Southampton

Background

- The κs
- $pp
 ightarrow th_i j$
- Data
- Summary & outlook
- Citations and Bibliography

Use of the Kappa Formulation to Achieve a 2HDM Model Independent Scanner

University of Southampton

Ciara Byers

Supervisor: prof. Stefano Moretti

Project Aims: To investigate the possibility of using kappa formulation to identify, model-type independently, regions with maximal variation between SM σ and 2HDM σ

Southampton Background

Background

The κs

 $pp
ightarrow th_i j$

Data

Summary & outlook

Citations and Bibliography

Table: 1: SM Higgs sector vs 2HDM Higgs sector

SM	One complex doublet $\langle \Phi_{1} \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \nu \end{pmatrix}$	One VEV	One Higgs boson, h
2HDM	Two complex doublets $\langle \Phi_{1} \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \nu_{1} \end{pmatrix}$, $\langle \Phi_{1} \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \nu_{2} \end{pmatrix}$	Two VEVs	Five Higgs bosons, h, H, A, H+, H-

Table: 2: Higgs properties

Higgs	CP State	EW Charge	Particle type
h	Even	0	Scalar
Н	Even	0	Scalar
Α	Odd	0	Scalar
H^{\pm}	Undefined	± 1	Mixed Scalar/Pseudo

Southampton Background

Background

- The κs
- $pp
 ightarrow th_i j$
- Data
- Summary & outlook
- Citations and Bibliography

Table: 3: Higgs doublet couplings to fermions

Туре	UR	DR	LR
Type I	Φ2	Φ2	Φ2
Type II	Φ2	Φ_1	Φ_1
Type III	Φ_2, Φ_1	Φ_1, Φ_2	Φ_2, Φ_1
Type IV	Φ_2, Φ_1	Φ_2, Φ_1	Φ_1, Φ_2

There are then four types of 2HDM, each couple to the SM fermions differently, as shown in table 3.

Southampton What are the κs ?

Background

The κs

 $pp \rightarrow th_i j$

Data

Summary & outlook

Citations and Bibliography The κs are a re-scaling of the SM couplings. Two important variables for the κs expressions: the mixing angle α and β which are defined by the following:

$$\cos \alpha = \sqrt{\frac{M_{11}^2 - M_h^2}{M_H^2 - M_h^2}}$$
 $\tan \beta = \frac{\nu_2}{\nu_1}$
(1)

Southampton κ Expressions

Background

The κs

 $pp \rightarrow th_i j$

Data

Summary & outlook

Citations and Bibliography

Each 2HDM type has a different expression due to the differing couplings, as proof of concept we focus on type-II and use the definition for the κs (that are relevant to us) from The Higgs Hunter's Guide [1] which are:

d

Non-existant

 σ

Low

Potentially

significantly

higher

Southampton

$pp ightarrow th_i j$ Why is this process interesting?

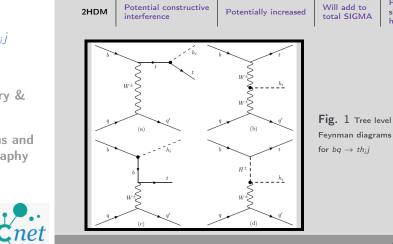
a & b interference

Deconstructive

interference

SM

Background


The κs

 $pp
ightarrow th_i j$

Data

Summary & outlook

Citations and Bibliography

С

Strongly suppressed

Southampton Figure 1

σ calculations from $sin(\beta - \alpha)$, $tan\beta$

- Background
- The κs
- $pp
 ightarrow th_i j$

Data

- Summary & outlook
- Citations and Bibliography
- DISCnet

- MadGraph [2] was used with a 2HDM type-II model to calculate the cross-section for the process $bq \rightarrow th_i j$, w.r.t $sin(\beta \alpha)$ and $tan(\beta)$.
- Magellan, (incorporates both Higgsbounds and Higgsignals as well as 2HDMC), to be used to apply experimental constraints.

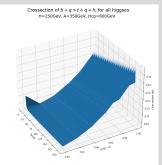


Fig. 1 Cross-section, σ for process $bq \rightarrow th_i j$, w.r.t $sin(\beta - \alpha)$ and $tan(\beta)$

Southampton Figure 2

 $\kappa_{bb} \& \kappa_{tt}$ calculations from $sin(\beta - \alpha), tan\beta$

- Background
- The κs
- $pp
 ightarrow th_i j$

Data

- Summary & outlook
- Citations and Bibliography

- κs were calculated from the values of sin(α β), tan(β) and σ
- plan to use Feynrules to create κ input model

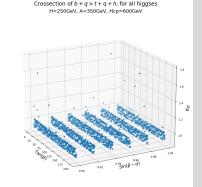


Fig. 2 Cross-section, σ for process $bq \rightarrow th_i j$, w.r.t κ_{bb} and κ_{tt}

Southampton Figure 3

σ plotted against κ_{tt}, κ_{bb}

Background

The κs

 $pp
ightarrow th_i j$

Data

Summary & outlook

Citations and Bibliography

DISCnet

- We plotted the cross-section against the *κs* to see their relation
- With planned κ input model a plot like this would relate to all model types

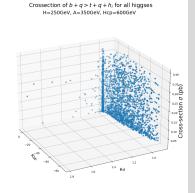


Fig. 3 Cross-section, σ for process $bq \rightarrow th_i j$, w.r.t κ_{bb} and κ_{tt}

Southampton Summary & outlook

Background

- The κs
- $pp
 ightarrow th_i j$
- Data

Summary & outlook

Citations and Bibliography

- Investigating relationship between κ values and σ via $tan(\beta)$ and $sin(\beta \alpha)$
- Begun creating a toolbox for automating the running of MadGraph via the κs directly.
- Plan to explore the parameter space and identify regions via κs with highest σ ⇒ corresponds to different α & β in each type of 2HDM ⇒ can search in a 'model-independent' fashion.
- $bg \rightarrow tW^-h_i$
- $q\bar{q}'
 ightarrow t\bar{b}h_i$

Thank-you for your attention

Background

- The κs
- $pp \rightarrow th_i j$
- Data
- Summary & outlook
- Citations and Bibliography

- J.F. Gunion, H.E. Haber, G. Kane and S. Dawson *The Higgs Hunter's Guide.* Perseus Books, 1990. ISBN: 0-7382-0305-X
- [2] J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. arXiv:1804.10017 [hep-ph].