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Talk Scope
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• What is a Gravitational Wave Background (GWB)?  

• Why are they interesting? 

• How are we going to measure GWBs? 

• What have we measured so far? 

• A look ahead.



GW Observations
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What is a Background?
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• Emission from unresolved, but not necessarily stochastic sources. 

• Multiple (confused), or diffuse sources. 

• Can be close by or at cosmological distances; 

• Foreground. 

• Background (backlight). 

• Defined by an average (at observer) and fluctuations around it? 

• Angular. 

• Frequency. 

• Temporal.



Why are Backgrounds Interesting?

5

• Astrophysical backgrounds; 

• Multiple populations. 

• Multiple redshifts. 

• Astrophysics of population history/dynamics. 

• Statistical constraints on cosmological parameters. 

• Fundamental physics from propagation effects (statistical). 

• Cosmological backgrounds; 

• New physics (phase transitions, etc.). 

• Primordial inflation.
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[COBE 1992, GSFC] [Planck 2015] 
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Sky Maps

8

1 observation

~3 observations

~1000 observations



Will we “detect” a GWB?
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Yes!



Resolved vs Unresolved
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Resolved vs Unresolved
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Strain h
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gμν = ημν + hμν

Scalars : 

Tensors : 

Φ, Ψ, . . .

hij → h+, h×

• Small! 
• Plane waves with two transverse polarisations. 
• Spin-2.

ϕ

[http://lisa.jpl.nasa.gov/popups/ripples.html]

hij → eisϕ, s = 2
cf

Ai → eisϕ, s = 1

Φ → eisϕ, s = 0

http://lisa.jpl.nasa.gov/popups/ripples.html


Strain h
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hab(x, t) = ∫ dΩk̂ ∫
∞

−∞
df ∑

P=+, ×

hP(k̂, f ) ϵP
ab ei2π f

c [k̂⋅x−ct]

(
⟨h+ h′ ⋆

+ ⟩ ⟨h+ h ′ ⋆
× ⟩

⟨h× h′ ⋆
+ ⟩ ⟨h× h ′ ⋆

× ⟩) =
1
2

δ(k̂ − k̂′ ) δ( f − f′ ) ( I( f, k̂) + Q( f, k̂) U( f, k̂) − iV( f, k̂)
U( f, k̂) + iV( f, k̂) I( f, k̂) − Q( f, k̂) )

Strain “Intensity” : I( f ) = ⟨h+h⋆
+⟩ + ⟨h×h⋆

× ⟩

cf EM “Intensity” : I = ⟨ExE⋆
x ⟩ + ⟨EyE⋆

y ⟩



GW Background
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FIG. 2: Plot showing strengths of predicted gravitational-
wave backgrounds in terms of Ωgw(f) and the corresponding
sensitivity curves for different detectors, taken from [2]. Up-
per limits from various measurements, e.g., S5 LIGO Hanford-
Livingston and pulsar timing, are shown as horizontal lines
in the analysis band of each detector. The upper limits take
into account integration over frequency, but only for a single
spectral index.

spectral index is assumed, making it difficult to compare
published limits with arbitrary models. In other cases,
limits are given as a function of spectral index, but the
constrained quantity depends on an arbitrary reference
frequency; see Eq. 7.
To illustrate the improvement in sensitivity that comes

from integrating over frequency, consider the simple case
of a white gravitational-wave background signal in white
uncorrelated detector noise. In this case, ρ increases by
precisely

√
Nbins compared to the single bin analysis. For

ground-based detectors like LIGO, typical values2 of ∆f
and δf are ∆f ≈ 100 Hz and δf ≈ 0.25 Hz, leading to
Nbins ≈ 400, and a corresponding improvement in ρ of
about 20; see, e.g., [2]. For colored spectra and non-
trivial detector geometry the improvement will be less,
but a factor of ∼5-10 increase in ρ is not unrealistic.
In this paper, we propose a relatively simple way to

graphically represent this improvement in sensitivity for
gravitational-wave backgrounds that have a power-law
frequency dependence in the sensitivity band of the de-
tectors. An example of such a “power-law integrated
sensitivity curve” is given in Fig. 3 for a correlation mea-
surement between the Advanced LIGO detectors in Han-
ford, WA and Livingston, LA. Details of the construction

though this is not always depicted in sensitivity curves.
2 The 0.25Hz bin width typical of LIGO stochastic analyses is
chosen to be sufficiently narrow that one can approximate the
signal and noise as constant across the width of the bin, yet
sufficiently wide that the noise can be approximated as stationary
over the duration of the data segment.
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FIG. 3: Ωgw(f) sensitivity curves from different stages in a po-
tential future Advanced LIGO Hanford-LIGO Livingston cor-
relation search for power-law gravitational-wave backgrounds.
The top black curve is the single-detector sensitivity curve, as-
sumed to be the same for both H1 or L1. The red curve shows
the sensitivity of the H1L1 detector pair to a gravitational-
wave background, where the spikes are due to zeros in the
Hanford-Livingston overlap reduction function (see left panel,
Fig. 5). The green curve shows the improvement in sensitivity
that comes from integration over an observation time of 1 year
for a frequency bin size of 0.25 Hz. The set of black lines are
obtained by integrating over frequency for different power law
indices, assuming a signal-to-noise ratio ρ = 1. Finally, the
blue power-law integrated sensitivity curve is the envelope of
the black lines. See Sec. III, Fig. 7 for more details.

and interpretation of these curves will be given in Sec III,
Fig. 7. We show this figure now for readers who might
be anxious to get to the punchline.
In Sec. II, we briefly review the fundamentals of cross-

correlation searches for gravitational-wave backgrounds,
defining an effective strain noise power spectral density
Seff(f) for a network of detectors. For simplicity, we
consider cross-correlation searches for unpolarized and
isotropic stochastic backgrounds using two or more de-
tectors. In Sec. III we present a graphical method for con-
structing sensitivity curves for power-law backgrounds
based on the expected signal-to-noise ratio for the search,
and we apply our method to construct new power-law in-
tegrated sensitivity curves for correlation measurements
involving second-generation ground-based detectors such
as Advanced LIGO, space-based detectors such as the Big
Bang Observer (BBO), and a pulsar timing array. For
completeness, we also construct a power-law integrated
sensitivity curve for an autocorrelation measurement us-
ing LISA. We conclude with a brief discussion in Sec. IV.

II. FORMALISM

In this section, we summarize the fundamental prop-
erties of a stochastic background and the correlated re-

[Thrane and Romano 2014] 

Strain “Intensity” : I( f ) = ⟨h+h⋆
+⟩ + ⟨h×h⋆

× ⟩

ΩGW( f ) =
1
ρc

dρGW

d ln f
≡

16π3

3H2
0

f3 I( f )

ΩGW ∼
16
9

Vinf

M4
Pl

(1 + zeq)−1

ΩGW ∼ 10−15

Vinf ∼ 1016 GeV

e.g. Inflation



Spectrum of GWs

15

Inflation ~ 10 16 Gev
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GWB Source Mechanisms
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Primordial (Coherent) 

• Inflation - Vacuum fluctuations. 
• Inflation - Non-linear GW production. 
• L/R correlations. 
• Standing waves.

Astrophysical (Incoherent) 

• Early Universe phase transitions. 
• Topological defects. 
• Extragalactic (cosmological distances) 

sources 
• Galactic sources. 
• Incoherent superposition. 
• Travelling waves.

ℓ ∼ H−1 ℓ ∼ H−1



• GW interferometers are coherent detectors. 

• Incoherent background - no useful information in temporal phase unless 
detecting/fitting single “events” (LIGO squiggles). 

• cf CMB photons - no phase correlations of EM field (photons) originating 
from different source “events” (last scattering). 

• Coherent detectors routinely used to measure CMB intensity (and 
polarisation!).

Coherent vs Incoherent GWB
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h(x, t) = ∫ dΩk̂ ∫
∞

−∞
df h(k̂, f ) ei2π f

c [k̂⋅x−ct]
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[WMAP 2006]
DEEP FIELD OBSERVATIONS WITH THE COSMIC BACKGROUND IMAGER 11

Fig. 6.— The CBI deep field power spectrum: Results from the CBI primary binning are shown as circles, and the alternate binning results
are shown as squares. The shaded region shows the 68% and 95% central confidence intervals for the high-! CBI bin 2000 < ! < 4000; these
was computed by combining the last three primary bins into a single bin in bandpower and mapping the likelihood of this band, marginalizing
over irrelevant parameters. The curve shows the spectrum derived in Paper V as a best fit to “all-data” (Boomerang, CBI, DASI, DMR,
Maxima, VSA and earlier observations) using strong priors (age of the universe > 10 Gyr, 45 km s−1 Mpc−1 < H0 < 90 km s−1 Mpc−1,
zero curvature, plus large scale structure constraints). Stars show the expected signal in each CBI band for this model. The power in the
range ! ∼ 2000 → 3500 differs from the best fit model at the 3.1σ level. This excess power is discussed further in the text.

-4.00000 4.00000
mJy/beam

-4.00000 4.00000
mJy/beam

-4.00000 4.00000
mJy/beam

Fig. 7.— Wiener-filtered images of the 08h, 14h and 20h deep fields (see § 8 of Paper IV). The positions of the field centers are given in
Table 1. The dominant features in these images have angular scales ∼ 15′, and are due to structures with multipoles observed on ∼ 1 meter
baselines, which span the range of the second and third acoustic peaks. The approximate fraction of the data contributing to these features
can be seen in Figure 1, where the peaks in the range 500 < ! < 800, correspond to the data contributing to the dominant features in these
images. Due to the differencing and the sidelobes of the point spread function, there is some ambiguity in relating particular features in
these raw maps to actual features on the sky. Figure 1 of Paper I presents a similar image of the 08h field, along with the point spread
function and one of several possible deconvolutions.

els is well described (1% error) by taking the means of
the CMB and foreground spectral indices, weighted by
their power levels.

αfit =
αcmbPcmb + αfgPfg

Pcmb + Pfg
, (8)

with Pcmb = 2455µK2 and αcmb = 1.97 for 500 < " <
800. The data give a best-fit spectral index of 1.84±0.34,
0.4 σ from the zero-foreground value. The 1σ upper limit
for " < 880 on a free-free like foreground contribution
is αfit = 1.84 − 0.34 = 1.50, which, using Eq 8, yields
Pfg = 744µK2 (31% of Pcmb) for αfg = 0. For a syn-

chrotron spectral index of −0.7, we get an upper limit
Pfg ≤ 521µK2 (Pfg < 21% of Pcmb).

5.2. The Apparent Excess Power at High "

An interesting feature of the joint spectrum is the ap-
parent excess power observed above " = 2000. To quan-
tify this, we reanalyzed the data with the last three
bins in the primary binning grouped into a single bin
(2010 < " < 4000). For the single high-" bin we ob-
tain a best-fit bandpower of 508µK2 with an uncer-
tainty (from the Fisher matrix) of 168µK2. In order to
more accurately estimate the uncertainty we have calcu-

[CBI 2002]
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h(x, t) = ∫ dΩk̂ ∫
∞

−∞
df ℛab(k̂, f ) hab(k̂, f ) ei2π f

c [k̂⋅x−ct]

Radio Observations

GW Observations

A(x, t) = ∫ dΩk̂ ∫
∞

−∞
df ℬa(k̂, f ) Aa(k̂, f ) ei2π f

c [k̂⋅x−ct]
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Radio Observations

GW Observations

baseline: 

baseline

I(x − y, t) = ⟨A(x, t)A⋆(y, t)⟩

I(x − y, t) = ⟨h(x, t)h⋆(y, t)⟩

b = x − y

baseline



• Coherent (standing wave) background - observational consequences (CC 
and Magueijo, arXiv:1803.03649). 

• Could use this to distinguish a Stochastic GWB (SGWB) from a Primordial 
GWB… 

• Sadly, cosmological perturbations turn ANY coherent background into an 
incoherent one (at any reasonably observable frequency range).

Coherent vs Incoherent GWB

21

http://arxiv.org/abs/arXiv:1803.03649
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2

FIG. 1. Time delay power spectrum C�'
` for single-redshift

GW sources and an observing frequency f = 10�9 Hz. The
power peaks on the largest angular scales since the e↵ect is a
direct integration of the underlying potential.

consequence is that only phase-incoherent methods for
reconstructing any SGWB map are of any use1. These
are methods that use the square of the detector response
to solve directly for the intensity of the underlying strain
field [33, 34]. These methods assume no phase coherence
in the data and are analogous to radio frequency meth-
ods for mapping CMB anisotropies using coherent radio
detectors [35].

Line-of-sight decoherence.– We follow Isaacson’s geo-
metric optics approach [24, 25] and decompose the met-
ric as gµ⌫ = �µ⌫ + ✏hµ⌫ , where, in our case, �µ⌫ is a flat
Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric
(c = 1) with scalar perturbations �(⌘,x) and  (⌘,x),

�µ⌫dx
µdx⌫= a2(⌘)

⇥
�(1 + 2�)d⌘2 + (1� 2 )dx2

⇤
. (1)

Here, hµ⌫ are GW perturbations on top of this back-
ground and ✏ is a small expansion parameter. In this
limit, we assume that the GW wavelength is much
smaller than the curvature scale set by the total met-
ric. We neglect the back-reaction of the GWs on the
background spacetime by setting its stress tensor to zero.
We define h̄µ⌫ = hµ⌫ �

1
2�µ⌫�

⇢�h⇢� and, choosing the

transverse-traceless gauge, we write h̄�
µ⌫ = Ae�µ⌫e

i'/✏.
Here, � 2 {+,⇥} labels the polarisation described by
the tensor e�µ⌫ while A and ' are real functions of re-
tarded time corresponding to the amplitude and phase
of the GW. The GW wavevector can then be identified
as kµ = @µ'.

With this notation, Einstein’s equations provide two
constraints on the wavevector [24, 26]. At the order

1 While this fact had already been recognised for astrophysical
SGWBs [15, 16], we emphasise that our results show that this
applies also to primordial or cosmological SGWBs.

of ✏�2, we find k2 = 0, i.e. the GW follows a null
geodesic. Encoded in this is the fact that the phase '
is constant during propagation since, for a�ne param-
eter l, d'/dl = kµrµ' = kµkµ = 0. At O(✏�1), we
find kµrµe�⇢� = 0, i.e. the polarisation tensor is parallel-
transported along the null geodesic. To leading order in
the scalar perturbations we have kµ = 2⇡ f(1, p̂) where
f is the intrinsic frequency of the GW and p̂ is the unit
vector in its direction of travel. Note that the angular fre-
quency measured by a comoving observer with 4-velocity
uµ = (1,0)/a is !(a) = kµuµ = 2⇡ f/a. That means,
from our position at scale factor a = 1, f is the same as
the GW frequency measured in our detectors.
To account for scalar perturbations to the metric at

linear order, one must solve the geodesic equation for the
vector kµ in the background �µ⌫ . The resulting phase
shift accumulated along the l.o.s. is [26]

�'(n̂) = 2⇡ f

Z

l.o.s.

[�(⌘,x) + (⌘,x)] d⌘ , (2)

where the integral runs from conformal time at emission
⌘e to observation ⌘o and follows the null trajectory of the
GW in a universe without perturbations, x = (⌘o � ⌘)n̂.
Here, n̂ = �p̂ denotes the direction on the sky. This
has a natural interpretation in terms of the cosmological
Shapiro time delay. During propagation, the GW is de-
flected by gravitational wells along its path causing it to
travel an extra distance d(n̂) =

R
(�+ )d⌘. The phase

shift is due to the additional non-integer number of cy-
cles the wave experiences along this detour compared to
the unperturbed path. In particular, we see that ' is no
longer conserved along the geodesic.
We quantify this e↵ect for a standard cosmological

model and discuss its implications for the detection of
SGWBs. As we will show, the measured phase 'o (in
units of 2⇡) is randomised to such an extent that any
information contained in the initial phase distribution is
scrambled for all observable frequencies.
The Weyl potential, defined as the combination �W =

(� +  )/2, determines the overall e↵ect. The evolution
of �W in the Fourier domain can be computed using
Einstein-Boltzmann solvers such as CAMB2 [36]. This al-
lows us to define an angular transfer function for a l.o.s.
calculation of the angular power spectrum for the quan-
tity �'

C�'
` = 32⇡ f2

Z 1

0
dk k2PW (k)|�W

` (k, ⌘o)|
2 , (3)

where (2⇡)3�(3)(k � k0)PW (k) = h�0
W (k)�0?

W (k0)i is the
primordial power spectrum of the potential. The angular

2 https://camb.info/

3

FIG. 2. A realisation of �' for ze = 1000 at an observing
frequency f = 10�9 Hz. The phase shift along any l.o.s. is
typically orders of magnitude larger than a single cycle.

transfer function integrated to ⌘o is defined as3

�W
` (k, ⌘o) =

Z ⌘o

⌘e

d⌘ j`[k(⌘o � ⌘)]
�W (⌘, k)

�0
W (k)

, (4)

where j`(x) are spherical Bessel functions.
A measure of the typical time delay is given by the

one-point correlation of the phase delay

d2rms ⌘ hd2(n̂)i =
1

(2⇡ f)2

1X

`=1

2`+ 1

4⇡
C�'

` , (5)

where angular brackets, in this case, denote sky aver-
aging. This angular dependence of the delay is in ad-
dition to an isotropic (` = 0) contribution due to the
background expansion that is zeroth order in the scalar
perturbation.

A typical angular power spectrum for a best-fit ⇤CDM
cosmology is plotted in Fig. 1 for a range of source red-
shifts. The spectrum converges by ze ⇠ 1000. At high
redshifts, the resulting rms delay is drms ⇠ 0.8 Mpc, in
agreement with earlier estimates [37] for CMB photons.
In the best case scenario, one might hope that low fre-
quencies would mitigate the impact of this large distance
on the phase. Unfortunately, even for nanohertz frequen-
cies, characteristic of the PTA band, the expected phase
shift is �' ⇠ 105. A realisation of �' for ze = 1000 at
f = 10�9 Hz is shown in Fig. 2. This leads to a randomi-
sation of the number of wave cycles in each direction of
the sky4. Our results suggest that the phase shift due to
the cosmological Shapiro time delay could only be treated
as a linear perturbation for frequencies below 10�12 Hz

3 The transfer function is not stochastic and is independent of
direction on the sky.

4 Information encoded in phase modulations is unrecoverable un-
less the linear limit �' ⌧ 2⇡ is maintained.

for any source at a redshift ze & 0.01. Since the e↵ect is
cumulative along the l.o.s., the maximum frequency for
which �'rms . 1 decreases as the redshift to the source
increases.
Decoherence on the sky.– We now show how this result

a↵ects the information contained in the GW strain for
an initially coherent background. For completeness, we
note that the strain amplitude A also receives corrections
from l.o.s. e↵ects. Perturbations therefore introduce an
angular dependence in the intensity of the background
which is linear in the scalar potentials. The information
imprinted in the intensity is preserved and has already
been considered elsewhere [26, 27, 38].
Fig. 3 illustrates the consequence of decoherence for

the h+ component of a SGWB. The maps for h+ and h⇥
(not shown here) are obtained using spin-2 realisations of
a constant `2C` power spectrum of equal amplitude for
both grad and curl modes [39]5. The real and imaginary
components of h+ are shown along with the phase (top
row). The phase shows angular correlations due to the
coherence of the original field. We create a decoherence
field as a spin-0 realisation of the spectrum shown in
Fig. 1 and apply it to the original h maps by rotating the
components using the resulting phase shift (middle row).
We ignore the e↵ect of perturbations on the amplitude.
Since the typical �' � 2⇡ in any direction the final map
is e↵ectively a random rotation of the original complex
mode and any original coherence is erased, as shown in
the final phase map (middle, second from right). The
information carried by the angular correlations in the
amplitude is preserved, however.

Mapping SGWBs.– It is important to understand the
consequence of the decoherence e↵ect on how one should
estimate the underlying signal using detectors with finite
resolution. We note here explicitly that coherent detec-
tors (such as LIGO, Virgo, LISA etc.) output a data
stream which can be interpreted using either coherent or
incoherent mapping methods. Coherent methods involve
estimators that are linear in strain h and attempt to re-
construct h+ and h⇥ maps together with their complex
phases. However, considering the estimator is e↵ectively
an averaging (smoothing) of the strain signal across the
sky, these will estimate quantities that vanish in the en-
semble limit (see bottom row of Fig. 3). An incoherent
method, based on a cross correlation of the data (order
h2), estimates the intensity of the underlying signal and
discards any phase information from the outset. The
ensemble average of the intensity does not vanish. The
di↵erence is analogous to the estimate of the variance of
a centred random variate. One cannot estimate the vari-
ance by taking the square of the sum of random draws of
the variate. Rather, one takes the sum over the squares of

5 https://healpix.jpl.nasa.gov/

[Margalit, CC, Pieroni, 2020,  
see also Bartolo et al. 2018]

• No go of temporal phase: Phase information is redundant in any GWB 
observation. 

• What about angular phase?

Decoherence of GWBs



• Any GWB must have anisotropies about average background. 

• Intrinsic fluctuations at source (primordial and astrophysical sources). 

• Source mechanism is not isotropic. Irrelevant for primordial GWBs 
(small horizon size) but important for astrophysical GWBs. 

• GWs are perturbed along the line of sight because they travel along 
geodesics of perturbed metric. 

• Use geometric optics limit (Isaacson 1968); High frequency gravitational 
waves can be treated as linearised system travelling along perturbed 
background. High frequency cf curvature scale. 

• GWs = gravitons travelling along geodesics cf photons.

Anisotropies of GWBs
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Anisotropies of GWBs
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Intrinsic 
perturbation

Sh(k, η) = 2 ·Φ + ·σ ( ̂pi vi + Π + Φ)Perturbation 
source function

Integrated Sachs-
Wolfe Effect

Conformal Emissivity rate
Doppler effect

Sachs-Wolfe 
Effect

[CC, arXiv:1609.08168, also 
Uzan, Pitrou, Cusin, & 

Bartolo et al.] 

Ch
ℓ =

2
π ∫ k2 dk PΦ(k) |Δh

ℓ(k, η0) |2

Γℓ(k, η0) = ∫
η0

ηi

dη jℓ [k(η0 − η)] e−Δσ S(k, η)

Anisotropies of GWBs

http://arxiv.org/abs/arXiv:1609.08168


• Astrophysical GWB (SGWBs) anisotropies are dominated by source 
distribution.  

• Primordial GWB will have intrinsic fluctuations but will also provide a 
backlight to scalars perturbations via line of sight effects.

Anisotropies of GWBs

25

3

where H is the background Hubble rate. This describes
the redshifting of the spectrum of the gravitaional waves
due to the expanding background and the growth of the
monopole of the background due to any time dependent
emission mechanism. In essence, integrating (6) deter-
mines ⇢gw(⌫).

At first order, after rearranging and expanding in plane
waves with wavevectors k with k · p̂ = k µ and changing
to conformal time ⌘, we obtain a di↵erential equation for
the dimensionless perturbation

�̇+ (i kµ+ �̇)� = �̇
�
p̂
i
vi +⇧

�
+ �̇+ i kµ , (7)

where an over dot represents a derivative with respect to
⌘ and we have introduced the conformal emissivity rate
�̇ ⌘ a j. The perturbation does not depend on p so the
anisotropies will have the same frequency dependence as
the monopole ⇢gw(⌫).

Streaming of gravitational waves. Equation (7) de-
scribes the evolution of the anisotropy in the specific in-
tensity of gravitational waves given their streaming along
perturbed geodesics and the injection of waves with a
given spectrum and rate. Its form is intentionally similar
to the equivalent equation for CMB anisotropies.

We now use the line-of-sight integration method [23] to
determine the anisotropy at our location today, ⌘ = ⌘0

by integrating (7). Just as with CMB calculations, we
can make use of the fact that the directional dependence
is determined purely by the inner product of the gravita-
tional wave momentum vector p (the line-of-sight) with
the plane wavevector k = k k̂. The µ dependence can
be isolated through integration by parts and the pertur-
bation can be Legendre expanded to obtain a multipole
expansion of the anisotropy

�`(k, ⌘0) =

Z ⌘0

⌘i

d⌘ j` [k(⌘0 � ⌘)] e���
S(k, ⌘) . (8)

Here ⌘i is an initial time, ��(⌘) ⌘ �(⌘0) � �(⌘), j` are
spherical Bessel functions, and we have assumed that
�(⌘i) ! 0. The direction independent source function
is given by

S(k, ⌘) = �̇�  ̇+ �̇
�
p̂
i
vi +⇧� 

�
. (9)

This expression is the main result of this work. Each
term in (9) is due to well understood physical e↵ects with
counterparts in the CMB source function. The first two
terms and last term in the brackets are the Integrated
Sachs-Wolfe (ISW) and Sachs-Wolfe (SW) e↵ects respec-
tively [24–26]. The remaining terms are a Doppler con-
tribution due to the peculiar velocity of the emitter and
an intrinsic contribution due to the inhomogeneous dis-
tribution of emitters. The emissivity rate �̇ defines an
emission “depth” in analogy to the optical depth param-
eter ⌧ for CMB photons.

The SW e↵ect arises from the gravitational redshift
caused by the local curvature at emission. This e↵ect is

FIG. 1. Angular power spectrum of anisotropies in ⇢gw for
merger and relic backgrounds and the CMB for standard in-
flationary primordial spectra. The merger model uses a simple
merger rate peaking at redshift z = 1 to model the emission.

somewhat ambiguous for the case of gravitational waves
since there may be strong, non-linear e↵ects from the dy-
namics involved in the emission mechanism but we may
interpret it as the e↵ect of the local curvature perturba-
tion in the asymptotic spacetime at a certain distance
from the source. In the following we will assume van-
ishing anisotropic stresses in the scalar perturbations by
setting  = ��.
A gravitational wave transfer function can be defined

by dividing the perturbation by the primordial, scalar
curvature perturbation �h

` (k, ⌘0) = �`(k, ⌘0)/�0(k). It
may seems unnatural to normalize the modes by the
scalar amplitude but we have done this in anticipation
that only in the case of a relic background would the
primordial tensor amplitude appear in the emission con-
tribution to the source function. The appearance of a
primordial tensor amplitude can always be accounted for
by using the primordial tensor-to-scalar ratio r.
By considering the spherical harmonic coe�cients of

the perturbation a
h
`m(⌘0) we can obtain an expression

for the angular power spectrum of the gravitational wave
background anisotropies

C
h
` =

2

⇡

Z
k
2
dkP�(k)|�

h
` (k, ⌘0)|

2
, (10)

where we have introduced the power spectrum of primor-
dial curvature perturbations k3P�(k) = Ask

ns�1.
Anisotropies from compact object mergers. For back-

grounds arising from mergers of compact objects such
as black hole collisions (BHBH) or black hole, neutron
star (BHNS) collisions it is reasonable to assume that the
perturbation to the density of sources is a biased tracer
of the perturbation to the background matter with the

[CC, arXiv:1609.08168, see 
also Cusin et al 2018 ] 

http://arxiv.org/abs/arXiv:1609.08168


• LIGO (O1/O2): limits on ΩGW and directional dependence. 

• Renzini & CC (LIGO O1/O2): limits on ΩGW and sky-maps. 

• Full end-to-end pipeline from cross-correlation of LIGO L-H detectors. 

• Characterisation of noise. 

• Time-integration. 

• Maximum-likelihood solution for map.

“Measuring” GWB
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ΩGW( f ) = ΩGW ( f0)( f
f0 )

α

2
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FIG. 2: Plot showing strengths of predicted gravitational-
wave backgrounds in terms of Ωgw(f) and the corresponding
sensitivity curves for different detectors, taken from [2]. Up-
per limits from various measurements, e.g., S5 LIGO Hanford-
Livingston and pulsar timing, are shown as horizontal lines
in the analysis band of each detector. The upper limits take
into account integration over frequency, but only for a single
spectral index.

spectral index is assumed, making it difficult to compare
published limits with arbitrary models. In other cases,
limits are given as a function of spectral index, but the
constrained quantity depends on an arbitrary reference
frequency; see Eq. 7.
To illustrate the improvement in sensitivity that comes

from integrating over frequency, consider the simple case
of a white gravitational-wave background signal in white
uncorrelated detector noise. In this case, ρ increases by
precisely

√
Nbins compared to the single bin analysis. For

ground-based detectors like LIGO, typical values2 of ∆f
and δf are ∆f ≈ 100 Hz and δf ≈ 0.25 Hz, leading to
Nbins ≈ 400, and a corresponding improvement in ρ of
about 20; see, e.g., [2]. For colored spectra and non-
trivial detector geometry the improvement will be less,
but a factor of ∼5-10 increase in ρ is not unrealistic.
In this paper, we propose a relatively simple way to

graphically represent this improvement in sensitivity for
gravitational-wave backgrounds that have a power-law
frequency dependence in the sensitivity band of the de-
tectors. An example of such a “power-law integrated
sensitivity curve” is given in Fig. 3 for a correlation mea-
surement between the Advanced LIGO detectors in Han-
ford, WA and Livingston, LA. Details of the construction

though this is not always depicted in sensitivity curves.
2 The 0.25Hz bin width typical of LIGO stochastic analyses is
chosen to be sufficiently narrow that one can approximate the
signal and noise as constant across the width of the bin, yet
sufficiently wide that the noise can be approximated as stationary
over the duration of the data segment.
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Ω
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FIG. 3: Ωgw(f) sensitivity curves from different stages in a po-
tential future Advanced LIGO Hanford-LIGO Livingston cor-
relation search for power-law gravitational-wave backgrounds.
The top black curve is the single-detector sensitivity curve, as-
sumed to be the same for both H1 or L1. The red curve shows
the sensitivity of the H1L1 detector pair to a gravitational-
wave background, where the spikes are due to zeros in the
Hanford-Livingston overlap reduction function (see left panel,
Fig. 5). The green curve shows the improvement in sensitivity
that comes from integration over an observation time of 1 year
for a frequency bin size of 0.25 Hz. The set of black lines are
obtained by integrating over frequency for different power law
indices, assuming a signal-to-noise ratio ρ = 1. Finally, the
blue power-law integrated sensitivity curve is the envelope of
the black lines. See Sec. III, Fig. 7 for more details.

and interpretation of these curves will be given in Sec III,
Fig. 7. We show this figure now for readers who might
be anxious to get to the punchline.
In Sec. II, we briefly review the fundamentals of cross-

correlation searches for gravitational-wave backgrounds,
defining an effective strain noise power spectral density
Seff(f) for a network of detectors. For simplicity, we
consider cross-correlation searches for unpolarized and
isotropic stochastic backgrounds using two or more de-
tectors. In Sec. III we present a graphical method for con-
structing sensitivity curves for power-law backgrounds
based on the expected signal-to-noise ratio for the search,
and we apply our method to construct new power-law in-
tegrated sensitivity curves for correlation measurements
involving second-generation ground-based detectors such
as Advanced LIGO, space-based detectors such as the Big
Bang Observer (BBO), and a pulsar timing array. For
completeness, we also construct a power-law integrated
sensitivity curve for an autocorrelation measurement us-
ing LISA. We conclude with a brief discussion in Sec. IV.

II. FORMALISM

In this section, we summarize the fundamental prop-
erties of a stochastic background and the correlated re-

[Abbott et al 2019]

GWB Type Index LIGO 95% Upper ΩGW Frequency range

Astro 3 3.2 x 10-7 20-300 Hz

Inspiral 2/3 5.2 x 10-8 20-90 Hz

Cosmo 0 5.5 x 10-8 20-90 Hz



Noise Weighted Maps
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Cosmo Inspiral Astro
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GWB Type α 95% Upper ΩGW f0 [Hz]
Cosmo 0 4.4 x 10-8 50
Inspiral 2/3 6.6 x 10-8 50
Astro 3 3.2 x 10-7 100

[Renzini & CC 2019]

Current Constraints



Anisotropies and Spectral Constrains
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7

FIG. 6. 95% upper limits on the signal angular power spec-
trum C`’s of the SGWB for the the three assumed spectral
indices. All values are scaled to a reference frequency f0 = 50
Hz. Depending on the spectral index, the estimate converges
up to di↵erent maximum multipoles ` with the ↵ = 3 case
giving the highest resolution since it integrates low and high
frequency with equal weights. We show `(` + 1)C`/2⇡ since
this is a measure of equal variance per logarithmic interval in
`. A scale invariant signal in this measure would be flat.

in Section III B we can estimate both a ⌦GW and its
anisotropies from each map. The results for the 95% up-
per limit in the monopole of ⌦GW are shown in Fig. 7.
The constraints are higher than the signal in the equiva-
lent single, broadband estimate, since the information is
split into ten separate estimates but it is useful to note
that the spectral dependence is consistent with a noise
dominated estimate with increasing power as a function
of frequency. Fig. 8 shows the SNR and noise maps for
three of the frequency bins. Given the noise level in this
analysis we do not extract upper limits on any measures
of the anisotropy but it is useful to note how the mode
structure on the sky changes as a function of frequency.
This e↵ect, evident in the top half of Fig. 8, becomes
very apparent in this kind of spectral analysis and can
be understood through the frequency-to-sky mode cou-
pling encoded in the projection operator A

⌧
pf [13]. The

bottom half reveals the sky modulation of the noise as
a function of frequency, which appears smoothed in the
noise maps in Fig. 4.

IV. DISCUSSION

The upper limits for ⌦GW(f0) obtained by integrat-
ing O1 and O2 data runs presented in Table I are the
most constraining to date. They are in agreement with
independent results presented by the LIGO and Virgo
collaboration [18], taking into consideration longer inte-
gration times used here, as in our analysis we discard

FIG. 7. 95% upper limits for the SGWB monopole for each
of the maps obtained in the ten separate frequency bins used
in the model-independent spectral analysis. The method as-
sumes a scale invariant shape for the signal in each spectral
bin. The spectral shape is consistent with a noise dominated
estimate.

fewer time segments overall. This di↵erence is proba-
bly due to the independent quality control pipelines but
also due to the shorter segment length we adopt for our
analysis. This last point means that, in principle, the
stationarity conditions are more easily satisfied in our
analysis. Comparing results between runs it is apparent
that the 1/f component of the noise is significantly bet-
ter in the O2 run given the improvements in the ↵ = 0
case which is the most sensitive to lower frequencies. De-
spite the fluctuation in noise regimes during the O2 run,
the duration and overall sensitivity improvements mean
that it dominates the signal-to-noise integration of the
combined run.
The SNR scaling in the maps in Fig. 4 and the time

evolution of the standard deviation of the sky strain in-
tensity plotted in Fig. 3 only show the noise distribution
and the diagonal pixel-pixel correlation on the sky. As
such it is not meaningful to compare them with those pre-
sented in [19] from the LIGO and Virgo collaboration, as
these distributions depend substantially on the di↵erent
methods used in the integration of the data. A quanti-
tative comparison of the output of the two independent
pipelines will become more important as we approach de-
tection. The small scales present in the maps in Figs. 4
and 8 are then simply the scales at which the noise fluc-
tuates for a given frequency weighting and pixel size, and
are not to be mistaken with the angular resolution of the
detectors.
Despite the results being presented here being upper

limits it is useful to note two important contributions of
our work. The first is the consistent evaluation of both
the monopole of the background and its anisotropies in
generalised sky coordinates. This means our method is

[Renzini & CC 2019]

• First upper limits on angular power spectrum of GWBs. 

• First model-independent frequency spectrum upper limits.
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• Space based laser interferometer, ESA/NASA. 

• Three baselines observing ~ mHz frequency. 

• Co-orbiting with Earth. Arm length - 2.5 million km, vs 4 km (LIGO) 

• 2034 planned launch date.

LISA Space Interferometer
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Ground Network
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[Esa 2050 Voyage White Paper 2019]




