Leading Hadronisation Corrections

Ryan Wood
University of Sussex

29th March 2021

Aim:

Introduce a new method to compute leading hadronisation corrections to two-jet event shapes in $e^{+} e^{-}$annihilation.

Hadronisation provides a shift in perturbative event-shape distributions:

Ansatz:

The leading hardonisation corrections are due to the emission of a non-perturbative gluon with momentum k :

For a general final-state observable, V , in in $e^{+} e^{-}$annihilation, the full integrated cross-section is given by:

$$
\Sigma(v)=\Sigma_{\mathrm{PT}}(v)+\delta \Sigma_{\mathrm{NP}}(v)
$$

where:

$$
\Sigma_{\mathrm{PT}}(v)=\int d \mathcal{Z}\left[\{\tilde{p}\},\left\{k_{i}\right\}\right] \Theta\left(v-V\left(\{\tilde{p}\},\left\{k_{i}\right\}\right)\right)
$$

and:

$$
\begin{aligned}
\delta \Sigma_{\mathrm{NP}}= & \int d \mathcal{Z}\left[\{\tilde{p}\},\left\{k_{i}\right\}\right] \int[d k] M_{\mathrm{NP}}^{2}(k) \\
& \times\left[\Theta\left(v-V\left(\{\tilde{p}\}, k,\left\{k_{i}\right\}\right)\right)-\Theta\left(v-V\left(\{\tilde{p}\},\left\{k_{i}\right\}\right)\right)\right]
\end{aligned}
$$

We find that:

$$
\begin{aligned}
\delta \Sigma_{\mathrm{NP}} & =-\int d \mathcal{Z}\left[\{\tilde{p}\},\left\{k_{i}\right\}\right] \int[d k] M_{\mathrm{NP}}^{2}(k) \delta V_{\mathrm{NP}}\left(\{\tilde{p}\}, k,\left\{k_{i}\right\}\right) \delta\left(v-V\left(\{\tilde{p}\},\left\{k_{i}\right\}\right)\right. \\
& =-\left\langle\delta V_{\mathrm{NP}}\right\rangle \frac{d \Sigma_{\mathrm{PT}}}{d v}
\end{aligned}
$$

with:

$$
\delta V_{\mathrm{NP}}\left(\{\tilde{p}\}, k,\left\{k_{i}\right\}\right) \equiv V\left(\{\tilde{p}\}, k,\left\{k_{i}\right\}\right)-V\left(\{\tilde{p}\},\left\{k_{i}\right\}\right)
$$

and:
$\left\langle\delta V_{\mathrm{NP}}\right\rangle \equiv \frac{\int[d k] M_{\mathrm{NP}}^{2}(k) \int d \mathcal{Z}\left[\{\tilde{p}\},\left\{k_{i}\right\}\right] \delta V_{\mathrm{NP}}\left(\{\tilde{p}\}, k,\left\{k_{i}\right\}\right) \delta\left(v-V\left(\{\tilde{p}\},\left\{k_{i}\right\}\right)\right.}{\int d \mathcal{Z}\left[\{\tilde{p}\},\left\{k_{i}\right\}\right] \delta\left(v-V\left(\{\tilde{p}\},\left\{k_{i}\right\}\right)\right.}$
Therefore:

$$
\begin{aligned}
\Sigma(v) & =\Sigma_{\mathrm{PT}}(v)-\left\langle\delta V_{\mathrm{NP}}\right\rangle \frac{d \Sigma_{\mathrm{PT}}}{d v} \\
& =\Sigma_{\mathrm{PT}}\left(v-\left\langle\delta V_{\mathrm{NP}}\right\rangle\right)
\end{aligned}
$$

We are able to make use of 2 key points:

Soft and Collinear Emissions:

$$
\delta V_{\mathrm{NP}}\left(\{\tilde{p}\}, k,\left\{k_{i}\right\}\right)=\frac{k_{t}}{Q} f_{\mathrm{V}}\left(\eta, \phi,\left\{k_{i}\right\}\right)
$$

Local Parton Hadron Duality:

$$
[d k] M_{\mathrm{NP}}^{2}(k) \sim \frac{d k_{t}}{k_{t}} M_{\mathrm{NP}}^{2}\left(k_{t}\right) d \eta \frac{d \phi}{2 \pi}
$$

We therefore find that:

$$
\left\langle\delta V_{\mathrm{NP}}\right\rangle=\frac{\left\langle k_{t}\right\rangle_{\mathrm{NP}}}{Q} c_{V}
$$

where:

$$
\left\langle k_{t}\right\rangle_{\mathrm{NP}}=\int d k_{t} M_{\mathrm{NP}}^{2}\left(k_{t}\right)
$$

and:

$$
c_{V} \equiv \frac{\int d \eta \frac{d \phi}{2 \pi} \int d \mathcal{Z}_{\mathrm{sc}}\left[\{\tilde{p}\},\left\{k_{i}\right\}\right] f_{\mathrm{V}}\left(\eta, \phi,\left\{k_{i}\right\}\right) \delta\left(1-\frac{V_{\mathrm{sc}}\left\{\{\tilde{p}\},\left\{k_{i}\right\}\right)}{v}\right)}{\int d \mathcal{Z}_{\mathrm{sc}}\left[\{\tilde{p}\},\left\{k_{i}\right\}\right] \delta\left(1-\frac{\left.V_{\mathrm{sc}}\{\tilde{p}\},\left\{k_{i}\right\}\right)}{v}\right)}
$$

with:

$$
\int d \mathcal{Z}_{\mathrm{sc}}\left[\{\tilde{p}\},\left\{k_{i}\right\}\right] G\left(\left\{k_{i}\right\}\right)=e^{-\int[d k] M^{2}(k)} \sum_{n} \prod_{i=1}^{n} \int\left[d k_{i}\right] M^{2}\left(k_{i}\right) G\left(k_{1}, \ldots, k_{n}\right)
$$

