Coupling to matter in degenerate scalar-tensor theories

Sebastian Garcia-Saenz

Imperial College London

Based on 2004.11619 with C. Deffayet

Outline and results

- Degenerate higher-order scalar-tensor theories (DHOST)
- Review

see also N. Frusciante's talk

- Matter coupling problem
- Pathological matter fields
- Loss of degeneracy
- Non-commutation of constraints
- Spinor fields in DHOST
- Not pathological (so far)

DHOST

- Scalar-tensor theories are interesting extensions of GR because they are
- minimal
- analytically tractable

DHOST

- Scalar-tensor theories are interesting extensions of GR because they are
- minimal
- analytically tractable
- However simplest models of the form

$$
\mathcal{L}=F(\phi, \nabla \phi)
$$

have drawbacks

- tension with fifth-force experiments
- fine-tuned

DHOST

- Scalar-tensor theories are interesting extensions of GR because they are
- minimal
- analytically tractable
- However simplest models of the form

$$
\mathcal{L}=F(\phi, \nabla \phi)
$$

have drawbacks

- tension with fifth-force experiments
- fine-tuned
- This motivates the study of generalized scalar-tensor theories

$$
\mathcal{L}=F\left(\phi, \nabla \phi, \nabla^{2} \phi\right)
$$

DHOST

- These models are potentially pathological

$$
\begin{array}{rll}
\mathcal{L}=F\left(\phi, \nabla \phi, \nabla^{2} \phi\right) & \xrightarrow{?} \quad \frac{\delta \mathcal{L}}{\delta \phi} \supset \partial^{3} \phi, \partial^{4} \phi \\
& \xrightarrow{?} \quad \text { ghost degree of freedom }
\end{array}
$$

DHOST

- These models are potentially pathological

$$
\begin{array}{rll}
\mathcal{L}=F\left(\phi, \nabla \phi, \nabla^{2} \phi\right) & \xrightarrow{?} \quad \frac{\delta \mathcal{L}}{\delta \phi} \supset \partial^{3} \phi, \partial^{4} \phi \\
& \xrightarrow{?} \quad \text { ghost degree of freedom }
\end{array}
$$

- Many known cases evade this issue
- Second-order eqs. of motion

Horndeski theory, Galileon
Nicolis et al. (2008)
Deffayet et al. (2009)

DHOST

- These models are potentially pathological

$$
\begin{array}{rll}
\mathcal{L}=F\left(\phi, \nabla \phi, \nabla^{2} \phi\right) & \xrightarrow{?} \quad \frac{\delta \mathcal{L}}{\delta \phi} \supset \partial^{3} \phi, \partial^{4} \phi \\
& \xrightarrow{?} \quad \text { ghost degree of freedom }
\end{array}
$$

- Many known cases evade this issue
- Second-order eqs. of motion

Horndeski theory, Galileon

- Higher-order eqs. of motion + degeneracy

Beyond Horndeski, DHOST Gleyzes, Langlois, Piazza, Vernizzi (2015) Crisostomi, Koyama, Tasinato (2016) Ben Achour, Langlois, Noui (2016)

DHOST

$$
\mathcal{L}=F\left(\phi, \nabla \phi, \nabla^{2} \phi\right)
$$

- All these theories become "unified" in the Hamiltonian language

DHOST

$$
\mathcal{L}=F\left(\phi, \nabla \phi, \nabla^{2} \phi\right)
$$

- All these theories become "unified" in the Hamiltonian language
- When counting degrees of freedom through the Hamiltonian we are only concerned with
- number of phase space variables
- number of constraints

DHOST

$$
\mathcal{L}=F\left(\phi, \nabla \phi, \nabla^{2} \phi\right)
$$

- All these theories become "unified" in the Hamiltonian language
- When counting degrees of freedom through the Hamiltonian we are only concerned with
- number of phase space variables
- number of constraints
- In the case of DHOST we have
- Phase space variables

$$
\begin{aligned}
& g_{\mu \nu}, \phi, \nabla_{\mu} \phi+\text { conjugate momenta } \\
& \mathbf{2} \times(\mathbf{1 0}+\mathbf{1}+\mathbf{4})=\mathbf{3 0}
\end{aligned}
$$

DHOST

$$
\mathcal{L}=F\left(\phi, \nabla \phi, \nabla^{2} \phi\right)
$$

- All these theories become "unified" in the Hamiltonian language
- When counting degrees of freedom through the Hamiltonian we are only concerned with
- number of phase space variables
- number of constraints
- In the case of DHOST we have
- Phase space variables
$g_{\mu \nu}, \phi, \nabla_{\mu} \phi+$ conjugate momenta
$2 \times(10+1+4)=30$
- Constraints
$\mathbf{1 6}($ diff symmetry $)+8=24$

DHOST

$$
\mathcal{L}=F\left(\phi, \nabla \phi, \nabla^{2} \phi\right)
$$

- All these theories become "unified" in the Hamiltonian language
- When counting degrees of freedom through the Hamiltonian we are only concerned with
- number of phase space variables
- number of constraints
- In the case of DHOST we have
- Phase space variables
$g_{\mu \nu}, \phi, \nabla_{\mu} \phi+$ conjugate momenta
$2 \times(10+1+4)=30$
- Constraints

16 (diff symmetry) $+8=24$

- Result
$2+1$ dynamical degrees of freedom

Matter coupling

- Key observation is that matter fields may spoil constraints de Rham \& Matas (2016)

DHOST	3 DoF
matter	N DoF
DHOST + matter	$\geq 3+N$ DoF

Matter coupling

- Key observation is that matter fields may spoil constraints de Rham \& Matas (2016)

DHOST	3 DoF
matter	N DoF
DHOST + matter	$\geq 3+N$ DoF

- We will say that the coupling to a given matter sector is inconsistent if the total degree of freedom count is

$$
>3+N
$$

- If the matter sector is consistent within GR , but inconsistent within DHOST, then we will conclude that the ghost has reappeared

Matter coupling

Remarks

- Already in GR not every matter field is consistent

Isenberg \& Nester (1977)
The problem is only worse in DHOST:
more constraints \rightarrow higher risk

Matter coupling

Remarks

- Already in GR not every matter field is consistent

The problem is only worse in DHOST:
more constraints \rightarrow higher risk

- "Continuity" of DoF only a necessary condition for physical consistency

Matter coupling

Remarks

- Already in GR not every matter field is consistent

The problem is only worse in DHOST:
more constraints \rightarrow higher risk

- "Continuity" of DoF only a necessary condition for physical consistency
- Consistency of matter coupling depends on the form of the coupling

Matter coupling

Remarks

- Already in GR not every matter field is consistent

The problem is only worse in DHOST:
more constraints \rightarrow higher risk

- "Continuity" of DoF only a necessary condition for physical consistency
- Consistency of matter coupling depends on the form of the coupling

Our framework

- Minimal coupling to the metric (but in a general frame)
- Quadratic DHOST $\quad \mathcal{L} \supset \nabla^{2} \phi,\left(\nabla^{2} \phi\right)^{2}$

Matter coupling

Two ways for matter to spoil constraints

Matter coupling

Two ways for matter to spoil constraints
(I) Hessian matrix

$$
\mathcal{H}_{i j}=\frac{\partial^{2} \mathcal{L}}{\partial \dot{\psi}^{i} \partial \dot{\psi}^{j}}, \quad \psi^{i} \equiv\left\{g_{\mu \nu}, \phi, \nabla_{\mu} \phi, \text { matter }\right\}
$$

fails to have the required rank
\rightarrow direct loss of degeneracy (primary) constraint

Matter coupling

Two ways for matter to spoil constraints
(I) Hessian matrix

$$
\mathcal{H}_{i j}=\frac{\partial^{2} \mathcal{L}}{\partial \dot{\psi}^{i} \partial \dot{\psi}^{j}}, \quad \psi^{i} \equiv\left\{g_{\mu \nu}, \phi, \nabla_{\mu} \phi, \text { matter }\right\}
$$

fails to have the required rank
\rightarrow direct loss of degeneracy (primary) constraint

Example: non-Maxwell vector field

$$
\mathcal{L}_{m}=\sqrt{-g} \nabla^{\mu} B^{\nu} \nabla_{\mu} B_{\nu}
$$

$$
\operatorname{rank} \mathcal{H}^{(\text {DHOST })}+\operatorname{rank} \mathcal{H}^{(\text {matter })}<\operatorname{rank} \mathcal{H}
$$

because \mathcal{H} is not block-diagonal

Matter coupling

Two ways for matter to spoil constraints
(II) Some constraint in the matter sector fails to Poisson-commute with the DHOST constraint

$$
\left\{\mathcal{C}^{(\text {DHOST })}, \mathcal{C}^{(\text {matter })}\right\} \neq 0
$$

\rightarrow loss of secondary constraints

Matter coupling

Two ways for matter to spoil constraints
(II) Some constraint in the matter sector fails to Poisson-commute with the DHOST constraint

$$
\left\{\mathcal{C}^{(\text {DHOST })}, \mathcal{C}^{(\text {matter })}\right\} \neq 0
$$

\rightarrow loss of secondary constraints

Example: cubic Galileon/KGB

$$
\mathcal{L}_{m}=\sqrt{-g}\left[-\frac{1}{2}(\nabla \pi)^{2}+\kappa(\nabla \pi)^{2} \square \pi\right]
$$

Hessian constraint
Poisson bracket constraint X

Spinor fields

Spinor fields in DHOST are potentially problematic

- they couple to the spin connection
\rightarrow Hessian matrix not block-diagonal
- they have constraints
\rightarrow must Poisson-commute with DHOST constraint

$$
\mathcal{L}_{m}=-\frac{1}{2} \sqrt{-g} \bar{\lambda} \gamma^{\mu}\left(\partial_{\mu}+\Omega_{\mu}\right) \lambda
$$

Spinor fields

Spinor fields in DHOST are potentially problematic

- they couple to the spin connection
\rightarrow Hessian matrix not block-diagonal
- they have constraints
\rightarrow must Poisson-commute with DHOST constraint

$$
\mathcal{L}_{m}=-\frac{1}{2} \sqrt{-g} \bar{\lambda} \gamma^{\mu}\left(\partial_{\mu}+\Omega_{\mu}\right) \lambda
$$

We have shown that a large class of spinor models is actually consistent

- any quadratic action with arbitrarily many Majorana and/or Dirac spin- $1 / 2$ fields
- most general self-interacting Majorana spin- $1 / 2$ field, linear in $\nabla \lambda$

Open questions

- Beyond minimal coupling
- curvature couplings
- scalar-matter couplings $\quad \phi T^{\mu}{ }_{\mu} \quad, \quad \partial_{\mu} \phi \partial_{\nu} \phi T^{\mu \nu}$
- disformal couplings $\quad \mathcal{L}_{m}\left[A g_{\mu \nu}+B \partial_{\mu} \phi \partial_{\nu} \phi, \psi_{m}\right]$

Open questions

- Beyond minimal coupling
- curvature couplings
- scalar-matter couplings $\quad \phi T^{\mu}{ }_{\mu} \quad, \quad \partial_{\mu} \phi \partial_{\nu} \phi T^{\mu \nu}$
- disformal couplings $\quad \mathcal{L}_{m}\left[A g_{\mu \nu}+B \partial_{\mu} \phi \partial_{\nu} \phi, \psi_{m}\right]$
- Cubic DHOST

Ben Achour et al. (2016)

Open questions

- Beyond minimal coupling
- curvature couplings
- scalar-matter couplings $\quad \phi T^{\mu}{ }_{\mu} \quad, \quad \partial_{\mu} \phi \partial_{\nu} \phi T^{\mu \nu}$
- disformal couplings $\quad \mathcal{L}_{m}\left[A g_{\mu \nu}+B \partial_{\mu} \phi \partial_{\nu} \phi, \psi_{m}\right]$
- Cubic DHOST

Ben Achour et al. (2016)

- Other spinor fields
e.g. spin-3/2

Open questions

- Beyond minimal coupling
- curvature couplings
- scalar-matter couplings $\quad \phi T_{\mu}^{\mu} \quad, \quad \partial_{\mu} \phi \partial_{\nu} \phi T^{\mu \nu}$
- disformal couplings $\quad \mathcal{L}_{m}\left[A g_{\mu \nu}+B \partial_{\mu} \phi \partial_{\nu} \phi, \psi_{m}\right]$
- Cubic DHOST

Ben Achour et al. (2016)

- Other spinor fields
e.g. spin- $3 / 2$
- Other physically relevant matter fields
e.g. fluids with higher derivative corrections

Open questions

- Beyond minimal coupling
- curvature couplings
- scalar-matter couplings $\quad \phi T^{\mu}{ }_{\mu} \quad, \quad \partial_{\mu} \phi \partial_{\nu} \phi T^{\mu \nu}$
- disformal couplings $\quad \mathcal{L}_{m}\left[A g_{\mu \nu}+B \partial_{\mu} \phi \partial_{\nu} \phi, \psi_{m}\right]$
- Cubic DHOST
- Other spinor fields
e.g. spin-3/2
- Other physically relevant matter fields
e.g. fluids with higher derivative corrections

Thank you

