay contribution to the rate also away from

the thresholds. However, the dominant contribution with this collinear kinematics is

obtained by adding interactions with other hard particles in the plasma, mediated by

the exchange of soft electroweak gauge bosons as shown in Fig. 1(b) [16]. In a complete

leading order calculation an arbitrary number of such interactions has to be taken into

account. We summarize the results that were already obtained in [16], to which we

refer the reader for the derivation.

3.2 Computing the rate

As shown in [16], the kinematics described above necessitates the inclusion of multiple

soft scattering already at leading order. Examples for processes that must be taken

into account are shown in Fig. 1(b). In order to find the production rate due to this

infinite set of processes, it is most convenient to use (7) with the self-energy given by

diagrams of the form shown in Fig. 3 with an arbitrary number of soft gauge boson

ladder rungs or self-energy insertions. The self-energy to be inserted in (7) is obtained

by resumming all diagrams which respect the topology as given in Fig. 3: No crossed
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Figure 2: Examples of processes for right-handed neutrino production: (a) a tree-level process pro-

ducing a massive right-handed neutrino (double line) out of a coalescence of a Higgs (dashed line) and

a left-handed lepton (solid line); (b) the same process after HTL resummation, generating thermal

self-energies or effective vertices (filled blobs); (c) processes contributing at the same order as (b), due

to exchanges of soft W±, Z0, γ bosons; (d) another channel allowed by the thermal masses generated

by HTL resummation (if mφ > M); (e) processes contributing at the same order as (d). In the

language of eq. (4.5), the processes (a)–(c) originate from the range k0 = ω1 + ω2, ω1 > 0, ω2 > 0,

whereas (d) and (e) correspond to ω2 = k0−ω1, ω1 < 0, where ω1 is the lepton, ω2 the Higgs, and k0
the right-handed neutrino energy.

Here we have defined

k± ≡
k0 ± k

2
. (3.3)

The result of eq. (3.2) can be evaluated (and is positive) both for M > mφ and M < mφ.

Once the NLO expression of ref. [9] is written as a sum of eq. (3.2) and a remainder, the

final result becomes

ImΠNLO
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R
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. (3.4)

The objects ρT
Ix

are “master” spectral functions, depending on k0, k and T and evaluated

numerically in refs. [18, 9]. Eq. (3.4) replaces eq. (3.14) of ref. [9]. It should be noted that

mφ = 0 in the terms shown in eq. (3.4), which will play a role in the following (cf. sec. 6).

Let us reiterate that even though expressed in a concise form in eq. (3.4), the NLO expres-

sion incorporates many types of physical processes. There are real 2→ 2 and 3→ 1 reactions

that can be assembled into compact expressions, given in appendix A, which could also have

been derived from a Boltzmann equation. In addition there are “virtual” corrections, i.e.

self-energy and vertex insertions into the 2 → 1 process, given in appendix B. These can
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Figure 2: Examples of processes for right-handed neutrino production: (a) a tree-level process pro-

ducing a massive right-handed neutrino (double line) out of a coalescence of a Higgs (dashed line) and

a left-handed lepton (solid line); (b) the same process after HTL resummation, generating thermal

self-energies or effective vertices (filled blobs); (c) processes contributing at the same order as (b), due

to exchanges of soft W±, Z0, γ bosons; (d) another channel allowed by the thermal masses generated

by HTL resummation (if mφ > M); (e) processes contributing at the same order as (d). In the

language of eq. (4.5), the processes (a)–(c) originate from the range k0 = ω1 + ω2, ω1 > 0, ω2 > 0,

whereas (d) and (e) correspond to ω2 = k0− ω1, ω1 < 0, where ω1 is the lepton, ω2 the Higgs, and k0
the right-handed neutrino energy.

Here we have defined

k± ≡
k0 ± k

2
. (3.3)

The result of eq. (3.2) can be evaluated (and is positive) both for M > mφ and M < mφ.

Once the NLO expression of ref. [9] is written as a sum of eq. (3.2) and a remainder, the

final result becomes

ImΠNLO
R ≡ ImΠLO

R

+ 2h2tNc

{

−ρT

Ĩf
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Ĩh

−
πM2
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. (3.4)

The objects ρT
Ix

are “master” spectral functions, depending on k0, k and T and evaluated

numerically in refs. [18, 9]. Eq. (3.4) replaces eq. (3.14) of ref. [9]. It should be noted that

mφ = 0 in the terms shown in eq. (3.4), which will play a role in the following (cf. sec. 6).

Let us reiterate that even though expressed in a concise form in eq. (3.4), the NLO expres-

sion incorporates many types of physical processes. There are real 2→ 2 and 3→ 1 reactions

that can be assembled into compact expressions, given in appendix A, which could also have

been derived from a Boltzmann equation. In addition there are “virtual” corrections, i.e.

self-energy and vertex insertions into the 2 → 1 process, given in appendix B. These can
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Massive particles: the ultrarelativistic regime

Anisimov Besak Bödeker (2010-12) Ghisoiu Laine (2014)



• Effective 1↔︎2 processes 
 
 

• Absent from GW production calculation at LO (suppression in derivative coupling) 
and similar production calculations (gravitino, axion, etc…)


• Thermalisation during reheating (number-nonconserving and efficient energy 
equilibration) Davidson Sarkar (2001) Harigaya Mukaida (2014) Mukaida Yamada (2015) 
Large body of literature on QCD thermalisation, review in Berges Heller Mazeliauskas 
Venugopalan (2020) 
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Figure 2: Examples of processes for right-handed neutrino production: (a) a tree-level process pro-

ducing a massive right-handed neutrino (double line) out of a coalescence of a Higgs (dashed line) and

a left-handed lepton (solid line); (b) the same process after HTL resummation, generating thermal

self-energies or effective vertices (filled blobs); (c) processes contributing at the same order as (b), due

to exchanges of soft W±, Z0, γ bosons; (d) another channel allowed by the thermal masses generated

by HTL resummation (if mφ > M); (e) processes contributing at the same order as (d). In the

language of eq. (4.5), the processes (a)–(c) originate from the range k0 = ω1 + ω2, ω1 > 0, ω2 > 0,

whereas (d) and (e) correspond to ω2 = k0− ω1, ω1 < 0, where ω1 is the lepton, ω2 the Higgs, and k0
the right-handed neutrino energy.

Here we have defined

k± ≡
k0 ± k

2
. (3.3)

The result of eq. (3.2) can be evaluated (and is positive) both for M > mφ and M < mφ.

Once the NLO expression of ref. [9] is written as a sum of eq. (3.2) and a remainder, the

final result becomes

ImΠNLO
R ≡ ImΠLO

R

+ 2h2tNc

{
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The objects ρT
Ix

are “master” spectral functions, depending on k0, k and T and evaluated

numerically in refs. [18, 9]. Eq. (3.4) replaces eq. (3.14) of ref. [9]. It should be noted that

mφ = 0 in the terms shown in eq. (3.4), which will play a role in the following (cf. sec. 6).

Let us reiterate that even though expressed in a concise form in eq. (3.4), the NLO expres-

sion incorporates many types of physical processes. There are real 2→ 2 and 3→ 1 reactions

that can be assembled into compact expressions, given in appendix A, which could also have

been derived from a Boltzmann equation. In addition there are “virtual” corrections, i.e.

self-energy and vertex insertions into the 2 → 1 process, given in appendix B. These can
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Massive particles: the ultrarelativistic regime
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• Effective 1↔︎2 processes 
 
 

• Very important beyond sterile neutrinos


• Thermalisation during reheating (number-nonconserving and efficient energy 
equilibration) Davidson Sarkar (2001) Harigaya Mukaida (2014) Mukaida Yamada (2015) 
Large body of literature on QCD thermalisation, review in Berges Heller Mazeliauskas 
Venugopalan (2020) 
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Figure 2: Examples of processes for right-handed neutrino production: (a) a tree-level process pro-

ducing a massive right-handed neutrino (double line) out of a coalescence of a Higgs (dashed line) and

a left-handed lepton (solid line); (b) the same process after HTL resummation, generating thermal

self-energies or effective vertices (filled blobs); (c) processes contributing at the same order as (b), due

to exchanges of soft W±, Z0, γ bosons; (d) another channel allowed by the thermal masses generated

by HTL resummation (if mφ > M); (e) processes contributing at the same order as (d). In the

language of eq. (4.5), the processes (a)–(c) originate from the range k0 = ω1 + ω2, ω1 > 0, ω2 > 0,

whereas (d) and (e) correspond to ω2 = k0− ω1, ω1 < 0, where ω1 is the lepton, ω2 the Higgs, and k0
the right-handed neutrino energy.

Here we have defined

k± ≡
k0 ± k

2
. (3.3)

The result of eq. (3.2) can be evaluated (and is positive) both for M > mφ and M < mφ.

Once the NLO expression of ref. [9] is written as a sum of eq. (3.2) and a remainder, the

final result becomes

ImΠNLO
R ≡ ImΠLO

R

+ 2h2tNc
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The objects ρT
Ix

are “master” spectral functions, depending on k0, k and T and evaluated

numerically in refs. [18, 9]. Eq. (3.4) replaces eq. (3.14) of ref. [9]. It should be noted that

mφ = 0 in the terms shown in eq. (3.4), which will play a role in the following (cf. sec. 6).

Let us reiterate that even though expressed in a concise form in eq. (3.4), the NLO expres-

sion incorporates many types of physical processes. There are real 2→ 2 and 3→ 1 reactions

that can be assembled into compact expressions, given in appendix A, which could also have

been derived from a Boltzmann equation. In addition there are “virtual” corrections, i.e.

self-energy and vertex insertions into the 2 → 1 process, given in appendix B. These can
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Massive particles: the ultrarelativistic regime
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• Effective 1↔︎2 processes 
 
 

• Very important beyond sterile neutrinos


• Equilibration of the Yukawa interactions of right-handed electrons  
Bödeker Schröder (2019)
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Figure 2: Examples of processes for right-handed neutrino production: (a) a tree-level process pro-

ducing a massive right-handed neutrino (double line) out of a coalescence of a Higgs (dashed line) and

a left-handed lepton (solid line); (b) the same process after HTL resummation, generating thermal

self-energies or effective vertices (filled blobs); (c) processes contributing at the same order as (b), due

to exchanges of soft W±, Z0, γ bosons; (d) another channel allowed by the thermal masses generated

by HTL resummation (if mφ > M); (e) processes contributing at the same order as (d). In the

language of eq. (4.5), the processes (a)–(c) originate from the range k0 = ω1 + ω2, ω1 > 0, ω2 > 0,

whereas (d) and (e) correspond to ω2 = k0− ω1, ω1 < 0, where ω1 is the lepton, ω2 the Higgs, and k0
the right-handed neutrino energy.

Here we have defined

k± ≡
k0 ± k

2
. (3.3)

The result of eq. (3.2) can be evaluated (and is positive) both for M > mφ and M < mφ.

Once the NLO expression of ref. [9] is written as a sum of eq. (3.2) and a remainder, the

final result becomes

ImΠNLO
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The objects ρT
Ix

are “master” spectral functions, depending on k0, k and T and evaluated

numerically in refs. [18, 9]. Eq. (3.4) replaces eq. (3.14) of ref. [9]. It should be noted that

mφ = 0 in the terms shown in eq. (3.4), which will play a role in the following (cf. sec. 6).

Let us reiterate that even though expressed in a concise form in eq. (3.4), the NLO expres-

sion incorporates many types of physical processes. There are real 2→ 2 and 3→ 1 reactions

that can be assembled into compact expressions, given in appendix A, which could also have

been derived from a Boltzmann equation. In addition there are “virtual” corrections, i.e.

self-energy and vertex insertions into the 2 → 1 process, given in appendix B. These can
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been derived from a Boltzmann equation. In addition there are “virtual” corrections, i.e.

self-energy and vertex insertions into the 2 → 1 process, given in appendix B. These can

5

!

N N

Figure 3: Example for a self-energy diagram that needs to be taken into account in a
consistent leading order calculation of the production rate via Eq. (7).

corresponding coupling constants. Also, the thermal mass of the Majorana neutrinos

can be neglected.

The relevance of thermal masses for these processes was first realized in Ref. [14].

There, however, the thermal mass for soft fermionic excitations was used, by which

the rate is overestimated. In [15] it was argued that the lepton and/or the Higgs

momenta are soft, and that it is therefore necessary to do a Hard Thermal Loop

resummation for the Higgs and charged lepton lines. This is correct at the edge of the

threshold where the decay becomes kinematically allowed. Since the Hard Thermal

Loop gives the correct asymptotic mass even when the external momentum is hard,

the result of Ref. [15] contains the correct decay contribution to the rate also away from

the thresholds. However, the dominant contribution with this collinear kinematics is

obtained by adding interactions with other hard particles in the plasma, mediated by

the exchange of soft electroweak gauge bosons as shown in Fig. 1(b) [16]. In a complete

leading order calculation an arbitrary number of such interactions has to be taken into

account. We summarize the results that were already obtained in [16], to which we

refer the reader for the derivation.

3.2 Computing the rate

As shown in [16], the kinematics described above necessitates the inclusion of multiple

soft scattering already at leading order. Examples for processes that must be taken

into account are shown in Fig. 1(b). In order to find the production rate due to this

infinite set of processes, it is most convenient to use (7) with the self-energy given by

diagrams of the form shown in Fig. 3 with an arbitrary number of soft gauge boson

ladder rungs or self-energy insertions. The self-energy to be inserted in (7) is obtained

by resumming all diagrams which respect the topology as given in Fig. 3: No crossed

8

(a) (b) (c) (d) (e)

Figure 2: Examples of processes for right-handed neutrino production: (a) a tree-level process pro-

ducing a massive right-handed neutrino (double line) out of a coalescence of a Higgs (dashed line) and

a left-handed lepton (solid line); (b) the same process after HTL resummation, generating thermal

self-energies or effective vertices (filled blobs); (c) processes contributing at the same order as (b), due

to exchanges of soft W±, Z0, γ bosons; (d) another channel allowed by the thermal masses generated

by HTL resummation (if mφ > M); (e) processes contributing at the same order as (d). In the

language of eq. (4.5), the processes (a)–(c) originate from the range k0 = ω1 + ω2, ω1 > 0, ω2 > 0,

whereas (d) and (e) correspond to ω2 = k0−ω1, ω1 < 0, where ω1 is the lepton, ω2 the Higgs, and k0
the right-handed neutrino energy.

Here we have defined

k± ≡
k0 ± k

2
. (3.3)

The result of eq. (3.2) can be evaluated (and is positive) both for M > mφ and M < mφ.

Once the NLO expression of ref. [9] is written as a sum of eq. (3.2) and a remainder, the

final result becomes

ImΠNLO
R ≡ ImΠLO

R

+ 2h2tNc

{

−ρT

Ĩf
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Figure 6: Number of produced Majorana neutrinos per unit time and unit volume
as a function of z ≡ MN/T . The dotted curve is the result without any soft gauge
interactions. The full line includes an arbitrary number of soft gauge interactions.

gauge interactions is very smooth in the regions where the decay of the Higgs boson

becomes kinematically forbidden.

One can see that the full rate is larger than the tree-level rate by about a factor 3 at

small z. It decreases only mildly when the tree-level processes are forbidden. When the

inverse decay process sets in, the difference between tree-level rate and the complete

rate goes to zero. This is expected, since the collinear enhancement is a relativistic

effect and it disappears when the Majorana neutrinos become non-relativistic. One

should emphasize that the strong enhancement caused by the soft gauge interactions

does not signal a breakdown of perturbation theory, because all contributions discussed

above are leading order.

It is also interesting to consider the contribution due to helicity changing and helicity

conserving processes separately (cf. the discussion at the end of Sec. 3.7). The rate of

helicity changing processes does not vanish in the limit MN → 0, and should therefore

be dominant at small z. The results are shown in Fig. 7. We clearly see that the

helicity changing process dominates at high temperatures and the helicity conserving
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Îh

]

+
3πM2

(4π)4k

∫ k+

k−

dp
nF(k0 − p)nB(p)

nF(k0)

[

ln
(k+ − p)(p− k−)µ̄2

k2M2
+

41

6

]}

. (3.4)

The objects ρT
Ix

are “master” spectral functions, depending on k0, k and T and evaluated

numerically in refs. [18, 9]. Eq. (3.4) replaces eq. (3.14) of ref. [9]. It should be noted that

mφ = 0 in the terms shown in eq. (3.4), which will play a role in the following (cf. sec. 6).

Let us reiterate that even though expressed in a concise form in eq. (3.4), the NLO expres-

sion incorporates many types of physical processes. There are real 2→ 2 and 3→ 1 reactions

that can be assembled into compact expressions, given in appendix A, which could also have

been derived from a Boltzmann equation. In addition there are “virtual” corrections, i.e.

self-energy and vertex insertions into the 2 → 1 process, given in appendix B. These can

5

(a) (b) (c) (d) (e)

Figure 2: Examples of processes for right-handed neutrino production: (a) a tree-level process pro-

ducing a massive right-handed neutrino (double line) out of a coalescence of a Higgs (dashed line) and

a left-handed lepton (solid line); (b) the same process after HTL resummation, generating thermal

self-energies or effective vertices (filled blobs); (c) processes contributing at the same order as (b), due

to exchanges of soft W±, Z0, γ bosons; (d) another channel allowed by the thermal masses generated

by HTL resummation (if mφ > M); (e) processes contributing at the same order as (d). In the

language of eq. (4.5), the processes (a)–(c) originate from the range k0 = ω1 + ω2, ω1 > 0, ω2 > 0,

whereas (d) and (e) correspond to ω2 = k0−ω1, ω1 < 0, where ω1 is the lepton, ω2 the Higgs, and k0
the right-handed neutrino energy.

Here we have defined

k± ≡
k0 ± k

2
. (3.3)

The result of eq. (3.2) can be evaluated (and is positive) both for M > mφ and M < mφ.

Once the NLO expression of ref. [9] is written as a sum of eq. (3.2) and a remainder, the

final result becomes

ImΠNLO
R ≡ ImΠLO

R

+ 2h2tNc

{

−ρT

Ĩf
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Îd
− ρT

Id
+ ρT

Ig
+ ρT
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Figure 1: The processes, up to O(g2), through which right-handed neutrinos can be generated.

Arrowed, dashed, and wiggly lines correspond to Standard Model fermions, scalars, and gauge fields,

respectively, whereas right-handed neutrinos are denoted by a double line. The closed “virtual” loops

include both vacuum and thermal corrections.

3. NLO result in the relativistic regime

We start by discussing the production rate in the “naive” language of Feynman diagrams

and the loop expansion. The relevant amplitudes are shown in fig. 1. If the right-handed

neutrino is massive and all other particles are assumed massless, the LO process is the 2→ 1

coalescence depicted up left. The NLO level includes virtual corrections to the 2→ 1 reaction,

as well as real 3 → 1 and 2 → 2 processes. In a massless theory, the real and virtual NLO

processes are IR divergent; their sum is finite for any M > 0 [16, 9]. All the NLO processes

have been evaluated numerically in ref. [9].

It was pointed out in ref. [9], however, that for M ∼ g1/2T the loop expansion breaks down,

and a thermal mass resummation is needed for the Higgs field. The (“asymptotic”) thermal

masses associated with the Higgs field (mφ) and with left-handed leptons (m") are
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where mH is the vacuum Higgs mass, and corrections of O(g2m2
H , g3T 2) have been omit-

ted [17]. In ref. [9] such a mass resummation was implemented not only for the Higgs field,

for which a resummation is unambiguous, but also for leptons, for which it amounts to a

higher-order effect when M ∼ g1/2T . It turns out that once proceeding to M <∼ gT , where

thermal mass resummation becomes necessary even for leptons, the correct procedure differs

from the naive implementation of ref. [9] (the correct procedure for leptons is part of the

LPM resummation as discussed in sec. 4). Hence, in order to be able to combine the NLO

result with the LPM result in a systematic way, we need to re-express the NLO result of

ref. [9] without a thermal mass resummation for leptons.

Keeping a thermal mass for the Higgs only, the leading-order result with a general four-

momentum K in the time-like domain M2 ≡ K2 > 0 can be expressed as
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Figure 1: The processes, up to O(g
2
), through which right-handed neutrinos can be generated.

Arrowed, dashed, and wiggly lines correspond to Standard Model fermions, scalars, and gauge fields,

respectively, whereas right-handed neutrinos are denoted by a double line. The closed “virtual” loops

include both vacuum and thermal corrections.
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Massive particles: the relativistic regime

6. Next-to-leading order analysis

Including now also contributions from the top quark and from gauge bosons, we turn to

our full NLO expressions. In order to obtain a “universal” representation, we make use of

completions of squares and substitutions of integration variables in order to express the results

in terms of a minimal number of independent “master” sum-integrals, listed in appendix A.

We specify graph-by-graph results in NDR in terms of these masters.4 Gauge parameter

independence (with respect to both gauge groups) has been checked separately, so here only

the Feynman gauge results are shown. They read

= 12|hνB|2λB

(
−Ib + Ic + Id

)
, (6.1)

= 2|hνB|2|htB|2Nc

(
2 Ĩb − 2 Ĩc − 2 Ĩd + Ĩe − Ĩf + Ĩh

)
, (6.2)

= |hνB|2(g21B + 3g22B)
[D
2

(
−Ib + Ic + Id

)]
, (6.3)

= |hνB|2(g21B + 3g22B)
[1
2

(
Ib − Ic − Id

)
− Ie + If − Ih

]
, (6.4)

= |hνB|2(g21B + 3g22B)
[D − 2

2

(
Ib − Ĩb + Ic − Îc + Îd − Id + Îh’

)]
, (6.5)

= |hνB|2(g21B + 3g22B)
(
Ĩe − If + Ig − Ih − 2 Îh + Ij

)
, (6.6)

with dashed, solid, doubled, and wiggly lines representing scalars, leptons, quarks, and gauge

bosons, respectively.

Inserting the cuts, or spectral functions, from appendix B; setting D = 4− 2ε; and renor-

malizing according to

|hνB|2 = |hν(µ̄)|2µ2εZν , with (6.7)

Zν ≡ 1 +
1

(4π)2ε

[
|ht|2Nc −

3

4
(g21 + 3g22)

]
+O(g4) , (6.8)

4We have checked that the same results are obtained, for every diagram, with the recipe described below

eq. (3.6), whereas in the strict ’t Hooft - Veltman scheme there are additional terms; cf. appendix D.
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Ĩe − If + Ig − Ih − 2 Îh + Ij
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)]
, (6.5)

= |hνB|2(g21B + 3g22B)
(
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Figure 2: Examples of processes for right-handed neutrino production: (a) a tree-level process pro-

ducing a massive right-handed neutrino (double line) out of a coalescence of a Higgs (dashed line) and

a left-handed lepton (solid line); (b) the same process after HTL resummation, generating thermal

self-energies or effective vertices (filled blobs); (c) processes contributing at the same order as (b), due

to exchanges of soft W±, Z0, γ bosons; (d) another channel allowed by the thermal masses generated

by HTL resummation (if mφ > M); (e) processes contributing at the same order as (d). In the

language of eq. (4.5), the processes (a)–(c) originate from the range k0 = ω1 + ω2, ω1 > 0, ω2 > 0,

whereas (d) and (e) correspond to ω2 = k0− ω1, ω1 < 0, where ω1 is the lepton, ω2 the Higgs, and k0
the right-handed neutrino energy.

Here we have defined

k± ≡
k0 ± k

2
. (3.3)

The result of eq. (3.2) can be evaluated (and is positive) both for M > mφ and M < mφ.

Once the NLO expression of ref. [9] is written as a sum of eq. (3.2) and a remainder, the

final result becomes

ImΠNLO
R ≡ ImΠLO

R

+ 2h2tNc

{

−ρT

Ĩf
+ ρT

Ĩh

−
πM2

(4π)4k

∫ k+

k−

dp
nF(k0 − p)nB(p)

nF(k0)

[

ln
(k+ − p)(p− k−)µ̄2

k2M2
+

11

2

]}

+
g21 + 3g22

2

{
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[

ρT
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Ĩb
+ ρT

Îd
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Id
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Ig
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[
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∫ k+

k−

dp
nF(k0 − p)nB(p)

nF(k0)

[

ln
(k+ − p)(p− k−)µ̄2

k2M2
+

41

6

]}

. (3.4)

The objects ρT
Ix

are “master” spectral functions, depending on k0, k and T and evaluated

numerically in refs. [18, 9]. Eq. (3.4) replaces eq. (3.14) of ref. [9]. It should be noted that

mφ = 0 in the terms shown in eq. (3.4), which will play a role in the following (cf. sec. 6).

Let us reiterate that even though expressed in a concise form in eq. (3.4), the NLO expres-

sion incorporates many types of physical processes. There are real 2→ 2 and 3→ 1 reactions

that can be assembled into compact expressions, given in appendix A, which could also have

been derived from a Boltzmann equation. In addition there are “virtual” corrections, i.e.

self-energy and vertex insertions into the 2 → 1 process, given in appendix B. These can

5
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Figure 5: Left: Total right-handed neutrino production rate from eq. (2.5), for M = 107 GeV. Shown

are results from eq. (7.2) (“LPM + ∆(2→ 2)”); eq. (4.9) (“LPM”); with naive thermal masses as

given e.g. in eq. (3.9) of ref. [9] (“TREE”); and from ref. [6] (“NON-REL”). Right: Similar results for

the function defined in eq. (2.6). The solid lines constitute our final results.

a factor ∼ 1.7 at M # T (for M = 107 GeV).

8. Conclusions and outlook

We have provided numerical results for the imaginary part of the right-handed neutrino

self-energy, entering gauge-invariant physical observables as dictated by eqs. (2.5) and (2.6),

as a function of the right-handed neutrino mass M and momentum k, for a wide range of

temperatures T ≥ 160 GeV.3 Previous results for M # T [13] cannot be extrapolated to

M >∼T because the 2→ 2 contributions were evaluated by assuming M/T = 0, whereas NLO

results obtained for M >∼πT [9] cannot be extrapolated to M # πT because of a powerlike

breakdown of the loop expansion. Our results smoothly interpolate between the two regimes,

although for the moment this comes with the price of a phenomenological treatment in a

particular intermediate range (cf. sec. 6). In order to avoid this compromise in the future,

the NLO computation of ref. [9] should be repeated with mφ > 0. From a practical point of

view, though, it appears that only a narrow mass range is affected, so that even the present

results should suffice for many applications (cf. the grey bands in figs. 3(right) and 4(left),

the latter being practically invisible).

3Tabulated results can be downloaded from www.laine.itp.unibe.ch/production-highT/.
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Figure 6: Number of produced Majorana neutrinos per unit time and unit volume
as a function of z ≡ MN/T . The dotted curve is the result without any soft gauge
interactions. The full line includes an arbitrary number of soft gauge interactions.

gauge interactions is very smooth in the regions where the decay of the Higgs boson

becomes kinematically forbidden.

One can see that the full rate is larger than the tree-level rate by about a factor 3 at

small z. It decreases only mildly when the tree-level processes are forbidden. When the

inverse decay process sets in, the difference between tree-level rate and the complete

rate goes to zero. This is expected, since the collinear enhancement is a relativistic

effect and it disappears when the Majorana neutrinos become non-relativistic. One

should emphasize that the strong enhancement caused by the soft gauge interactions

does not signal a breakdown of perturbation theory, because all contributions discussed

above are leading order.

It is also interesting to consider the contribution due to helicity changing and helicity

conserving processes separately (cf. the discussion at the end of Sec. 3.7). The rate of

helicity changing processes does not vanish in the limit MN → 0, and should therefore

be dominant at small z. The results are shown in Fig. 7. We clearly see that the

helicity changing process dominates at high temperatures and the helicity conserving
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• TFT formalism for thermal rates


• Does not require quasi-particles, though it reproduces quasi-particle Boltzmann 
results where they apply


• Relies on timescale separation


• Thermal production of gravitational waves: guaranteed to be there, contributes to 
Neff. No stringent bounds for SM-like universes. Methods applicable to light/
massless states non-renomalizeably coupled to plasma


• Thermal production of massive particles: the case of heavy neutral leptons/sterile 
neutrinos. Many regimes to be examined, great progress with interdisciplinary 
connections to hot QCD and NLO available in some regimes

Conclusions
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• Hence, at LO for k~T, equivalence with kinetic theory* 
 
 

• Use automation  to cross-check: FeynRules (Alloul Christensen Degrande Duhr Fuks 
1310.1921) to generate the Feynman rules, FeynArts/FormCalc (Hahn Paßehr 
Schappacher hep-ph/0012260 1604.04661) to generate and square all LO diagrams. Tensor 
boson polarisation sum implemented by us

2.4. Connection to Boltzmann equations

The 2↔ 2 cuts of sec. 2.3 can also be obtained from kinetic theory and Boltzmann equations.

As a starting point, we may, for k ∼ πT , write the leading-order contribution to eq. (1.1) as

ḟGW(t,k) = Γ(k)nB(k) =
1

8k

∫
dΩ2→2

∑

abc

∣∣∣Mab
cG(p1,p2;k1,k)

∣∣∣
2
fa(p1) fb(p2) [1± fc(k1)] ,

(2.39)

where we have neglected fGW(t,k) on the right-hand side. The sum runs over all abc ∈ SM

(Standard Model) particle and antiparticle degrees of freedom and thus over all ab → cG

processes, with G denoting the graviton. |Mab
cG(p1,p2;k1,k)|2 is the corresponding matrix

element squared, summed over all degeneracies of each species. For the SM in the symmetric

phase, these are spin, polarization, colour, weak isospin and generation. For k ∼ πT the

contribution of thermal masses is suppressed, so the external states can be considered massless

(thermal masses are only needed for the IR-divergent part of the squared amplitudes, cf.

sec. 2.6). The prefactor 1/8k is a combination of 1/2k from the phase space measure, 1/2

for the graviton polarization degeneracy, and 1/2 for the symmetry factor for identical initial

state particles; in the cases where a %= b this factor is compensated for by their being counted

twice in the sum over abc. The thermal distributions fi correspond to nB and nF for bosons

and fermions, respectively, with [1 ± fc(k1)] implying [1 + nB(k1)] in the former case and

[1− nF(k1)] in the latter.

The main challenge is the determination of the matrix elements squared, which requires

the derivation of Feynman rules for all graviton-SM couplings and the computation of the

tree-level amplitudes. Given the large number of vertices and processes, and the associated

opportunities for error, we have adopted automated techniques, originally developed for col-

lider physics. We first used FeynRules [11], which can derive Feynman rules from a given

Lagrangian. We applied it to the Lagrangian describing the symmetric-phase SM coupled to

gravitons, i.e.

LSM+G = LSM −
√
32π

2mPl

hµνT
µν
SM , (2.40)

where the SM energy-momentum tensor T µν
SM contains also the trace part. The kinetic term

for gravitons can be omitted, as they are external states in our computation.

Using the appropriate interface [12], FeynRules can generate a model file for Feyn-

Arts [15] (unfortunately, sometimes manual fixes of the generation and SU(2) index assig-

ments were needed).4 This package and its companion FormCalc [16] were then used to

generate, evaluate and square all amplitudes, summing over the relevant degeneracies. The

handling of spin, vector boson polarization and colour is available in FormCalc, whereas

4We have also looked into other packages, notably CalcHEP [13] and MadGraph [14], however have not

identified a procedure that would be simpler than the one described here.
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Pl

Z
d4Xeik(t�z)h[T12(X), T12(0)]i

Leading order for k∼T

*Up to subtlety discussed later
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SM �N�=10-3

Figure 8: The current upper bounds on the characteristic amplitude hc of a stochastic GW back-
ground from direct GW detection experiments (in red) and from the CMB Rayleigh-Jeans tail
constraint (in green). Also shown are the projected sensitivities of planned laser interferometers
and the predicted amplitudes of the CGMB, for the following five cases (from top to bottom at
peak emission): i) CGMB with early time equilibration, in a band of models going from the SM to
the MSSM, and corresponding to initial temperatures above the Planck mass and an approximate
saturation of the bound of Eq. (3.6), ii) SM plasma with Tmax = 2.3 ⇥ 1017GeV (corresponding
to �N⌫ = 10�3), iii) SM plasma with Tmax = 6.6 ⇥ 1015GeV (upper limit consistent with slow-
roll inflation, cf. (C.4)), iv) ⌫MSM plasma with 3.4 ⇥ 1013GeV . T ⌫MSM

max . 1.1 ⇥ 1014GeV, and
v) SMASH plasma with 8 ⇥ 109GeV . T SMASH

max . 2 ⇥ 1010GeV (predicted by (pre-)heating in
SMASH [7,8]).

• As mentioned earlier, in an external magnetic field, GWs partially convert into EMWs [64–
68], which can be processed with standard electromagnetic techniques and detected [83], for
example, by single-photon counting devices at a variety of wavelengths, cf. Fig. 9. The authors
of Ref. [84] used data from existing facilities that have been constructed and operated with
the aim of detecting axions or axion-like particles by their partial conversion into photons
in magnetic fields: the light-shining-through-walls (LSW) experiments ALPS [85, 86] and
OSQAR [87, 88], and the helioscope CAST [89, 90]. They excluded GWs in the frequency
bands from (2.7� 14) ⇥ 1014 Hz and (5� 12) ⇥ 1018 Hz down to a characteristic amplitude
of hc < 6 ⇥ 10�26 and hc < 5 ⇥ 10�28, at 95% confidence level, respectively. Using suitable
EMW detectors sensitive to hc around its peak value at ⇠ 40GHz one may exploit such axion
experiments also for the search of the CGMB, as we will show in the next subsection.

In summary: all the current upper bounds on the characteristic amplitude of stochastic GWs from
direct experimental searches are many orders of magnitude above the CGMB predictions.
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• Both methods give, to LO in the  
gauge couplings and top Yukawa 
 
 
 
 

• Full gauge group structure available from method 1, i.e. 

• This is consistent with expectations from factorisation of eγ→eG in Compton 
amplitude and kinematic factors 
Bjerrum-Bohr Holstein Planté Vanhove PRD91 (2015) 

SU(2) algebra and tensor boson polarization had to be implemented. For the latter, we pro-

ceeded as follows. FeynArts assigns to external tensor bosons a polarization tensor ελµν(k)

which is written, using a common factorization formula (cf., e.g., refs. [17, 18]), as

ελµν(k) ≡ ελµ(k) ε
λ
ν (k) , (2.41)

with ελµ(k) the transverse polarization vector of a massless gauge boson. Upon taking k = k ez
and the circular polarization vectors ελµ(k) = 1/

√
2(0,−1λ,−i, 0), λ = 1, 2, it is easy to verify

that the polarization sum satisfies

∑

λ

ελµν(k) ε
λ ∗
αβ(k) = Lµν;αβ , (2.42)

with L as defined in eq. (2.4). We implemented this form of the tensor polarization sum as a

Mathematica routine interfaced with theMathematica output of FeynArts/FormCalc.

The resulting matrix elements have an apparent dependence on the projectors T, which

again disappears by applying eq. (2.35).

Upon generating and evaluating all processes and plugging the results in eq. (2.39), we find

Γ(k)nB(k) =
1

8k

32π

m2
Pl

∫
dΩ2→2

{

+ nB(p1)nB(p2) [1 + nB(k1)]
(
g21 + 15g22 + 48g23

)(st

u
+

su

t
+

tu

s

)
(2.43)

− nF(p1)nB(p2) [1− nF(k1)]

[
6|ht|2t+

(
10g21 + 18g22 + 48g23

)s2 + u2

t

]
(2.44)

− nB(p1)nF(p2) [1− nF(k1)]

[
6|ht|2u+

(
10g21 + 18g22 + 48g23

)s2 + t2

u

]
(2.45)

+ nF(p1)nF(p2) [1 + nB(k1)]

[
6|ht|2s+

(
10g21 + 18g22 + 48g23

)t2 + u2

s

]}
. (2.46)

This expression agrees with the one obtained by plugging eqs. (2.36)–(2.38) into eqs. (2.30),

(2.8) and (2.2). To verify the agreement, relabellings p1 ↔ p2 (and t↔ u) as well as use of

the identity Nτ1;σ1σ2
= nσ1

(p1)nσ2
(p2) [1 + nτ1(k1)]n

−1
τ1σ1σ2

(p1 + p2 − k1) are needed.

In obtaining the fermionic parts of the total rate, i.e. eqs. (2.44)–(2.46), we have not written

out terms which arise from an odd number of γ5 matrices in Dirac traces, since they vanish

under the
∫
dΩ2→2 integration. Specifically, these terms appear in the fg → fG processes

and their crossings, with f a fermion and g a gauge boson.

We also note that the automated procedure fixes the gauge group factors, multiplicities

and charge assignments to those specific for the SM; the coefficients multiplying the coupling

constants are not obtained in terms of Nc, nG and nS. Focussing on sub-processes, it is easy

to reinstate group theory factors. For instance, the g23-part of eq. (2.43) corresponds to the
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matrix elements squared for the gluonic scattering gg → gG, yielding

∣∣∣Mgg
gG(p1,p2;k1,k)

∣∣∣
2
=

32π

m2
Pl

2(N2
c − 1)Nc g

2
3

(
st

u
+

su

t
+

tu

s

)
. (2.47)

Recently, there has been much work on factorizing graviton amplitudes into photon ampli-

tudes multiplied by kinematic factors, say fγ → fG versus fγ → fγ (cf., e.g., refs. [17,18] and

references therein). It is not clear to us, however, whether all the terms in eqs. (2.43)–(2.46)

could be related to photon production or scattering rates.

We conclude this section by stressing that kinetic theory and its automated implementa-

tion are not sufficient for determining the leading-order gravitational wave production rate.

Indeed, as discussed in secs. 2.5.3 and 2.6, phase space integrals over matrix elements squared

lead to IR divergences, related to soft gauge-boson exchange. The divergences need to be

subtracted and subsequently Hard Thermal Loop resummed. An even more dramatic de-

parture from the simple scattering picture is needed at smaller momenta, k ∼ α2
sT , where

elementary particle states need to be replaced by hydrodynamic modes [2].

2.5. Phase space integrals

The next step is to carry out the phase space integral
∫
dΩ2→2 for the cuts in eqs. (2.36)–

(2.38) or the matrix elements squared in eqs. (2.43)–(2.46). For this task it is helpful to

employ the parametrization introduced in ref. [19].5 We discuss separately the treatment of

t and s-channel cases (u-channel can always be transformed into t-channel).

2.5.1. t-channel

Consider the phase space integral

Γt
τ1;σ1σ2

≡
∫

dΩ2→2Nτ1;σ1σ2

{
a1

s2 + u2

t
+ a2 t

}
. (2.48)

The idea is to insert 1 =
∫
d4Q δ(4)(P1−K1−Q) in the integral. Then the energy-momentum

conservation constraint inside dΩ2→2 can be written as δ(4)(Q + P2 − K). We can now

integrate over p2 and k1 by using the spatial parts of the Dirac δ’s, leaving q0,q and p1 as

the integration variables. The temporal Dirac δ’s fix two angles as

q · k =
q2 − q20 + 2kq0

2
, q · p1 =

q2 − q20 + 2p1q0
2

, (2.49)

whereas kinematic variables become

t = q20 − q2 , u = 2(k · p1 − kp1) , s = −t− u . (2.50)

5If one is considering spectral functions off the light cone, more complicated structures ∼ TK4/(ut)

appear, which require a refined parametrization if a two-dimensional integral representation is desired [20,21].
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