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Gravity effective field theories

[...] as an open theory, quantum gravity is arguably our best quantum field
theory, not the worst. [J. D. Bjorken, ‘‘The Future of particle physics,’’ hep-ph/0006180]

Seff =
1

16πGN

∫
d4x
√

gR+ Smatter
eff + · · ·

Einstein’s theory gravity is the first term of an effective field theory coupling
gravity to matter [Donoghue]

I Standard QFT (local, unitary, lorentz invariant, . . . )
I The low-energy DOF: graviton, usual matter fields
I Standard symmetries: General relativity as we know it
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EFT method for classical Gravity
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One important insight is that the classical gravitational two-body interactions
needed for the GW signals can be extracted from quantum scattering
amplitudes from gravity effective actions : exact post-Minkowskian
expansion
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Scattering amplitudes for gravity

I Classical scattering: scattering angle χ : a lot of physical information
for bound orbits

I Quantum scattering: probability amplitude M : for generic EFT of
gravity in various dimensions

I Extending our understanding of black holes
[Damour; Veneziano et al.; Porto et al.; Bern et al.; Goldberger, Rothstein; Damgaard,
Bjerrum-Bohr, Vanhove, · · · ]
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Black holes

Black holes play an important role in the gravitational wave physics and it is
important to make sure we understand them well.

The black holes of nature are the most perfect
macroscopic objects there are in the universe: the
only elements in their construction are our concepts
of space and time (Subrahmanyan Chandrasekhar)

Black hole formation is a robust prediction of the
general theory of relativity (Citation for the 2020
Nobel prize award to Roger Penrose)
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Classical solution from quantum field

PHYSICAL RE VIEW D VOLUME 7, NUMBER 8 15 APRIL 1973

Quantum Tree Graphs and the Schwarzschild Solution
M. Z. Duff*

Physics Department, Imperial College, London SR'7, England
(Received 7 July 1972)

It is verified explicitly to second order in Newton's constant, G, that the quantum-tree-graph
contribution to the vacuum expectation value of the gravitational field produced by a spherical-
ly symmetric c-number source correctly reproduces the classical Schwarzschild solution. If
the source is taken to be that of a point mass, then even the tree diagrams are divergent, and
it is necessary to use a source of finite extension which, for convenience, is taken to be a per-
fect fluid sphere with uniform density. In this way both the interior and exterior solutions may
be generated. A mass renormalization takes place; the total mass of the source, m, being
related to its bare mass, mo, and invariant radius, e„, by the Newtonian-like formula, m
=ma-3Gmz /5e„+O(G ), and the infinities in the quantum theory are seen to be a manifesta-
tion of the divergent self-energy problem encountered in classical mechanics.

I. INTRODUCTION

In an attempt to find quantum corrections to
solutions of Einstein's equations, the question
naturally arises as to whether the @-0 limit of
the quantum theory correctly reproduces the class-
ical results. Formally, at least, the correspon-
dence between the tree-graph approximation to
quantum field theory and the classical solution of
the field equations is well known, ' i.e., the
classical field produced by an external source
serves as the generating functional for the con-
nected Green's functions in the tree approxima-
tion, the closed-loop contributions vanishing in
the limit I-0. The purpose of this paper is to
present an explicit calculation of the vacuum ex-
pectation value (VEV) of the gravitational field in
the presence of a spherically symmetric source
and verify, to second order in perturbation theory,
that the result is in agreement with the classical
Schmarzschild solution of the Einstein equations.
This would appear to be the first step towards
tackling the much more ambitious program of in-
cluding the radiative quantum corrections.
Whereas in quantum electrodynamics it is a

comparatively simple matter to obtain the Coulomb
potential by means of the single-photon exchange
from a stationary point charge, the analogous
situation in gravidynamics, where the gauge group
is non-Abelian, proves much more difficult. First-
ly, as has been shown by Arnomitt, Deser, and
Misner (henceforth referred to as ADM) the
concept of a strictly pointlike source in generaL
relativity is untenable. There is a minimum in-
variant extension for a particle below which no
solutions of the field equations exist, the space-
time developing an intrinsic singularity at a fi-
nite point in the exterior domain of the particle for

radii less than this minimum. Moreover, the to-
tal mass of the source mould then become negative
and eventually negatively infinite as the point-
mass limit is taken. As we shall see, these dif-
ficulties manifest themselves in the quantum theory
in the guise of divergent tree diagrams when a
point source is used. As a model for the source,
therefore, it is essential to choose a particle of
finite extension.
In their work, ADM pick the simplest model for

such an extended particle, a spherical "shell dis-
tribution" of pressure-free dust for which the
mass density is merely proportional to 5(r —e),
where r denotes the radial coordinate and & the
radius of the shell. From the quantum point of
view, however, another dilemma arises. The
quantum-field-theory calculations are most con-
veniently performed in a manifestly Lorentz-co-
variant gauge by employing, for example, the
harmonic coordinate condition of de Donder, '
[(-g)'~'g""] „=0. Whereas in the canonical
approach ADM are able to carry out their anal-
ysis in a frame for which the metric is continuous
across the shell, in harmonic coordinates the
usual regularity conditions are violated and the
metric is itself discontinuous. This problem has
been discussed in a previous paper. ' One is then
faced with a choice, whether to use the attractive-
ly simple 5-function source and put up with the
attendant problems of discontinuity, or to abandon
the shell in favor of a uniform sphere thus gaining
continuity at the expense of simplicity. In this
paper we shall use the latter.
Finally, there is the question of stability. A

cloud of pressure-free dust for which the inter-
actions are purely gravitational is not a static
configuration. This is clear on physical grounds.
In the absence of phenomenological nongravitational
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I. INTRODUCTION

In an attempt to find quantum corrections to
solutions of Einstein's equations, the question
naturally arises as to whether the @-0 limit of
the quantum theory correctly reproduces the class-
ical results. Formally, at least, the correspon-
dence between the tree-graph approximation to
quantum field theory and the classical solution of
the field equations is well known, ' i.e., the
classical field produced by an external source
serves as the generating functional for the con-
nected Green's functions in the tree approxima-
tion, the closed-loop contributions vanishing in
the limit I-0. The purpose of this paper is to
present an explicit calculation of the vacuum ex-
pectation value (VEV) of the gravitational field in
the presence of a spherically symmetric source
and verify, to second order in perturbation theory,
that the result is in agreement with the classical
Schmarzschild solution of the Einstein equations.
This would appear to be the first step towards
tackling the much more ambitious program of in-
cluding the radiative quantum corrections.
Whereas in quantum electrodynamics it is a

In 1973 Duff asked the question about the
classical limit of quantum gravity. He
showed how to reproduce the Schwarzschild
back hole metric from quantum tree graphs
to G3

N order

Since then the relation between quantum and
classical gravity in amplitude have been
rethought with new insights [Donoghue, Holstein],
[Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove],
[Kosower, Maybee, O’Connell]
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Black hole metric from amplitudes

Black hole metric are extracted from the three-point vertex function
I Schwarzschild black hole: Scalar field S = 0, mass M
I Reissner-Nordström black hole: Scalar field S = 0, charge Q, mass M
I Kerr-Newman black hole: Fermionic field S = 1

2 , charge Q, mass M
the mostly negative signature (+,�, · · · ,�) metric.

The graviton emission from a scalar particle of mass p2
1 = p2

2 = m2 is given by the

three-point vertex function

M3(p1, q) =

p1

q

p2

. (2.2)

At each loop order we extract the l-loop contribution to the transition density of the

stress-energy tensor hTµ⌫(q
2)i =

P
l�0hT

(l)
µ⌫ (q2)i

M(l)
3 (p1, q) = � i

p
32⇡GN

2
hT (l) µ⌫(q2)i✏µ⌫ (2.3)

where ✏µ⌫ is the polarisation of the graviton with momentum q = p1�p2 is the momentum

transfer.

The scattering amplitude computation is not done in the harmonic gauge coordinates

gµ⌫��
µ⌫(g) = 0 but in the de Donder gauge coordinate system [2, 19, 21, 24, 27]

⌘µ⌫��
µ⌫(g) = ⌘µ⌫g�⇢

✓
@g⇢µ

@x⌫
+

@g⇢⌫
@xµ

� @gµ⌫

@x⇢

◆
= 0 , (2.4)

the metric perturbations gµ⌫ = ⌘µ⌫ +
P

n�1 h
(n)
µ⌫ satisfy1

@

@x�
h�(n)
⌫ � 1

2

@

@x⌫
h(n) = 0 . (2.5)

The de Donder gauge relation between the metric perturbation and the stress-energy tensor

reads

h(l+1)
µ⌫ (~x) = �16⇡GN

Z
dd~q

(2⇡)d
ei~q·~x 1

~q2

✓
hT (l)

µ⌫ iclass.(q2) � 1

d � 1
⌘µ⌫hT (l)iclass.(q2)

◆
. (2.6)

In this relation enters the classical contribution at l loop order hT (l)
µ⌫ iclass.(q2) defined by the

classical limit of the quantum scattering amplitude [10, 12, 13]. From now, we are dropping

the super-script class and just use the notation hT (l)
µ⌫ i(q2) for the classical contribution.

2.1 The classical contribution of the amplitude

In this section we derive the generic form of the classical contribution of the gravity ampli-

tudes (2.2) in the static limit where q = (0, ~q) and ~q2 ⌧ m2. The classical limit is obtained

by taking ~ ! 0 with the momentum transfer q/~ held fixed [13].

1The harmonic gauge linearized at the first order in perturbation gives (2.5) with n = 1. The higher-order

expansions of the harmonic gauge di↵er from these conditions.

– 4 –

= −
i
√

32πGN

2

∑
l>0

〈T(l)µν(q2)〉εµν
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Black hole metric from amplitudes

The scattering amplitudes are done in the de Donder gauge coordinate system

ηµνΓλµν(g) = η
µνgλρ

(
∂gρµ
∂xν

+
∂gρν
∂xµ

−
∂gµν

∂xρ

)
= 0

The Schwarzschild-Tangherlini metric in the de donder coordinate system

ds2 = h0(r, d)dt2 − h1(r, d)d~x2 − h2(r, d)
(~x · d~x)2

~x2

h0(r) := 1 − 4
d − 2
d − 1

ρ(r, d)
f (r)d−2 ,

h1(r) := f (r)2,

h2(r) := −f (r)2 − f (r)d−2 (f (r) + r df (r)
dr )2

f (r)d−2 − 4 d−2
d−1ρ(r, d)

.

The dimensionless parameter is the post-Minkowskian expansion parameter

ρ(r, d) =
Γ
(d−2

2

)

π
d−2

2

GNm
rd−2
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The de Donder gauge metric in four dimensions

hdD
0 (r) = 1−

2GNm
r

+2
(

GNm
r

)2

+2
(

GNm
r

)3

+

(
4
3

log
(

rC3

GNm

)
− 6
)(

GNm
r

)4

+· · ·

hdD
1 (r) = 1 + 2

GNm
r

+ 5
(

GNm
r

)2

+

(
4
3

log
(

rC3

GNm

)
+ 4
)(

GNm
r

)3

+

(
−

4
3

log
(

rC3

GNm

)
+

16
3

)(
GNm

r

)4

+

(
64
15

log
(

rC3

GNm

)
−

26
75

)(
GNm

r

)5

+

(
4
9

log
(

rC3

GNm

)2

−
24
5

log
(

rC3

GNm

)
+

298
75

)(
GNm

r

)6

+ · · ·

I The metric is finite by as powers of log(r)
I The solution has a single constant of integration C3.
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Black hole metric from amplitudes
the mostly negative signature (+,�, · · · ,�) metric.

The graviton emission from a scalar particle of mass p2
1 = p2

2 = m2 is given by the

three-point vertex function

M3(p1, q) =

p1

q

p2

. (2.2)

At each loop order we extract the l-loop contribution to the transition density of the

stress-energy tensor hTµ⌫(q
2)i =

P
l�0hT

(l)
µ⌫ (q2)i

M(l)
3 (p1, q) = � i

p
32⇡GN

2
hT (l) µ⌫(q2)i✏µ⌫ (2.3)

where ✏µ⌫ is the polarisation of the graviton with momentum q = p1�p2 is the momentum

transfer.

The scattering amplitude computation is not done in the harmonic gauge coordinates

gµ⌫��
µ⌫(g) = 0 but in the de Donder gauge coordinate system [2, 19, 21, 24, 27]

⌘µ⌫��
µ⌫(g) = ⌘µ⌫g�⇢

✓
@g⇢µ

@x⌫
+

@g⇢⌫
@xµ

� @gµ⌫

@x⇢

◆
= 0 , (2.4)

the metric perturbations gµ⌫ = ⌘µ⌫ +
P

n�1 h
(n)
µ⌫ satisfy1

@

@x�
h�(n)
⌫ � 1

2

@

@x⌫
h(n) = 0 . (2.5)

The de Donder gauge relation between the metric perturbation and the stress-energy tensor

reads

h(l+1)
µ⌫ (~x) = �16⇡GN

Z
dd~q

(2⇡)d
ei~q·~x 1

~q2

✓
hT (l)

µ⌫ iclass.(q2) � 1

d � 1
⌘µ⌫hT (l)iclass.(q2)

◆
. (2.6)

In this relation enters the classical contribution at l loop order hT (l)
µ⌫ iclass.(q2) defined by the

classical limit of the quantum scattering amplitude [10, 12, 13]. From now, we are dropping

the super-script class and just use the notation hT (l)
µ⌫ i(q2) for the classical contribution.

2.1 The classical contribution of the amplitude

In this section we derive the generic form of the classical contribution of the gravity ampli-

tudes (2.2) in the static limit where q = (0, ~q) and ~q2 ⌧ m2. The classical limit is obtained

by taking ~ ! 0 with the momentum transfer q/~ held fixed [13].

1The harmonic gauge linearized at the first order in perturbation gives (2.5) with n = 1. The higher-order

expansions of the harmonic gauge di↵er from these conditions.

– 4 –

= −
i
√

32πGN

2

∑
l>0

〈T(l)µν(q2)〉εµν

In the de Donder gauge the metric perturbations are obtained as

h(l+1)
µν (~x) = −16πGN

∫
dd~q
(2π)d

ei~q·~x

~q2

(
〈T(l)

µν〉(q2) −
1

d − 1
ηµν〈T(l)〉(q2)

)

I The classical metric is obtained by using the classical limit of the
quantum amplitude 〈T(l)

µν〉class.(q2) [Bjerrum-Bohr et al.]

I But one can as well include quantum correction to the metric [Donoghue et

al.], [Bjerrum-Bohr et al.]
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Classical physics from loops

We will be considering the pure gravitational interaction between massive and
massless matter of various spin

LEH ∼

∫
d4x

(
−

1
16πGN

R+
√

32πGNhµνTµν
matter

)
,

M =
1
 h
MPost-Min +  h0M1−loop + · · · .

The classical contribution are the singular pieces when  h→ 0
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One graviton exchange : tree-level amplitude

M(1) = −
4πGN

E1E2

[2(p1 · p2)
2 − m2

1m2
2 − |~q |2(p1 · p2)]

|~q |2

The potential is obtained

M(1)(q) = M(1)(q) +
4πGNp1 · p2

E1E2

The classical potential is obtained by taking the 3d Fourier transform
E2

i = ~p2
i + m2

i

V1PM(r) =
∫

d3~q
(2π)3

1
4E1E2

M(1)(~q) ei~q·~r =
GN

E1E2

m2
1m2

2 − 2(p1 · p2)
2

r

The higher order in q2 are quantum with powers of  h
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Classical contributions from quantum loops

At the l-loop order we have to consider the graphs

M(l)
3 (p1, q) =

q
tree , (2.7)

The classical contribution emerges as a particular ~ ! 0 limit of the amplitude in [8, 10–

13]. The classical limit results in cutting the massive lines, projecting on the contribution

from localised sources at di↵erent positions in space [12, 31, 32], pictorially represented by

shaded blobs

M(l) class.
3 (p1, q) =

q
tree

�����
leading q2

, (2.8)

In this process one keeps only the leading q2 contribution from the multi-graviton tree-

level amplitudes. The quantum tree-level graphs that were considered in [7] arise from the

classical limit of the scattering amplitude up to two-loop order. In the rest of this section,

we derive the generic features of the classical limit to all orders in perturbation. We then

explicitly evaluate the classical limit up to three-loop order in perturbation.

The quantum amplitude in (2.7) is an l + 2 gravitons amplitude with l + 1 gravitons

attached to the massive scalar line

Lµ1⌫1,...,µl+1⌫l+1
(p1, p2, `1, . . . , `l+1) = (2.9)

=
(�i

p
8⇡GN )l+1⌧µ1⌫1(p1, p1 � `1)⌧µ2⌫2(p1`1, p1 � `1 � `2) · · · ⌧µl+1⌫l+1

(p1 � `1 � · · · � `l+1, p2)
Ql

i=1

⇣
(p1 �

Pi
j=1 `j)

2 � m2 + i✏
⌘ ,

(2.10)

– 5 –

=⇒

At the l-loop order we have to consider the graphs

M(l)
3 (p1, q) =

q
tree , (2.7)

The classical contribution emerges as a particular ~ ! 0 limit of the amplitude in [8, 10–

13]. The classical limit results in cutting the massive lines, projecting on the contribution

from localised sources at di↵erent positions in space [12, 31, 32], pictorially represented by

shaded blobs

M(l) class.
3 (p1, q) =

q
tree

�����
leading q2

, (2.8)

In this process one keeps only the leading q2 contribution from the multi-graviton tree-

level amplitudes. The quantum tree-level graphs that were considered in [7] arise from the

classical limit of the scattering amplitude up to two-loop order. In the rest of this section,

we derive the generic features of the classical limit to all orders in perturbation. We then

explicitly evaluate the classical limit up to three-loop order in perturbation.

The quantum amplitude in (2.7) is an l + 2 gravitons amplitude with l + 1 gravitons

attached to the massive scalar line

Lµ1⌫1,...,µl+1⌫l+1
(p1, p2, `1, . . . , `l+1) = (2.9)

=
(�i

p
8⇡GN )l+1⌧µ1⌫1(p1, p1 � `1)⌧µ2⌫2(p1`1, p1 � `1 � `2) · · · ⌧µl+1⌫l+1

(p1 � `1 � · · · � `l+1, p2)
Ql

i=1

⇣
(p1 �

Pi
j=1 `j)

2 � m2 + i✏
⌘ ,

(2.10)

– 5 –

,

The classical limit results in cutting the massive lines, projecting on the
contribution from localised sources at different positions in space and keeping
only the leading q2 contribution from the multi-graviton tree-level amplitudes.
[Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove]
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Classical contributions from quantum loops
h

(3)
1(r,d)=

8(7d4�63d3+214d2�334d+212)

3(d�3)(d�4)(d�1)3
⇢(r,d)3,

h
(3)
2(r,d)=�8(d�2)2(2d3�13d2+25d�10)

(d�3)(d�4)(d�1)3
⇢(r,d)3.(3.44)

3.4Three-loopamplitude

Thediagramscontributingtotheclassicalcorrectionsatthirdpost-Minkowskianorderof

themetricatthetwo-loopgraphs

M(3)
3(p1,q)=�

p
32⇡GNT(3)µ⌫✏µ⌫,(3.45)

wherethethree-loopstress-tensorisgivenbyfivedistinctdiagrams

T
(3)µ⌫
(a)=,T

(3)µ⌫
(b)=,

T
(3)µ⌫
(c)=,T

(3)µ⌫
(d)=,

T
(3)µ⌫
(e)=.

Asbefore,wepermutetheinternalmomentasuchthatbytakingtheresidueat2ml0i=

i✏fromthemassivepropagators,weextractthenon-analytictermswhichcontributetothe

classicalmetricinthestaticlimit.Aftertakingtheresiduesandincludingthesymmetry

factors

T
(3)µ⌫
(a)=64⇡3G3

Nm4

Z3Y

n=1

dd~ln
(2⇡)d

⌧µ⌫
(3)⇡⇢,�⌧(l1+l2,q)⌧

⇡⇢
(3)(�l1,l1+l2)⌧

�⌧
(3)(�l3,l3+l4)

(~l1)
2(~l2)

2(~l3)
2(~l4)

2(~l1+~l2)
2(~l3+~l4)

2

�����
l01=l02=l03=0

,

T
(3)µ⌫
(b)=256⇡3G3

Nm4

Z3Y

n=1

dd~ln
(2⇡)d

⌧µ⌫
(3)�⌧,00(l1+q,q)⌧⇡⇢ (3)(�l3,l3+l4)⌧

�⌧
(3)00,⇡⇢(�l2,l1+q)

(~l1)
2(~l2)

2(~l3)
2(~l4)

2(~l1+~q)2(~l3+~l4)
2

�����
l01=l02=l03=0

,

T
(3)µ⌫
(c)=�512⇡3G3

Nm4

3

Z3Y

n=1

dd~ln
(2⇡)d

⌧µ⌫
(3)↵�,00(l1+q,q)⌧↵� (4)00,00,00(l1+q,l2,l3,l4)

(~l1)
2(~l2)

2(~l3)
2(~l4)

2(~l1+~q)2

�����
l01=l02=l03=0

,

T
(3)µ⌫
(d)=�256⇡3G3

Nm4

Z3Y

n=1

dd~ln
(2⇡)d

⌧�� (3)(�l3,l3+l4)⌧
µ⌫
(4)��,00,00(q,l1,l2,l3+l4)

(~l1)
2(~l2)

2(~l3)
2(~l4)

2(~l3+~l4)
2

�����
l01=l02=l03=0

,

T
(3)µ⌫
(e)=

256⇡3G3
Nm4

3

Z3Y

n=1

dd~ln
(2⇡)d

⌧µ⌫
(5)00,00,00,00(q,l1,l2,l3,l4)

(~l1)
2(~l2)

2(~l3)
2(~l4)

2

�����
l01=l02=l03=0

,

(3.46)
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h
(2)
2(r,d)=

4(d�2)2(3d�2)

(d�4)(d�1)2
⇢(r,d)2,(3.26)

where⇢(r,d)isdefinedin(3.8).

Thisreproducestheexpressiongivenin[21]andtheexpressionin[24,eq.(22)]for

↵=0.

3.3Two-loopamplitude

Thediagramscontributingtotheclassicalcorrectionsatthirdpost-Minkowskianorderof

themetricatthetwo-loopgraphs

M(2)
3(p1,q)=�

p
32⇡GNT(2)µ⌫✏µ⌫,(3.27)

therearefourcontributions

T
(2)µ⌫
(a)=,T

(2)µ⌫
(b)=,

T
(2)µ⌫
(c)=,T

(2)µ⌫
(d)=.

3.3.1Thediagrams(a),(b),(c)

Thesumofthecontributionsfromthediagrams(a),(b),(c)afterappropriatelabellingof

themomenta,canbeexpressedas

cX

i=a

T
(2)µ⌫
(i)=�16G2

N⇡2

m

Z3Y

n=1

dd+1ln
(2⇡)2d

�(l1+l2+l3+q)

⇥
⌧��(p1,l1+p1)⌧

�⌧(l1+p1,�l2+p1)⌧
◆✓(l2�p2,�p2)⌧

��
(3)◆✓,�⌧(�l2,l1+q)·P↵�

��·⌧µ⌫
(3)↵�,��(l1+q,q)

l21l
2
2l

2
3(l1+q)2

⇥
 

1

(l1+p1)2�m2

1

(l2�p2)2�m2
+

1

(l3+p1)2�m2

1

(l1�p2)2�m2

+
1

(l3+p1)2�m2

1

(l2�p2)2�m2

!
.(3.28)

Usingtheapproximateformofthetwoscalarsonegravitonvertexin(3.17)and(l1+p1)
2�

m2⇡2ml01andtakingtheresidue2ml0i=i✏,sincefortherestoftheresidueswegeta

zerocontributionatorderO(✏0),weget

cX

i=a

T
(2)µ⌫
(i)=32⇡2G2

Nm3

Z2Y

n=1

dd+1ln
(2⇡)2d

⌧µ⌫
(3)↵�,00(l1+q,q)·P↵�

��·⌧�� (3)00,00(�l2,l1+q)

(~l1)
2(~l2)

2(~l3)
2(~l1+~q)2

�����
l01=l02=0

,

(3.29)
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M. J ~ DUFF

gsA(i)
C

a& 8&~sg ag sg 5 y~x &a5 y ~2 &@6y~a &s
(4.16}

Using Eq. (4.8) a straightforward calculation gives, in momentum space,
1

F(y~g~(g2 $2~3/3(~gy ~gt ~3) sym g 8 ( 4'qa3a3 i82a&&e38pm ' ~a+ 26~B2qa~ap838pm ~s &~Bpo|38$2Ãg 38g

(4.17)

+@V qPV + +yjLV (4.18}
the Einstein Lagrangian may again be expanded in
a fashion similar to Eq. (4.6),
8 (@}=2"'+MS"'+KZ'g'+ . .

However, the explicit forms for Z~ and 2'~" are
rather complicated and we shall not write them
down. In the de Donder gauge (though not in gen-
eral), the free propagator for Q"" field is the
same as that for Q"". The higher-order vertex
functions, however, are different.
We now turn to the rather delicate problem of

choosing the source term 2~. First of all we de-
fine

(4.19)

J„,=-(-z)'"&„., (4.20)
where T„„is the energy-momentum tensor given
in Eq. (2.27). If we now insert the interior form
of g"" known from the classical theory [Eq.
(3.11)], into the above equation, then to order x',
J„„is simply
J =u(r), Z„=P(v)n„,

where g and P are given by Eqs. (2.10) and (3.9).
Next, we note that if the Einstein equations

(4.21)

The "sym" standing in front of this expression in-
dicates that a symmetrization is to be carried out
on each index pair &,P„o',P» and n,P, . The sym-
bol I', means that a summation is to be performed
over all six permutations of the momentum index
triplets ~i~ikx~ nsPsk» a,P,k, . In the above equa-
tion we have omitted an over-all 5 function ex-
pressing conservation of momentum.
So far, the density 0"' has been chosen as the

interpolating field rather than g"" because 2 ~ and
Zo and hence the 3-point function of (4.17) are
much simpler in this form. " In computing the
VEV of the gravitational field, however, we pre-
fer to use the more familiar g"" for reasons which
will become clear later. Setting

since

5Ac 1
6 „.=p(-g) (4.23b)

yPV pV (4.24)
However, by adding the noncovariant piece S~ to
the Lagrangian the gauge symmetry (general co-
variance) is broken and the above constraint no
longer holds. If we now choose A~ to be

Ai=— d xgu (x)I gx)1
2 (4.25)

and regard J„„asbeing a known classical func-
tion of x [Eq. (4.21)], and no longer a functional
of the metric, then functional differentiation with
respect to g"" yields the correct term in the Ein-
stein equation (4.23a). We may now proceed to
calculate the VEV of the gravitational field in the
presence of the external classical source J„„in
the usual way.
The S matrix is given by the Feynman-Dyson

expression

S =Texp i d xg. , x+g x (4.26)

where 2, describes the self-interaction of the
gravitational field and subscript J reminds us of
the presence of the external source. The VEV of

Unfortunately, in gravity theory (as in all non-
Abelian gauge theories), the introduction of a
purely inert external source is complicated by
the fact that the source itself depends on the field.
The components of the matter tensor T"" are not
all independent but satisfy the divergence condi-
tion

—*(-g)"G„.+-.~„,=o
K

(4.22)
(a) (o) (c)

5A~
PV 2 PV (4.23a}

are to be obtained by functional differentiation of
the action (A~+A~), then we must have FIG. 1. Feynman diagrams for the VEV of the gravi-

tational field in the presence of a c-number source (de-
noted by the circles). The closed loops have been
ignored.

I The tree skeleton graphs are the one computed by Duff
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Classical metric from loops

h(l+1)
µν (~q) = −8

(
c(l)

1 (d)(2δ0
µδ

0
ν − ηµν) + c(l)

2 (d)
(

2
qµqν

q2 + (d − 2)ηµν

))

× (πGNm)l+1 J(l)(~q2)

~q2 .

The metric components in the static limit are given by a single master integral

J(n)(~q
2) =

and higher powers of ~q2 contribute to higher powers of } and are sub-leading quantum

corrections (see section 3.1 for more about this).

Therefore, the classical contribution to the stress-tensor in (2.3) is given by4

hT (l)
µ⌫ i = ⇡l(GNm)lm

⇣
c
(l)
1 (d)�0

µ�
0
⌫ + c

(l)
2 (d)

�qµq⌫
q2

� ⌘µ⌫

�⌘
J(l)(q

2) , (2.26)

where c
(l)
1 (d) and c

(l)
2 (d) are rational functions of the dimension d and J(n)(q

2) is the massless

n-loop sunset graph

J(n)(~q
2) = • •q q =

Z
~q2

Qn
i=1

~l2i (~l1 + · · · +~ln + ~q)2

nY

i=1

dd~li
(2⇡)d

.

(2.27)

2.2 The master integrals for the classical limit

The master integrals (2.27) can be evaluated straightforwardly with the parametric repre-

sentation of the n-loop sunset in D dimensions (see [36])

J(n)(~q
2) =

(~q2)
n(d�2)

2

(4⇡)
nd
2

�

✓
n + 1 � nd

2

◆Z

xi�0

✓
1

x1
+ · · · +

1

xn
+ 1

◆ (n+1)(2�d)
2

nY

i=1

dxi

x
d
2
i

(2.28)

since the first Symanzik polynomial is Un+1 =
⇣Pn+1

i=1
1
xi

⌘⇣Qn+1
i=1 xi

⌘
and the second

Symanzik polynomial is Fn+1 = �q2x1 · · · xn+1 = ~q2x1 · · · xn+1. Changing variables to

yi = 1/xi we have

J(n)(~q
2) =

(~q2)
n(d�2)

2

(4⇡)
nd
2

�

✓
n + 1 � nd

2

◆Z

yi�0
(y1 + · · · + yn + 1)

(n+1)(2�d)
2

nY

i=1

dyi

y
4�d
2

i

. (2.29)

Using the expression for Euler’s beta-function

Z 1

0
(x + a)↵

dx

x1��
= a↵+� �(�� � ↵)�(�)

�(�↵)
, (2.30)

the master integral is readily evaluated to be

J(n)(~q
2) =

(~q2)
n(d�2)

2

(4⇡)
nd
2

�
�
n + 1 � nd

2

�
�
�

d�2
2

�n+1

�
⇣

(n+1)(d�2)
2

⌘ . (2.31)

The master integrals develop ultraviolet poles at loop orders, inducing divergences in the

stress-energy tensor. We will show in section 4 how to renormalise these divergences with

the introduction of higher-derivative couplings.

4We have checked this explicitly to three-loop order using the LiteRed code [34, 35].

– 8 –

=
(~q2)

n(d−2)
2

(4π)
nd
2

Γ
(
n + 1 − nd

2

)
Γ
(d−2

2

)n+1

Γ
(
(n+1)(d−2)

2

) .

Fourier transforming to direct space

h(l+1)
i (r, d) = C(d, l)

(
ρ(r, d)

4

)l+1
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Divergences

Divergences in stress-tensor and metric components are removed by
introducing the non-minimal couplings

δ(n)Sct. = (GNm)
2n

d−2

∫
dd+1x

√
−g
(
α(n)(d)(∇2)n−1R∂µφ∂µφ

+
(
β
(n)
0 (d)∇µ∇ν(∇2)n−2R + β

(n)
1 (d)(∇2)n−1Rµν

)
∂µφ∂νφ

)
.

I δ(1)Sct. renormalised the stress-tensor and the metric
components [Goldberger, Rothstein; Jakobsen]

I The finite piece after cancelling the divergences matches the log
contributions in the metric solution. The constant of integration is the
renormalisation scale

I δ(n)Sct. with n > 2 renormalise the divergences in the stress-tensor but
do not contribute to the metric components
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Outlook

it is satisfying to be able to embed such classical solutions in the new
understanding of the relation between general relativity and the quantum
theory of gravity

1 Our analysis shows that our understanding of the classical limit of
quantum scattering amplitudes is complete

2 We have nicely displayed the importance of the coordinate choice and
the gauge fixing conditions.

3 The same analysis can be extended easily for recovering the
Kerr-Newman (charged spin 1

2 ) and Reissner-Nordström metric (charged
scalar).

4 gravity is richer in higher dimensions! Since the amplitude approach
has been validated in higher-dimensions we can explore various
interesting classical gravity physics in higher dimensions

5 We can include the quantum corrections to the metric
6 We can do this in any EFT which have amplitude description, and derive

new space-time metrics
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