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Outline of talk:
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UV completion in particle particle and gravity.
The unknown pre-BBN era.
Various GW sources of cosmic origin.

Primordial Gravitational Waves.

P Propagation of Gravitational Waves in Early Universe.
P> Modified GW Propagation in non-standard cosmology.
P> Modified GW Propagation in modified gravity.

P Signal-building on the GW sensitivity map.

Gravitational Waves as test-of-gravity experiment.
Recent NanoGrav GW detection.

Conclusion



History of the Universe

e Primordial Gravitational VWaves

quantum-gravity era

Big Bang plus ety inflation
1073 seconds .

Big Bang plus cosmic microwave background

1073° seconds?

Big Bang plus
380000 years

Big Bang plus
14 billion years
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Gravitational Waves

> Gravitational Waves (GW) first detected in 2016.

» New Window into the Early Universe.
> Sources of GW from cosmic origin & corresponding spectrum:

Inflation: Primordial GW.
Inflation: Secondary GW.
First-order Phase Transition.
Re-heating.

Graviton Radiation.
Topological Defects.
Oscillon.

Primordial BH.
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» Peccei-Quinn Phase Transition.
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e
Gravitational Waves - - a Primer
ds? = a*(T) (N + by (x,7))dzPdz”

7 0 N
background metric GwW

perturbations of the background metric:

scale factor: cosmological expansion

governed by linearized Einstein equation (th = ah;;, TT - gauge)

/ y
A ) ,
hy; (k) + | | hij(k,7) = 16w Gall;(k,T) source: anisotrapic
\ é —_— stress-energy tensor

N’ source term from 4T,

k> aH : hij ~cos(wt)/a, k< aH : hi ~ const.
. dk [ B (R gmik(r—ia)
a useful plane wave expansion:  h;; (&,7) = E o |k hp (k) Ti(7) ej(k)e
P oo 2r T

transfer function , expansion coefficients , polarization tensor P = +, x
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GW - - Cosmic String

Topological defects like cosmic strings give rise to scale invariant GW spectrum.
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GW - - Scalar Induced Secondary GW

Secondary Tensor Spectrum induced by first-order scalar perturbation via mixing.
Can be tuned to generate high amplitude in high frequency regions.
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GW - - PBH-induced GW

PBH-induced GW.
Qg \\ e, \-l- (s? - -9 2
Q. yj dd/_&.! { 92+d2 ‘
x Py (k) Peky) (I +12) , (13)

Baumann (2007)
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GW - - (P)-reheating

Production during inflaton oscillating in FRW background.
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GW - - Graviton Bremmstrahlung

Inflaton radiating away gravitons forming Stochastic GW background.
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History of the Universe - - Again

3 Primordial Gravitational VWaves

Big Bang plus
10743 seconds

Big Bang plus cosmic microwave background

1073° seconds?

Big Bang plus
380000 years

Big Bang plus
14 billion years
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Inflation - - UV completion

Well known story about the inflation scalar field inflaton rolling down a potential with
little or no interactions:

0.25
e
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o ¢
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A;-’ e R End of inflation
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A 0w large-field
Oscillations & decay
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. Little or no interactions
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Inflation - - UV completion

Going to be more well-known in very near future:
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Non-Gaussianity parameters:
flocal — 0.9 + 5.1, fdWilibrivm — o6 4 47, forthosonal — 384 24,
Detection of CMB BB-modes will tell us the scale of inflation.
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Inflation - - UV completion

However huge gap in our knowledge in between the inflation ending & the beginning
of radiation-domination era:

ék g

105 GeV(?)
Inflation

107 GeV 0
Set the stage for
Big Bang nucleosynthesis of
10-3 GeV
Image courtesy M. Amin today
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Inflation - - UV completion

What dominated this era ? New gravity ? New Matter ? Predictions from
UV-completions.

inflation ’
Equation of
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Inflation
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Big Bang nucleosynthesis

Original image courtesy M. Amin
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Inflation - - UV completion

Non-thermal History of the Universe during this era, motivated from string theory,
UV-completion of gravity (See for instance Sinha (2015)):

Thermal History Alternative History
Scale Scale
L Planck Planck

Radiation Phase

10 GeV L tofation __— (instant reheating) Inflation

Scalar Oscillations Dominate———»
eV
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Particles Decay and Reheat ———»

MeV4 BBN

o,
k3
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-t

CMB eV 4 CMB

Probe of this era via PGW.

Watson slides PHENO (2020)
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The idea: Naively

Propagation of Primordial GW generated during Inflation:

.. . k2

h,~j+3Hh,-j+§h,j=167an,JTT, (1)
Solution:
h"(t )_(,) _ Z/ d3k hP(t /;') 6’3(_') eiE.i‘ (2)
y b > (277_)3 I’ Iy b
hp = hi o Ut K), (3)
Ti—pgj

= L-P8 *)
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On the GW sensitivity Map
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On the GW sensitivity Map

The [GeV]
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Impact on PGW spectrum from thermal history of the Universe.
Ringwald (2020)
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Non-standard Cosmology

v

History of the Universe before BBN is unknown.

v

Non-standard cosmology predicts scalar field ¢ and its energy density
dominates in the Early Universe.

v

Its Equation-of-state wy.

v

Modifies the Hubble expansion: H2 oc pg oc a=3(1Hwe).

v

PGW relic for modes coming into the horizon for modes coming
. . . . . _ 9143w
inside the horizon during the ¢-dominated era Qgyw o k 21558

v

Independent parameter £ = ’;—ﬁ,
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On the GW sensitivity Map

—

Radiation
domination like
scenario

Bernal (2019) [Fazollah, GGlI, Florence 2019]
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On the GW sensitivity Map
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On the GW sensitivity Map
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On the GW sensitivity Map

Scanning over the parameter space of [wy, £]:
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Modified Gravity - - Theory

Why modify Einstein gravity ?
» Theoretical: Einstein Gravity is non-renormalizable. Quadratic Extensions makes
it re-normalizable but have ghosts in the theory. Infinite-derivative extensions
make it ghost-free. Theoretical: First-order formalisms. Allowing more

symmetries.
» Phenomenological (UV or early universe): Inflation, dark matter.
» Phenomenological (IR or late time): Dark energy.
All these extensions predict modified expansion history of the universe in terms of

modified Hubble.
We will try to analyse phenomenologically first.
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Modified Gravity

> Modify cosmological expansion (motivated from modified gravity theories)
Hmc(T) = A(T)Her(T), (6)

> Strategy:

T\?

A =140 () &)
T*

where T, is a parameter with dimensions of the temperature, and {n, v} are free

parameters.

T\ T—Tee
A( T) _ 1479 (T*) tanh T for T > Tgayn (8)
1 for T < TBBN

» v labels cosmological models:

1. v = 2 in Randall-Sundrum type Il brane cosmology, v = 1 in kination models,
2. v = 0 in cosmologies with an overall boost of the Hubble expansion rate like in the case
of a large number of additional relativistic degrees of freedom in the thermal plasma
3. v = —1 in scalar-tensor (ST) cosmology,
4. v =2/n—2in f(x) cosmology, with f(x) = x + ax”, with x = R, T where R and T
stand for the scalar curvature and the scalar torsion, respectively.
Catena (2003)
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Regimes

In the range of frequencies f < f, or equivalently for temperatures T < Tre,
cosmology should converge to GR, and therefore before the onset of BBN one has that

a 2
H(a) = Har(a) = Hiare) (22", )
a
where are is the scale factor at T = T,.. The PGW relic density
Pr(k) [ae\* [ H(are)\?
Qew(m0, k) = —— | — —— ) xPr(k), (10)
24 ag Ho

showing the same scale dependence as the primordial tensor power spectrum Pr(k),
as expected from the standard cosmology.
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On the GW sensitivity Map

In the range of frequency fre < f the amplification factor A plays a major role.
v > 0 Case: If v takes positive values, the Hubble rate can be expressed as

a 24v
H(a) = H(ae) (22), (11)
a
which allows to express the PGW relic density
Pr(k)

2 2v
Qcw (70, k) = 242 HE [H(are) k” a3 ] ™7 o Pr(k) kTiv. (12)

2v
The PGW spectrum gains an extra factor k1+7, and is therefore blue-tilted with
respect to the original tensor power spectrum. This enhancement in the PGW
spectrum can alternatively be understood by examining the friction term
a 4 1 2 1

= RS (13)
a 1+3w T 1+vT

With respect to the standard case where the Universe is dominated by radiation
(w =1/3), the friction term is reduced and therefore the PGW spectrum is enhanced
for w > 1/3 or equivalently v > 0.
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On the GW sensitivity Map

v = 0 Case: The Hubble rate is enhanced by a constant factor A =1+ 17. The PGW
spectrum is therefore not distorted, just showing an overall shift of A2

2 4 2
Qaw(m. 0= CL 0 pr(i | 2] e ] pri). (1)
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On the GW sensitivity Map

If v takes negatives values, both for low (f < fie) and high frequencies (f > f.) the
amplification facto_r tends to 1. However, it is interesting to note that A reaches a
maximum at f = f 2 fie given by

A= (72) (15)

The PGW spectrum has the same tilt as the original tensor power spectrum, but
featuring a characteristic bump at k = k = 27 f, with an amplitude given by

30

Conclusions: The effect of the modified cosmologies could give a localized boost, an
overall boost, or a change in the frequency dependence, for v <0, v =0, or v > 0,
respectively. As will be evident from the plots here-after.
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On the GW sensitivity Map

f(Hz)

T L T T T T =
f(H2)

Figure: A (upper panels) and PGW spectrum Qewh? (lower panels) as a function of the frequency
f for T, = T,e =100 GeV and n = 1 (blue dashed lines), n = 10 (green dot-dashed lines),
n = 100 (red dotted lines), and v = —1 (left panels), v = 0 (central panels), v = 1 (right panels).
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On the GW sensitivity Map

ST theories are defined by the action S = Ss1 4+ Sm
1 .
St = o | EVEIFG)RE) - 2(@) g™ 0,00,0 - 2V(O)],  (17)
*
where R is the Ricci scalar, F and Z are arbitrary dimensionless functions of the field

¢ (also dimensionless), and Sy = Sm[¥m, guv] is the matter action (here ¥, denotes
the matter fields that couple to the metric tensor g#,,).
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ST theory

The conformal transformation

guv = Az () g » (18)
together with the change of variables
do.\* _ 3[dInF(9)]* Z(9)
<d¢> - 4[ do ]+2F(¢)’ 49
Ac(p) = FT2(9), (20)
_ Vo)
Vi(os) = 2F2(0) (21)

yield the action in the Einstein frame
SsT = 167 G /d4X*V —8x [R*(g*) - 2g;w u¢*8u¢* - 4V*(¢*)] ) (22)

while Sq = Sm[thm, AZ gupun].
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Plot - - STT

The FLRW cosmological field equations in the Einstein frame

. 2

3223 (2) —nGup. + 8 +2Vu(00), (23)
adx

3? = —47rG*(p* + 3P*) - 2¢i + 2V*(¢*)7 (24)

, . dV,
* 3H* *
s + ¢ +d¢

*

= —4n G aps) (s — 3p+) (25)

where the dots denote derivatives with respect to the time variable t.. Deviations of
ST theories from GR are parameterized by

d |n AC(¢*)
d¢*
where in the limit @« — 0, Ac becomes a constant, the two frames coincide, and

therefore the ST theory reduces to GR.

N = In(a«/a«0) (subindex ‘0’ labels quantities evaluated at present). Relation between
Jordan and Einstein frames are

a(¢) ; (26)

P P

a=A (¢*)a*7 dt =A (¢*)dt*’ P = 3
¢ ¢ AL(64)

(27)
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Final Equations (setting Vi = 0):

H = Acloe) 1+a(6.) G Her (28)
Ac(9+0) T+ a2(gwo) /1 — 1 <dd¢;\7)2
2 d2¢* gi)*
m e Tl alé) 1 -3e] =0, 29)
dN

where w = w(T) varies from 1/3 to —1 after reheating. In particular, during
radiation-domination era, its evolution is given by the variation of the effective number
of degrees of freedom

4 h(T

(1) = 200 (30)

3g(T)
Let us note that w has to be understood as the equation-of-state parameter of the SM
bath. That means that after neutrino decoupling, only photons and
electrons/positrons contribute to w.
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Plot - - STT

0.22

0.20

10° 0001  0.100 10 1000 10
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Figure: Evolution of the equation-of-state parameter w with respect to the photon temperature T.

For reference, w = 1/3 corresponding to radiation domination is also shown.

Funnels at T ~ 0.5 MeV, T ~ 150 MeV, and T ~ 100 GeV correspond to the
neutrino decoupling, QCD crossover, and electroweak crossover.
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Fixing the Transformation

We fix the transformation: Lo
Ac(ps) = e2P %, (31)

which implies that a(¢«) = 8 ¢«. In our numerical study, the ST model is fully set by
fixing 8, the initial value of the field ¢.i, and its derivative (d¢/dN),;,, at a high
temperature T;, = 101 GeV. For the sake of simplicity, here we focus on the case
(d¢/dN),;, = 0. Additionally, the specific choice of Ti, is not important, as long as it
is much higher than the electroweak scale. In fact, as it will be seen, for T > Tgw
the field ¢ does not evolve.
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Evolution of scalar field

1072 1077 0.01 1000.00 10° 10" 1072 10 0.01 1000.00 108 10"
T(GeV) T(GeV)

Figure: Evolution of ¢, (left panel) and d¢. /dN (right panel) with respect to the frequency f, for

the benchmark points [3, ¢xin] = [1, 2] (blue solid line) and [5, 1] (red dotted line). We also took
Tin = 10" GeV and (d¢. /dN);, = 0.

Reduces to GR at late times.
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Figure: Scalar-Tensor Gravity: PGW spectrum, for the benchmark points [3, ¢.in) = [1, 2] (blue
solid line) and [5, 1] (red dotted line), and assuming a scale invariant primordial tensor spectrum
(nt = 0) with a tensor-to-scalar ratio r = 0.07. We also took T;, = 10" GeV and

(dps /dN)in = 0.

High-frequency GW detectors will be able to detect such PGW in presence of
Scalar-Tensor dominated cosmological era.
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E——
Braneworld Cosmology

In the braneworld cosmology, the Friedmann equation for a spatially flat Universe
87 G
szLp(1+B>’ (32)
3 o
where p is the SM energy density and the parameter o is the brane tension which is
related to 5-dimensional Planck mass Mg as
o =967 GM¢. (33)

oo030

Bernal (2020)
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Conclusion: Gravitational Waves

» Huge gap in our understanding between the end of inflation and the beginning of
radiation-dominated era.

» GW detectors will be probing the pre-BBN era. Cosmological history can be
verifiable.

» Primordial GW propagation is modified in non-standard cosmological history.
» Primordial GW propagation is modified in alternative gravity theories.

» Reduced Hubble friction causes enhancement of PGW amplitude and large signal
in the detectors.

> Scalar-tensor cosmological model predicts PGW at high-frequency detectors.

» Braneworld predicts signals even at lower frequency pulsar timing array GW
detectors as well.

» Joint analysis from various detectors will be able to distinguish between various
non-standard & modified cosmological histories.

» GW detectors are probing the theory of gravity at larger frequencies, which
corresponds to tests of gravity at smaller scales.
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NanoGrav GW Detection

NanoGrav recently detected GW events. Many cosmic sources have been proposed.
The GW spectrum nicely fits cosmic strings origin hypothesis.
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Figurc 1. Cosmic string spectra (solid bluc curves) together with our fitted power laws for Cp =
4x 107", und Gu = 1071°. The green dashed lines show the resulls of wumnerically fitting the curves,
whale the orange hmes result from the symple logarithmic derwative m Eq. (9.3). The than grey hnes
indicate the frequency range of interest that was used in the NANOGrau linear fit
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Ellis (2020)
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