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Outline of talk:

I UV completion in particle particle and gravity.

I The unknown pre-BBN era.

I Various GW sources of cosmic origin.
I Primordial Gravitational Waves.

I Propagation of Gravitational Waves in Early Universe.
I Modified GW Propagation in non-standard cosmology.
I Modified GW Propagation in modified gravity.
I Signal-building on the GW sensitivity map.

I Gravitational Waves as test-of-gravity experiment.

I Recent NanoGrav GW detection.

I Conclusion
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History of the Universe
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Gravitational Waves

I Gravitational Waves (GW) first detected in 2016.

I New Window into the Early Universe.
I Sources of GW from cosmic origin & corresponding spectrum:

I Inflation: Primordial GW.
I Inflation: Secondary GW.
I First-order Phase Transition.
I Re-heating.
I Graviton Radiation.
I Topological Defects.
I Oscillon.
I Primordial BH.

I Peccei-Quinn Phase Transition.
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Gravitational Waves - - a Primer
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GW - - Cosmic String

Topological defects like cosmic strings give rise to scale invariant GW spectrum.



GW

GW - - Scalar Induced Secondary GW

Secondary Tensor Spectrum induced by first-order scalar perturbation via mixing.
Can be tuned to generate high amplitude in high frequency regions.

Baumann (2007)
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GW - - PBH-induced GW

PBH-induced GW.

Baumann (2007)
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GW - - (P)-reheating

Production during inflaton oscillating in FRW background.

Figuera (2007)
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GW - - Graviton Bremmstrahlung

Inflaton radiating away gravitons forming Stochastic GW background.

Nakayama (2018)
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History of the Universe - - Again
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Inflation - - UV completion

Well known story about the inflation scalar field inflaton rolling down a potential with
little or no interactions:
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Inflation - - UV completion

Going to be more well-known in very near future:

Non-Gaussianity parameters:

f localNL = −0.9± 5.1, f equilibriumNL = −26± 47, f orthogonalNL = −38± 24.
Detection of CMB BB-modes will tell us the scale of inflation.
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Inflation - - UV completion

However huge gap in our knowledge in between the inflation ending & the beginning
of radiation-domination era:
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Inflation - - UV completion

What dominated this era ? New gravity ? New Matter ? Predictions from
UV-completions.
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Inflation - - UV completion

Non-thermal History of the Universe during this era, motivated from string theory,
UV-completion of gravity (See for instance Sinha (2015)):

Probe of this era via PGW.
Watson slides PHENO (2020)
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The idea: Naively

Propagation of Primordial GW generated during Inflation:

ḧij + 3H ḣij +
k2

a2
hij = 16π G ΠTT

ij , (1)

Solution:

hij(t, ~x) =
∑
P

∫
d3k

(2π)3
hP(t, ~k) εPij (~k) e i

~k·~x , (2)

hP~k = hP~k, 0
U(t, k) , (3)

Πij =
Tij − p gij

a2
(4)

ΩGW (η, k) =
1

12 a2(η)H2(η)
PT (k) [U ′(η, k)]

2
(5)
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On the GW sensitivity Map

V_inf = (1.5 * 10ˆ16)ˆ4 GeV

Scale Invariant Spectrum Assumed

PT = 2
3π2

Vinf

M4
pl

. UV-completion: Trans-Planckian Censorship may constrain Vinf .

Signal-building: What non-standard cosmology enhances the signal to be detected ?
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On the GW sensitivity Map

Impact on PGW spectrum from thermal history of the Universe.
Ringwald (2020)
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Non-standard Cosmology

I History of the Universe before BBN is unknown.

I Non-standard cosmology predicts scalar field φ and its energy density
dominates in the Early Universe.

I Its Equation-of-state ωφ.

I Modifies the Hubble expansion: H2 ∝ ρφ ∝ a−
3
2 (1+ωφ).

I PGW relic for modes coming into the horizon for modes coming

inside the horizon during the φ-dominated era ΩGW ∝ k−2 1+3ω
1−3ω .

I Independent parameter ξ =
ρφ
ρR

.
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On the GW sensitivity Map

Bernal (2019) [Fazollah, GGI, Florence 2019]
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On the GW sensitivity Map

[Fazollah, GGI, Florence 2019]
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On the GW sensitivity Map

[Fazollah, GGI, Florence 2019]
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On the GW sensitivity Map

[Fazollah, GGI, Florence 2019]
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Modified Gravity - - Theory

Why modify Einstein gravity ?

I Theoretical: Einstein Gravity is non-renormalizable. Quadratic Extensions makes
it re-normalizable but have ghosts in the theory. Infinite-derivative extensions
make it ghost-free. Theoretical: First-order formalisms. Allowing more
symmetries.

I Phenomenological (UV or early universe): Inflation, dark matter.

I Phenomenological (IR or late time): Dark energy.

All these extensions predict modified expansion history of the universe in terms of
modified Hubble.
We will try to analyse phenomenologically first.
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Modified Gravity

I Modify cosmological expansion (motivated from modified gravity theories)

HMC (T ) = A(T )HGR(T ) , (6)

I Strategy:

A(T ) = 1 + η

(
T

T∗

)ν
, (7)

where T∗ is a parameter with dimensions of the temperature, and {η, ν} are free
parameters.

A(T ) =

{
1 + η

(
T
T∗

)ν
tanh T−Tre

Tre
for T > TBBN

1 for T ≤ TBBN

(8)

I ν labels cosmological models:
1. ν = 2 in Randall-Sundrum type II brane cosmology, ν = 1 in kination models,
2. ν = 0 in cosmologies with an overall boost of the Hubble expansion rate like in the case

of a large number of additional relativistic degrees of freedom in the thermal plasma
3. ν = −1 in scalar-tensor (ST) cosmology,
4. ν = 2/n − 2 in f (x) cosmology, with f (x) = x + αxn, with x = R, T where R and T

stand for the scalar curvature and the scalar torsion, respectively.

Catena (2003)
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Regimes

In the range of frequencies f � fre, or equivalently for temperatures T � Tre,
cosmology should converge to GR, and therefore before the onset of BBN one has that

H(a) = HGR(a) = H(are)
(are

a

)2
, (9)

where are is the scale factor at T = Tre. The PGW relic density

ΩGW(τ0, k) =
PT (k)

24

(
are

a0

)4 (H(are)

H0

)2

∝ PT (k) , (10)

showing the same scale dependence as the primordial tensor power spectrum PT (k),
as expected from the standard cosmology.
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On the GW sensitivity Map

In the range of frequency fre � f the amplification factor A plays a major role.
ν > 0 Case: If ν takes positive values, the Hubble rate can be expressed as

H(a) ' H(are)
(are

a

)2+ν
, (11)

which allows to express the PGW relic density

ΩGW(τ0, k) =
PT (k)

24 a4
0 H

2
0

[
H(are) kν a2+ν

re

] 2
1+ν ∝ PT (k) k

2ν
1+ν . (12)

The PGW spectrum gains an extra factor k
2ν

1+ν , and is therefore blue-tilted with
respect to the original tensor power spectrum. This enhancement in the PGW
spectrum can alternatively be understood by examining the friction term

2
a′

a
=

4

1 + 3ω

1

τ
'

2

1 + ν

1

τ
. (13)

With respect to the standard case where the Universe is dominated by radiation
(ω = 1/3), the friction term is reduced and therefore the PGW spectrum is enhanced
for ω > 1/3 or equivalently ν > 0.
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On the GW sensitivity Map

ν = 0 Case: The Hubble rate is enhanced by a constant factor A = 1 + η. The PGW
spectrum is therefore not distorted, just showing an overall shift of A2:

ΩGW(τ0, k) '
(1 + η)2

24
PT (k)

[
ahc

a0

]4 [Hhc

H0

]2

∝ PT (k) . (14)
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On the GW sensitivity Map

If ν takes negatives values, both for low (f � fre) and high frequencies (f � fre) the
amplification factor tends to 1. However, it is interesting to note that A reaches a
maximum at f = f̄ & fre given by

A(f̄ ) ' η
(
Tre

T?

)ν
. (15)

The PGW spectrum has the same tilt as the original tensor power spectrum, but
featuring a characteristic bump at k = k̄ = 2π f̄ , with an amplitude given by

ΩGW(τ0, k̄) '
1

24
η2

(
Tre

T?

)2ν

PT (k̄)

[
ahc

a0

]4 [Hhc

H0

]2

. (16)

Conclusions: The effect of the modified cosmologies could give a localized boost, an
overall boost, or a change in the frequency dependence, for ν < 0, ν = 0, or ν > 0,
respectively. As will be evident from the plots here-after.
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On the GW sensitivity Map

Figure: A (upper panels) and PGW spectrum ΩGWh2 (lower panels) as a function of the frequency
f for T? = Tre = 100 GeV and η = 1 (blue dashed lines), η = 10 (green dot-dashed lines),
η = 100 (red dotted lines), and ν = −1 (left panels), ν = 0 (central panels), ν = 1 (right panels).
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On the GW sensitivity Map

ST theories are defined by the action S ≡ SST + Sm

SST =
1

16π G∗

∫
d4x
√
−g [F (φ)R(g)− Z(φ) gµν ∂µφ∂νφ− 2V (φ)] , (17)

where R is the Ricci scalar, F and Z are arbitrary dimensionless functions of the field
φ (also dimensionless), and Sm = Sm[ψm, gµν ] is the matter action (here ψm denotes
the matter fields that couple to the metric tensor gµν).
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ST theory

The conformal transformation

gµν = A2
C (φ∗) g∗µν , (18)

together with the change of variables(
dφ∗

dφ

)2

=
3

4

[
d lnF (φ)

dφ

]2

+
Z(φ)

2F (φ)
, (19)

AC (φ∗) = F−
1
2 (φ) , (20)

V∗(φ∗) =
V (φ)

2F 2(φ)
, (21)

yield the action in the Einstein frame

SST =
1

16πG∗

∫
d4x∗

√
−g∗

[
R∗(g∗)− 2gµν∗ ∂µφ∗∂νφ∗ − 4V∗(φ∗)

]
, (22)

while Sm = Sm[ψm, A2
C g∗µν ].
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Plot - - STT

The FLRW cosmological field equations in the Einstein frame

3H2
∗ ≡ 3

(
ȧ∗

a∗

)2

= 8πG∗ρ∗ + φ̇2
∗ + 2V∗(φ∗) , (23)

3
ä∗

a∗
= −4πG∗(ρ∗ + 3p∗)− 2φ̇2

∗ + 2V∗(φ∗) , (24)

φ̈∗ + 3H∗ φ̇∗ +
dV∗

dφ∗
= −4πG∗ α(φ∗) (ρ∗ − 3p∗) , (25)

where the dots denote derivatives with respect to the time variable t∗. Deviations of
ST theories from GR are parameterized by

α(φ∗) ≡
d lnAC (φ∗)

dφ∗
, (26)

where in the limit α→ 0, AC becomes a constant, the two frames coincide, and
therefore the ST theory reduces to GR.
N = ln(a∗/a∗0) (subindex ‘0’ labels quantities evaluated at present). Relation between
Jordan and Einstein frames are

a = AC (φ∗) a∗ , dt = AC (φ∗) dt∗ , ρ =
ρ∗

A4
C (φ∗)

, p =
p∗

A4
C (φ∗)

. (27)
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Final Equations (setting V∗ = 0):

H =
AC (φ∗)

AC (φ∗0)

1 + α(φ∗)
dφ∗
dN√

1 + α2(φ∗0)

√
1− 1

3

(
dφ∗
dN

)2
HGR , (28)

2

3−
(

dφ∗
dN

)2

d2φ∗

dN2
+ [1− ω]

dφ∗

dN
+ α(φ∗) [1− 3ω] = 0 , (29)

where ω = ω(T ) varies from 1/3 to −1 after reheating. In particular, during
radiation-domination era, its evolution is given by the variation of the effective number
of degrees of freedom

ω(T ) =
4

3

h(T )

g(T )
− 1 . (30)

Let us note that ω has to be understood as the equation-of-state parameter of the SM
bath. That means that after neutrino decoupling, only photons and
electrons/positrons contribute to ω.
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Plot - - STT

Figure: Evolution of the equation-of-state parameter ω with respect to the photon temperature T .
For reference, ω = 1/3 corresponding to radiation domination is also shown.

Funnels at T ' 0.5 MeV, T ' 150 MeV, and T ' 100 GeV correspond to the
neutrino decoupling, QCD crossover, and electroweak crossover.
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Fixing the Transformation

We fix the transformation:
AC (φ∗) = e

1
2
β φ2

∗ , (31)

which implies that α(φ∗) = β φ∗. In our numerical study, the ST model is fully set by
fixing β, the initial value of the field φ∗in and its derivative (dφ/dN)∗in, at a high
temperature Tin = 1014 GeV. For the sake of simplicity, here we focus on the case
(dφ/dN)∗in = 0. Additionally, the specific choice of Tin is not important, as long as it
is much higher than the electroweak scale. In fact, as it will be seen, for T � TEW

the field φ∗ does not evolve.
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Evolution of scalar field

Figure: Evolution of φ∗ (left panel) and dφ∗/dN (right panel) with respect to the frequency f , for
the benchmark points [β, φ∗in] = [1, 2] (blue solid line) and [5, 1] (red dotted line). We also took

Tin = 1014 GeV and (dφ∗/dN)in = 0.

Reduces to GR at late times.
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Figure: Scalar-Tensor Gravity: PGW spectrum, for the benchmark points [β, φ∗in] = [1, 2] (blue
solid line) and [5, 1] (red dotted line), and assuming a scale invariant primordial tensor spectrum

(nT = 0) with a tensor-to-scalar ratio r = 0.07. We also took Tin = 1014 GeV and
(dφ∗/dN)in = 0.

High-frequency GW detectors will be able to detect such PGW in presence of
Scalar-Tensor dominated cosmological era.
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Braneworld Cosmology

In the braneworld cosmology, the Friedmann equation for a spatially flat Universe

H2 =
8πG

3
ρ
(

1 +
ρ

σ

)
, (32)

where ρ is the SM energy density and the parameter σ is the brane tension which is
related to 5-dimensional Planck mass M5 as

σ ≡ 96π G M6
5 . (33)

Bernal (2020)
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Conclusion: Gravitational Waves

I Huge gap in our understanding between the end of inflation and the beginning of
radiation-dominated era.

I GW detectors will be probing the pre-BBN era. Cosmological history can be
verifiable.

I Primordial GW propagation is modified in non-standard cosmological history.

I Primordial GW propagation is modified in alternative gravity theories.

I Reduced Hubble friction causes enhancement of PGW amplitude and large signal
in the detectors.

I Scalar-tensor cosmological model predicts PGW at high-frequency detectors.

I Braneworld predicts signals even at lower frequency pulsar timing array GW
detectors as well.

I Joint analysis from various detectors will be able to distinguish between various
non-standard & modified cosmological histories.

I GW detectors are probing the theory of gravity at larger frequencies, which
corresponds to tests of gravity at smaller scales.
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NanoGrav GW Detection

NanoGrav recently detected GW events. Many cosmic sources have been proposed.
The GW spectrum nicely fits cosmic strings origin hypothesis.

Ellis (2020)
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Thank You


