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Path integrals → correlations

Non-perturbative problems:

Confinement mechanism
Origin of mass 
Reasonably important)

Lattice Field Theory

Wick rotate , 
Discretise space-time onto lattice 

Valid probability distribution if  real & positive

Example:  theory in  ( )

 is the Ising model
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Example: two point correlation

How to generate samples? 
Stochastic process whose limiting distribution is 

Get (wrong kind of) correlations 

Errors ~ effective sample size

It gets worse...

"Critical slowing down" towards continuum limit 🤦

Generative models
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https://thispersondoesnotexist.com/ GAN

Joint (correlated) probability distributions which we can model (fit training examples)

Generate new "synthetic" samples 

Other uses of generative models

As classifiers
Data augmentation (without storage issues)
Data interpolation
Procedural generation (e.g. graphics)

Recent idea (Albergo et al. 1904.12072

Independent proposals → rejections only source of autocorrelation

Corrects for "mistakes" in model (underfitting)

Candidate models

Autoregresive models (expensive) 

Variational autoencoders (intractable) 
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GANs  ??? (implicit)
Normalising flows....

Normalising flows

Model theory as bijection  from uncorrelated latent variables

 is an (approximate) trivialising map

Correlations → weights and biases ( ) of neural networks ( )

Training (fit parameteric model )

Doesn't require existing training examples!

Example of trained model
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Does it work?

Want high acceptance rate 
Integrated autocorrelation time 

Eϕ,ϕ′∼~pθ[A(ϕ → ϕ′)]

τint ≁ ξ



Our models learn much more efficient representations than original...

...but still poor scaling out-of-the-box.

Reasons to get excited

Large improvements from finding efficient representation
Highly parallelisable approach (large batch training)



Low memory requirements (shallow neural networks)

Reasons to go back to sleep

Scaling sucks
 is 'easy'

Next steps

Scaling: exploit symmetries to reduce redundancy
Scaling: hierarchical / multigrid approaches
Physics: non-trivial topology e.g.  models
Physics: incorporate ideas from machine-learned RG
Physics: test recently developed algorithms for gauge fields

The bigger picture

Lattice field theories Real data

Local interactions ☑

Exact symmetries ~

Renormalisable ~

Correlations over multiple scales ☑

Emergent phenomena ☑

Can we use LFT as a test bed where we learn how to efficiently encode these properties
into machine learning models?

Thanks

Questions? 👀
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