Normalising Flows as Trivialising Maps for Lattice ¢* Theory

Joe Marsh Rossney

Path integrals - correlations
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Non-perturbative problems:

e Confinement mechanism
e Origin of mass
(Reasonably important)

Lattice Field Theory

o Discretise space-time onto lattice A
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Valid probability distribution if e~%(?) real & positive

Example: ¢* theory ind =2 (a := 1)
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A — oo is the Ising model



Example: two point correlation
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How to generate samples?
Stochastic process whose limiting distribution is e~
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Get (wrong kind of) correlations ¢® ~ ¢(t+1)

Errors ~ effective sample size
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It gets worse...
Tint ™~ gz

"Critical slowing down" towards continuum limit

Generative models
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https://thispersondoesnotexist.com/ (GAN)

Joint (correlated) probability distributions which we can model (fit training examples)

Generate new "synthetic" samples ~ py(¢)

Other uses of generative models

As classifiers

Data augmentation (without storage issues)
Data interpolation

Procedural generation (e.g. graphics)

Recent idea (Albergo et al. 1904.12072)
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Independent proposals - rejections only source of autocorrelation

Corrects for "mistakes" in model (underfitting)

Candidate models

e Autoregresive models (expensive)
po(9) = [[ @’ 15 <)
o Variational autoencoders (intractable)

Po(9) = /deo(z)r(z)dz
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o GANs p4(¢) = ??? (implicit)
» Normalising flows....

Normalising flows

Model theory as bijection ¢ = fy(z) from uncorrelated latent variables
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f;l is an (approximate) trivialising map

Correlations - weights and biases (6) of neural networks (IN)

Training (fit parameteric model Sy)
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Doesn't require existing training examples!

Example of trained model



r(z) Po(¢) p(9)

Field variables

— Affine—» —Affine—>» —Spline>» —MCMC—

Correlation

Does it work?

« Want high acceptance rate E; 4.5, [A(¢ — ¢')]
» Integrated autocorrelation time 7y = £
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Our models learn much more efficient representations than original...

-
________ o
0.81 o I
.-
@ T~ T
R )
- \ °
% 0.6 1 .
+— e,
=9 ) °
c
<€ 0.4 . ’
‘\\\ o
-¢- Af—RQS N
0.2{ & 7xaf °
--&- TxAff (not equivar) e
g 8 10 12 14

Lattice length (L)

...but still poor scaling out-of-the-box.

Reasons to get excited

e Large improvements from finding efficient representation
e Highly parallelisable approach (large batch training)



e Low memory requirements (shallow neural networks)

Reasons to go back to sleep

e Scaling sucks
o ¢*is'easy'

Next steps

o Scaling: exploit symmetries to reduce redundancy

e Scaling: hierarchical / multigrid approaches

 Physics: non-trivial topology e.g. CPY~* models

e Physics: incorporate ideas from machine-learned RG

e Physics: test recently developed algorithms for gauge fields

The bigger picture

Lattice field theories Real data
Local interactions
Exact symmetries ~
Renormalisable ~

Correlations over multiple scales

Emergent phenomena

Can we use LFT as a test bed where we learn how to efficiently encode these properties
into machine learning models?

Thanks
Questions? ¢«

Joe.Marsh-Rossney@ed.ac.uk



mailto:Joe.Marsh-Rossney@ed.ac.uk

