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From a pheno perspective finding the Higgs was “easy”…

•Higgs at 125 GeV allowed for very 
clean discovery in γγ & 4l channels  

•Bump hunting: little to no 
theoretical input needed. 
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…understanding the Higgs and its properties is tough!

Is the S(125 GeV) really the SM Higgs?
•CP properties? Is there a small CP-odd admixture?
•Precise couplings with vector-bosons/fermions as in SM?
•what is the Higgs width? Is there a significant invisible decay?
•only one Higgs doublet?
•what is the Higgs potential? self-coupling?

➡ precision is key!
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The motivation for BSM searches are as compelling as ever

EW vacuum stability

Dark Matter

GUT unification

Neutrino masses

Hierarchy problem  

[Degrassi et al. ’13]

I. Gogoladze et al. / Physics Letters B 690 (2010) 495–500 497

Fig. 1. Gauge coupling evolution in the SM (left panel) and in the extended SM (right panel). The vectorlike mass is set equal to 500 GeV and the gauge coupling unification
scale is MGUT ≃ 3× 1016 GeV.

The RGE for the Yukawa coupling κ2 is obtained by making the re-
placement κ1 ↔ κ2 in Eqs. (13)–(15). This follows from the various
quantum numbers listed in Eq. (1). As previously mentioned, we
are neglecting mixing terms involving the new vectorlike particles
and the SM ones.

The RGE for the Higgs boson quartic coupling is given by [10]
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We calculate the Higgs boson pole mass mH from the running
Higgs quartic coupling using the one-loop matching condition [13].

According to Eq. (2) there are additional contributions to the
one- and two-loop beta function for λ which are proportional to
the κ1 and κ2 couplings. At one loop we have
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We next analyze the two-loop RGEs numerically and show how
the vacuum stability and perturbativity bounds on the SM Higgs
boson mass are altered in the presence of the new TeV scale vec-
torlike particles.

Before proceeding further let us note that we will identify
MGUT ∼3×1016 GeV with the UV cutoff scale. This is partially mo-
tivated by the fact that as far as possible, we wish to keep our dis-
cussion of the Higgs mass bounds independent of any specific un-
derlying GUT. Moreover, considerations based on black hole physics
reveal the presence of an ultraviolet cutoff of order MP /

√
N , where

N denotes the number of degrees of freedom of the underlying
theory [14]. In some GUTS such as SO(10) [15],

√
N can easily be

of order 10–100, thus bringing the UV cutoff scale closer to MGUT.
We define the vacuum stability bound as the lowest Higgs

boson mass obtained from the running of the Higgs quartic cou-
pling which satisfies the condition λ(µ) ! 0, for any scale between
MZ " µ " MGUT. On the other hand, the perturbativity bound is
defined as the highest Higgs boson mass obtained from the run-
ning of the Higgs quartic coupling with the condition λ(µ) " 4π
for any scale between MZ " µ " MGUT.

In Fig. 1, we present the evolution of the gauge couplings for
the SM (left panel) and for the extended SM (ESM) containing the
vectorlike fermions Q + Q̄ +D+ D̄ (right panel). As noted in [5], in
ESM model with new vectorlike fermions weighing a 100 GeV or
so, one can realize essentially perfect gauge coupling unification
at some scale MGUT. Furthermore, if we require gauge coupling
unification at a level of around 1% or so, then the new vector-
like fermion mass should weigh less than a TeV. For definiteness,
we set MF = 500 GeV in our calculation. In this case the SM gauge
couplings are unified at MGUT ≃ 3 × 1016 GeV. As seen in Fig. 1,
the new vectorlike particles help achieve unification by altering
the slopes of the three gauge couplings. In particular, the slope of
α3 is changed and it becomes larger at MGUT in comparison to the
SM case. The evolution of the top Yukawa coupling is also affected
and its value is somewhat smaller at MGUT.

In Fig. 2 we show how the evolution of the two-loop top
Yukawa coupling in ESM with MF = 500 GeV. The red dashed
line stands for the SM case, and the blue solid line corresponds
to the ESM with κi = 0. We also present in Fig. 2 the evolution
of the Higgs quartic coupling. The red dashed line corresponds
to the vacuum stability bound for Higgs quartic coupling in the

Chapter 2 Theoretical framework 15

a scalar this dependance is quadratic (at most logarithmic for all other parameters) and
becomes manifest when calculating higher-order corrections to the (squared) bare Higgs
mass (m0

h)
2. These read at the one-loop level

m2
h = (m0

h)
2 +

3Λ2
UV

8πv2
(m2

h + 2m2
W +m2

Z − 4m2
t ) . (2.24)

Here, the loop-momenta in the dominant contributions due to Higgs–self-interactions,
Higgs-couplings with massive gauge bosons and the (heavy) top-quark, are all cut-off at
the scale ΛUV. Clearly, a cut-off scale of the order of ΛPlanck or ΛGUT either forces the
Higgs mass and/or the EW scale to be of the same high scale (which is not observed),
or requires an unnatural amount of finetuning of independent parameters at each order
of perturbation theory. Due to the unnatural hierarchy between the EW scale and the
Planck scale this problem is also known as the hierarchy problem.

Many different models have been proposed to solve a number of these shortcomings. In this
thesis we want to concentrate on the framework of SUSY as a compelling solution to the
problems of dark matter, vacuum stability, unification and the hierarchy problems. In the
following we introduce the concept of SUSY and highlight these solutions.

2.2 Supersymmetry as a solution

In this section we first introduce the concept of supersymmetry and state its solutions to
some of the problems of the Standard Model, raised in the previous section. Afterwards we
discuses the MSSM and its particle spectrum. Finally, a short introduction to the unavoidable
breaking of SUSY is given. In this section we avoid detailed theoretical discussions, where we
refer to [62–64], on which this section is based on.

2.2.1 Motivation

From a theoretical point of view the concept of supersymmetry can be introduced in a very
elegant way: it is the only symmetry extending the Poincaré group in a non-trivial way.

According to the Coleman-Mandula theorem [65], any combination of the space-time Poincaré
group with an internal symmetry group can only be built out of direct products of commuting
operators. However, this no-go theorem can be, according to the Haag-Lopuszański-Sohnius
theorem [12], circumvented for symmetries with anti-commuting operators. The resulting
fermionic operator QA and its conjugate Q̄Ȧ are the generators of supersymmetry transfor-
mations. They commute with any internal gauge group and in a two-component Weyl spinor
notation [63] they obey the following algebra

{QA, QB} = {Q̄Ȧ, Q̄Ḃ} = 0 , (2.25)

{QA, Q̄Ḃ} = 2(σµ)AḂPµ .

[Planck ’15]

[KamLAND ‘5]
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Direct searches for new physics: overwhelming SM backgrounds 

6
→Theory precision is key to harness full potential of LHC data!

e.g.
DM

DM
 invisible in  
detectors

g

vs.

few percent!

Thanks to state-of-the-art  
theory predictions+uncertainties 
for SM backgrounds
[JML, et.al., ‘17]

50 100 150 200 250 300
0

5

10

15

20

25

30

35

mχ1
0 [GeV]

Δ
M

[G
eV

]

LHC13 5σ contour (M1<0)

L
E
P

XENON1T

LHC13 3 ab -1
(3%)

LHC13 3 ab-1(5%)

Figure 13. Exclusion (left) and discovery (right) contour lines for the 13 TeV LHC at the end of
the LHC Run2 (light red region) and of the HL-LHC (light blue region) assuming S/B>3%. For
the latter case also the case S/B>5% is shown. The region excluded by LUX and the projected
exclusion by XENON1T are also shown, together with the LEP limit on the �̃±

1 mass. M1 < �µ is
considered here.

for the exploration of the NSUSY parameter space.

5 Conclusions

In this paper we have explored the complementary potential of the Large Hadron Col-

lider and underground experiments to probe Dark Matter (DM) in the Natural Super-

symmetry (NSUSY) scenario. This study, which combines searches from di↵erent kinds

of experiments, has to be done in the context of a specific model, as (model-independent)

E↵ective Theory (EFT) approaches are very limited in scope, see e.g. the discussion in

Refs. [115, 116]. In particular the EFT approach is not applicable for well motivated

NSUSY scenario, which we study here, where DM has direct couplings to Standard Model

electroweak (EW) gauge bosons and the Higgs.

Current limits on simple SUSY scenarios are at the TeV range, in clear tension with

naturalness arguments and hence with the motivation for introducing SUSY in the first

place. A possible explanation for this situation is that the manifestation of SUSY is not

as simple as one expects, but there is more complexity in the structure of SUSY at high-

energies. Notwithstanding, one would still expect that the particles more directly related

to the tuning of the EW scale remain light in the spectrum. This leads to a generic

expectation that DM in NSUSY should have a sizeable Higgsino component.

While being theoretically attractive this scenario also represents a clear example of

how colliders and underground experiments can complement each other. Indeed, while

– 20 –

mDM

[Barducci, Sanz, et.al, ’15]
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Figure 4: Measured distributions of precoil
T for the precoil

T > 200 GeV selection compared to the SM predictions in the
signal region. The latter are normalized with normalization factors as determined by the global fit that considers
exclusive precoil

T control regions. For illustration purposes, the distributions of examples of Dark Energy (DE), SUSY,
and WIMP scenarios are included. The error band in the ratio shown in the lower panel includes both the statistical
and systematic uncertainties in the background predictions. Events with values beyond the range of the histogram are
included in the last bin.

already mentioned, inclusive regions with minimum precoil
T thresholds are used to set model-independent

exclusion limits, and the exclusive regions are used for the interpretation of the results within di�erent
models of new physics. For the latter, the presence of a slight excess of events at high precoil

T limits the
reach of the obtained observed limits, mostly for those models in which the expected signal would be
accumulating at the tail of the precoil

T distribution.

8.1 Model-independent exclusion limits

Results obtained in inclusive precoil
T regions are translated into model-independent observed and expected

95% CL upper limits on the visible cross section, defined as the product of the production cross section,
acceptance and e�ciency � ⇥ A ⇥ ✏ . The limits are extracted from the ratio between the 95% CL upper
limit on the number of signal events and the integrated luminosity, taking into consideration the systematic
uncertainties in the SM backgrounds and the uncertainty in the integrated luminosity. A likelihood fit is
performed separately for each of the inclusive regions IM0–IM12. The results are collected in Table 7.
Values of � ⇥ A ⇥ ✏ above 861 fb (for IM0) and above 0.3 fb (for IM12) are excluded at 95% CL.

20
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Indirect searches: disentangling very small effects

7

→Theory precision opens the door to new analysis strategies!
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Figure 5: Example Feynman diagrams for pp ! h+ jet involving supersymmetric particles.

In addition, there are diagrams like those in Fig. 1, but with the quarks in the loops replaced

by squarks.

for instance Ref. [44]. A large At leads to a large trilinear scalar coupling / hAtt̃Lt̃⇤R. If

all three fields aquire vacuum expectation values, the potential can have a deep charge- and

color-breaking minimum, separated only by a relatively low potential barrier from the usual

electroweak vacuum. A rough but conservative estimate of the vacuum stability condition

is given by [45,46]

A2
t
+ 3µ2 < a ·

�
m2

t̃1
+m2

t̃2

�
, (4.20)

with a ⇡ 3. This vacuum stability condition is shown in Fig. 6, colored in grey. We further

identify the regions of parameter space which are excluded because the soft masses MQ3 ,MU3

are not real (orange).

Direct limits from ATLAS and CMS significantly constrain the allowed parameter space.

An exhaustive re-analysis of the spectra and decays of all possible light and mixed stops

is, however, beyond the scope of our paper. While current experimental searches exclude

a significant part of the stop parameter space, these limits soften considerably for larger

LSP masses, close to kinematic degeneracies and in the presence of more complicated decay

chains, or in the absence of the traditional missing ET signatures (see e.g. Refs. [47–50]). In

particular, light stops with mt̃1
�m�̃0 ⇡ mt are still compatible with data [51,52]. It is there-

fore interesting to ask whether we can be sensitive to light and mixed stops independently of

the assumptions on their decays and even if their contribution cancels in the inclusive rate.

We calculated the relevant Feynman diagrams involving the stops using FeynArts-3.7 [53]

16

vs.

regime to probe the spectrum of top partners in composite Higgs models, whereas Section 4

looks at the h + jet process as a way to probe light stops in supersymmetric extensions

of the SM. Finally, Section 5 collects our conclusions. We also include an Appendix, where

formulae for the pp ! h+jet cross section mediated by CP -violating couplings are reported.

2 Analysis of pp ! h + jet

At the parton level, three subprocesses contribute to the pp ! h+jet cross section: these are

gg, qg, qq̄ ! h+ jet.5 The expressions of the SM matrix elements for gg ! hg and qq̄ ! hg,

mediated by quark loops, were first calculated at LO in QCD in Ref. [23] and shortly after

with a di↵erent notation in Ref. [24], which we used for our calculations. The matrix element

for the qg ! hq process is obtained from the one of qq̄ ! hg by crossing. Some of the

Feynman diagrams contributing to pp ! h+ jet are shown in Fig. 1. When the Lagrangian

in Eq. (1.3) is considered, the top contribution to the amplitudes is simply given by the SM

one rescaled by the modified coupling t.6 On the other hand, the contribution of heavy

g

g

g

h

t

q q

g h
t

q

q̄

g

h

t

g

g

g

h

Figure 1: Example Feynman diagrams for pp ! h+jet in the SM and with the contact term.

top partners in the loop is described by the e↵ective interaction parameterized by g, which

generates Feynman diagrams such as the lower-right one in Fig. 1. Roughly speaking, this

description is reliable as long as the mass of the heavy states is larger than the transverse

5
For brevity, we denote the sum qg + q̄g by qg.

6
In the SM, the e↵ect of including the bottom quark contribution in addition to the dominant one due to

the top is only of a few percent, if the cut on the transverse momentum is larger than 50GeV [22,25,26]. Since

we are interested in larger Higgs transverse momenta, we consistently neglect the bottom in our calculation.

4

e.g.

(a) (b)

Figure 3: Higgs transverse-momentum spectrum in the SM (black, solid) compared to separate
variations of the dimension-six operators for (a) 0GeV pT  400GeV and (b) 400GeV pT 
800GeV. The lower frame shows the ratio with respect to the SM prediction. The shaded band in
the ratio indicates the uncertainty due to scale variations. See text for more details.
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Figure 4: Higgs transverse-momentum spectrum in the SM (black, solid) compared to simultaneous
variations of ct and cg for (a) 0GeV pT  400GeV and (b) 400GeV pT  800GeV. The lower
frame shows the ratio with respect to the SM prediction. The shaded band in the ratio indicates
the uncertainty due to scale variations. See text for more details.
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[Grazzini et. al., 2016]

Higgs-pT

SM New physics Look for BSM effects in small deviations from SM predictions:
 → Higgs processes natural place to look at
 → very good control on theory necessary!
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next-to-leading order corrections
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Figure 3: Higgs transverse-momentum spectrum in the SM (black, solid) compared to separate
variations of the dimension-six operators for (a) 0GeV pT  400GeV and (b) 400GeV pT 
800GeV. The lower frame shows the ratio with respect to the SM prediction. The shaded band in
the ratio indicates the uncertainty due to scale variations. See text for more details.
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frame shows the ratio with respect to the SM prediction. The shaded band in the ratio indicates
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Perturbative expansion for diboson production

d� = d�LO + ↵S d�NLO + ↵EW d�NLOEW

+↵2

S d�NNLO + ↵2

EW
d�NNLOEW + ↵S↵EW d�NNLOQCDxEW

NLO QCD

NNLO QCD

+ …+↵3

S d�NNLO

N3LO QCD

O(100%)  
 
 

O(10%) 
 
 

O(1%)

Figure 1: ZZ cross section at LO (dots), NLO (dashes), NLO+gg (dot dashes) and NNLO (solid)
as a function of

√
s. The ATLAS and CMS experimental results at

√
s = 7 TeV and

√
s = 8

TeV are also shown for comparison [3–6]. The lower panel shows the NNLO and NLO+gg results
normalized to the NLO prediction.

the LO result by about 45%. The impact of NNLO corrections with respect to the NLO result
ranges from 11% (

√
s = 7 TeV) to 17% (

√
s = 14 TeV). Using NNLO PDFs throughout, the gluon

fusion contribution provides between 58% and 62% of the full NNLO correction. We find that
the one-loop diagrams involving a top quark provide a contribution which is only few per mille
of the full NNLO cross section. Since the quantitative impact of the two-loop diagrams with a
light fermion loop is extremely small, we estimate that the neglected two-loop diagrams involving
a top-quark contribute well below the per mille level.

The theoretical predictions can be compared to the ATLAS and CMS measurements [3–6]
carried out at

√
s = 7 TeV and

√
s = 8 TeV, which are also shown in the plot. We see that

the experimental uncertainties are still relatively large and that the ATLAS and CMS results
are compatible with both the NLO and NNLO predictions. The only exception is the ATLAS
measurement at

√
s = 8 TeV [5], which seems to prefer a lower cross section. The comparison

between our predictions and the experimental results, however, should be interpreted with care.
First, we point out that the LHC experiments obtain their ZZ production cross section from
four-lepton production using an interval in dilepton invariant masses around the Z boson mass,
thus not including some contribution from far off-shell Z bosons. Then, EW corrections are not
included in our calculation, and are expected to provide a negative contribution to the inclusive
cross section [21].

In Table 1 we report the LO, NLO and NNLO cross sections and scale uncertainties, evaluated
by varying µR and µF simultaneously and independently in the range 0.5mZ < µR, µF < 2mZ

with the constraint 0.5 < µF/µR < 2. From Table 1 we see that the scale uncertainties are about
±3% at NLO and remain of the same order at NNLO. We also see that the NLO scale uncertainty

3
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Figure 3: Renormalisation and factorisation scale dependence of the ZZ cross section at LO, NLO
and NNLO for the central scale choice µR = µF = mZ and with NNPDF-3.0 PDFs. We also show
the NNLO result without the gluon fusion contributions. The thickness of the bands shows the vari-
ation in the cross section due to factorisation scale while the slope shows the renormalisation scale
dependence. The scale uncertainty was obtained by varying the renormalisation and factorisation
scales in the range 0.5mZ < µR, µF < 2mZ with the constraint 0.5 < µF /µR < 2.

the renormalisation scale dependence. To show that this e↵ect can be attributed to the

gluon fusion channel opening up at NNLO, we also show the NNLO result excluding this

channel, leading to an improved convergence of the perturbative expansion.

The appearance of new channels that open up at NNLO and their importance in

the various kinematic regions can be studied by considering di↵erential results. Due to

the observed mild power corrections in this process we chose to fix the value of the 0-

jettiness slicing parameter to T
cut
0

= 10�2 GeV for all our histograms. In Fig. 4 we present

the invariant mass of the ZZ system and the average transverse momentum distribution

hpT,Zi of any Z-boson, defined as hpT,Zi = (|pZ1
T |+ |pZ2

T |)/2. We also present results for the

loop-induced gg ! ZZ channel.

In Fig. 4a we show our results for the ZZ invariant mass. In the first and second

sub-panels we show the e↵ect of the NLO and NNLO corrections, respectively. We observe

in the first sub-panel large NLO QCD corrections which vary between 40% at low mZZ

and 60% at high mZZ , and change both the shape and normalisation of the predicted

cross section with respect to the LO result. Going to NNLO we observe an approximately

flat increase of the cross section of about 18% with respect to the NLO result, where

approximately 60% of this e↵ect comes from the loop-induced gg ! ZZ channel, which

is outside the scale uncertainty band of the NLO prediction. Similarly, in the transverse

momentum distribution (Fig. 4b), we observe large NLO corrections of approximately 30%

at low hpT,Zi, which can reach almost 100% at high hpT,Zi. The shape of the NNLO

– 11 –

3

√
s

TeV σLO σNLO σNNLO σgg→H→WW∗

7 29.52+1.6%
−2.5% 45.16+3.7%

−2.9% 49.04+2.1%
−1.8% 3.25+7.1%

−7.8%

8 35.50+2.4%
−3.5% 54.77+3.7%

−2.9% 59.84+2.2%
−1.9% 4.14+7.2%

−7.8%

13 67.16+5.5%
−6.7% 106.0+4.1%

−3.2% 118.7+2.5%
−2.2% 9.44+7.4%

−7.9%

14 73.74+5.9%
−7.2% 116.7+4.1%

−3.3% 131.3+2.6%
−2.2% 10.64+7.5%

−8.0%

TABLE I. LO, NLO and NNLO cross sections (in picobarn)
for on-shell W+W− production in the 4FNS and reference
results for gg → H → WW ∗ from Ref. [75].

decrease when moving from LO to NLO and NNLO.
Moreover, the NNLO (NLO) corrections turn out to ex-
ceed the scale uncertainty of the NLO (LO) predictions
by up to a factor 3 (34). The fact that LO and NLO
scale variations underestimate higher-order effects can be
attributed to the fact that the gluon–quark and gluon–
gluon induced partonic channels, which yield a sizable
contribution to the W+W− cross section, appear only
beyond LO and NLO, respectively. The NNLO is the
first order at which all partonic channels are contribut-
ing. The NNLO scale dependence, which amounts to
about 3%, can thus be considered a realistic estimate of
the theoretical uncertainty due to missing higher-order
effects.

In Figure 1, theoretical predictions in the 4FNS are
compared to CMS and ATLAS measurements at 7 and
8 TeV [5–8]. For a consistent comparison, our results
for on-shell W+W− production are combined with the
gg → H → WW ∗ cross sections reported in Table I.
It turns out that the inclusion of the NNLO corrections
leads to an excellent description of the data at 7 TeV and
decreases the significance of the observed excess at 8 TeV.
In the lower frame of Figure 1, predictions and scale vari-
ations at NNLO are compared to NLO ones, and also the
individual contribution of the gg → W+W− channel is
shown. Using NNLO parton distributions throughout,
the loop induced gluon fusion contribution is only about
35% of the total NNLO correction.

In the light of the small scale dependence of the 4FNS
NNLO cross section, the ambiguities associated with the
definition of a top-free W+W− cross section and its sen-
sitivity to the choice of the FNS might represent a sig-
nificant source of theoretical uncertainty at NNLO. In
particular, the omission of b-quark emissions in our 4FNS
definition of the W+W− cross section implies potentially
large logarithms of mb in the transition from the 4FNS
to the 5FNS. To quantify this kind of uncertainties, we
study the NNLO W+W− cross section in the 5FNS and
introduce a subtraction of its top contamination that al-
lows for a consistent comparison between the two FNSs.
An optimal definition of W+W− production in the 5FNS
requires maximal suppression of the top resonances in
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FIG. 1. The on-shell W+W− cross section in the 4FNS at

LO (dots), NLO (dashes), NLO+gg (dot dashes) and NNLO

(solid) combined with gg → H → WW ∗ is compared to re-

cent ATLAS and CMS measurements [5–8]. In the lower panel

NNLO and NLO+gg results are normalized to NLO predic-

tions. The bands describe scale variations.

the pp → W+W−b and pp → W+W−bb̄ channels. At
the same time, the cancellation of collinear singularities
associated with massless g → bb̄ splittings requires a suf-
ficient level of inclusiveness. The difficulty of fulfilling
both requirements is clearly illustrated in Figure 2 (left),
where 5FNS predictions are plotted versus a b-jet veto
that rejects b-jets with pT,bjet > pvetoT,bjet over the whole
rapidity range, and are compared to 4FNS results. In
the inclusive limit, pvetoT,bjet → ∞, the higher-order correc-
tions in the 5FNS suffer from a huge top contamination.
At 7 (14) TeV the resulting relative enhancement with
respect to the 4FNS amounts to about 30 (60)% at NLO
and a factor 4 (8) at NNLO. In principle, it can be sup-
pressed through the b-jet veto. However, for natural jet
veto values around 30 GeV the top contamination re-
mains larger than 10% of the W+W− cross section, and
a complete suppression of the top contributions requires
a veto of the order of 1 GeV. Moreover, as pvetoT,bjet → 0,
the (N)NLO cross section does not approach a constant,
but, starting from pvetoT,bjet ∼ 10 GeV, it displays a loga-
rithmic slope due to singularities associated with initial
state g → bb̄ splittings. This sensitivity to the jet-veto
parameters represents a theoretical ambiguity at the sev-
eral percent level, which is inherent in the definition of
top-free W+W− production based on a b-jet veto.

To circumvent this problem we will adopt an alterna-
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Figure 1: On-shell W±Z cross section as a function of the centre-of-mass energy at LO, NLO
and NNLO. In the lower panel the curves of the main frame are normalized to the central NLO
prediction. The bands correspond to scale variations as described in the text.

tainties. When considering the relative effects of radiative corrections, the impact of the different
mass windows is completely negligible. Nevertheless, we will consistently apply the respective
mass windows when comparing to data in the following.

We first present results for the ATLAS definition of the W±Z cross sections, reported in Ta-
ble 3, where we compare with the 7 and 8TeV ATLAS measurements of Ref. [4] and Ref. [5],
respectively. Comparing these cross sections in absolute terms to the on-shell case, we find a
reduction by roughly 3% due to the applied mass-window cut and genuine off-shell effects; how-
ever, as anticipated, the relative impact of radiative corrections remains widely unchanged, again
ranging between 63% and 83% at NLO and between 8% and 11% at NNLO for the collider ener-
gies under consideration. Also the scale uncertainty bands stay almost identical when including
off-shell effects and applying the ATLAS mass cut.

Comparing with the experimentally measured cross sections from Refs. [4, 5], we find that
the inclusion of NNLO corrections clearly improves the agreement between data and theory, in
particular at 8TeV, where the measurement is most precise. While the central NLO prediction is
roughly 2σ away from the measured cross section at 8TeV, the NNLO prediction is right on top
of the data with fully overlapping uncertainty bands.

Next, we provide theory predictions for the W±Z cross sections as defined by CMS in Table 4,
where we also quote the results of the CMS measurements performed at 7 and 8TeV (reported in
Ref. [6]), and at 13TeV (reported in Ref. [7]). As already anticipated, the precise definition of the
Z-mass window has only a very mild impact on the cross section. In particular, both the relative

4

ZZ - inclusive/on-shell
[Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, 
Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs '14]; [Heinrich, Jahn, Jones, Kerner, Pires '17]

WZ - inclusive/on-shell
[Grazzini, Kallweit, Rathlev, MW '16]

WW - inclusive/on-shell
[Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, et al. '14]                     

Figure 1: ZZ cross section at LO (dots), NLO (dashes), NLO+gg (dot dashes) and NNLO (solid)
as a function of

√
s. The ATLAS and CMS experimental results at

√
s = 7 TeV and

√
s = 8

TeV are also shown for comparison [3–6]. The lower panel shows the NNLO and NLO+gg results
normalized to the NLO prediction.

the LO result by about 45%. The impact of NNLO corrections with respect to the NLO result
ranges from 11% (

√
s = 7 TeV) to 17% (

√
s = 14 TeV). Using NNLO PDFs throughout, the gluon

fusion contribution provides between 58% and 62% of the full NNLO correction. We find that
the one-loop diagrams involving a top quark provide a contribution which is only few per mille
of the full NNLO cross section. Since the quantitative impact of the two-loop diagrams with a
light fermion loop is extremely small, we estimate that the neglected two-loop diagrams involving
a top-quark contribute well below the per mille level.

The theoretical predictions can be compared to the ATLAS and CMS measurements [3–6]
carried out at

√
s = 7 TeV and

√
s = 8 TeV, which are also shown in the plot. We see that

the experimental uncertainties are still relatively large and that the ATLAS and CMS results
are compatible with both the NLO and NNLO predictions. The only exception is the ATLAS
measurement at

√
s = 8 TeV [5], which seems to prefer a lower cross section. The comparison

between our predictions and the experimental results, however, should be interpreted with care.
First, we point out that the LHC experiments obtain their ZZ production cross section from
four-lepton production using an interval in dilepton invariant masses around the Z boson mass,
thus not including some contribution from far off-shell Z bosons. Then, EW corrections are not
included in our calculation, and are expected to provide a negative contribution to the inclusive
cross section [21].

In Table 1 we report the LO, NLO and NNLO cross sections and scale uncertainties, evaluated
by varying µR and µF simultaneously and independently in the range 0.5mZ < µR, µF < 2mZ

with the constraint 0.5 < µF/µR < 2. From Table 1 we see that the scale uncertainties are about
±3% at NLO and remain of the same order at NNLO. We also see that the NLO scale uncertainty

3

13 TeV

➡Higher-order predictions mandatory for reliable predictions 
8
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• Expand SU(2) Higgs field around vacuum  
in either unitary or Feynman gauge  
 

• Transform SU(3)xSU(2)xU(1) gauge fields and goldstones into  
 mass eigenstates (g,W,Z,Ɣ)  

• Expand covariant derivates including non-abelian structures 

• Add ghost fields
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Hard (perturbative) scattering process  
‣ N(N)LO QCD + EW 

Hadronization/fragmentation/ 
hadron decays

PDFs

p p
QED Parton shower 

Theoretical Predictions for Hadron Colliders

Soft underleying event

QCD Parton Shower 

13

Covered in these lectures



Path to precision at the LHC
•Key: QCD factorization

p1 = x1P1

p2 = x2P2

h2

h1

X

F (Q)
i

j

Sum over all partons

Short distance non-perturbative 
effects (PDFs) 

Interesting high-Q 
phenomena 

d� =
X

ij

Z
dx1dx2f

(P1)
1 (x1)f

(P2)
2 (x2)d�̂ij(x1x2s)
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Path to precision

Sum over all partons

Parton distributions: 
‣ (At LO:) Probability for finding a 

quark or gluon with a certain 
momentum fraction in a hadron
‣ universal but not perturbatively 

computable
➡ determine via fit against data

Hard partonic cross section:
‣ process dependent but 

computable in perturbation 
theory

d� =
X

ij

Z
dx1dx2f

(P1)
1 (x1)f

(P2)
2 (x2)d�̂ij(x1x2s)

15



Perturbative expansion

• Expansion in a small coupling α:

LO NLO NNLO N3LO
d� = d�(↵n) + d�(↵n+1) + d�(↵n+2) + d�(↵n+3) + ...

• at the LHC consider in particular α = αs (QCD coupling),  
but also α = αEW (EW coupling) relevant → later! 

• In QCD running strong coupling: ↵S = ↵S(µ) =
1

b0 ln
µ2

⇤2

+ ...

Active flavours & running coupling

In other words: the (active) field content of a theory modifies the 
running of the couplings  

More on the beta-function

Perturbative expansion of the beta-function: 

β(αren
s ) ≡ µ2αren

s

dµ2

β = −b0 α2
s(µ) + . . .

1

αs(µ)
= b0 ln

µ2

µ2
0

+
1

αs(µ0)

αs(µ) =
1

b0 ln µ2

Λ2

β = −α2
s(µ)

∑

i

biα
i
s(µ)

b0 =
11Nc − 4nfTR

12π

b1 =
17N2

c − 5Ncnf − 3CFnf

24π2

2

β(αren
s ) ≡ µ2αren

s

dµ2

β = −b0 α2
s(µ) + . . .

1

αs(µ)
= b0 ln

µ2

µ2
0

+
1

αs(µ0)

αs(µ) =
1

b0 ln µ2

Λ2

β = −α2
s(µ)

∑

i

biα
i
s(µ)

b0 =
11Nc − 4nfTR

12π

b1 =
17N2

c − 5Ncnf − 3CFnf

24π2

2

β(αren
s ) ≡ µ2αren

s

dµ2

β = −b0 α2
s(µ) + . . .

1

αs(µ)
= b0 ln

µ2

µ2
0

+
1

αs(µ0)

αs(µ) =
1

b0 ln µ2

Λ2

β = −α2
s(µ)

∑

i

biα
i
s(µ)

b0 =
11Nc − 4nfTR

12π

b1 =
17N2

c − 5Ncnf − 3CFnf

24π2

2

• nf is the number of active flavours (depends on the scale)
• today, the beta-function known up to four loops, but only first two 

coefficients are independent of the renormalization scheme

Beta function
Running of the QCD coupling αS is determined by the β function, which has the
expansion

β(αS) = −bα2
S(1 + b′αS) + O(α4

S)

b =
(11CA − 2Nf )

12π
, b′ =

(17C2
A − 5CANf − 3CF Nf )

2π(11CA − 2Nf )
,

where Nf is number of “active” light flavours. Terms up to O(α5
S) are known.

1-loop and 2-loop
terms are scheme
independent

Quantum Chromodynamics at the LHCLecture I: Proton structure and Parton Showers – p.6/58d�LO(µ) = ↵S(µ)
nALO

! d�LO(µ0) = ↵S(µ
0)nALO = ↵S(µ)

n

✓
1 + nb0↵S(µ) ln

µ2

µ02 + ...

◆
ALO

• So the change of scale is an NLO effect (∝αs).

• At LO the normalisation is not under control: d�LO(µ)

d�LO(µ0)
=

✓
↵S(µ)

↵S(µ0)

◆n

16



Perturbative expansion

• At NLO we have:

d�NLO(µ) = ↵S(µ)
nALO + ↵S(µ)

n+1

✓
ANLO � nb0 ln

µ2

Q2
0

◆
+ ...

• So the NLO result compensates the LO scale dependence and the residual 
dependence is NNLO!

➡ Include higher-order corrections in order to reduce scale dependence!

• That means scale dependence can be regarded as higher-order effect, but can be very 
relevant! (in particular for large n) 

• Normalisation starts being under control at NLO: compensation mechanism

• Note: a good scale choice automatically resums large logarithms to all orders, while a 
bad one spuriously introduces large logs and ruins the perturbative expansion 

• Scale variation is conventionally used to estimate the theory uncertainty 

17



LO Ingredients

• LO partonic cross section for a 2→n process can be written as

ΦTP2LO partonic cross section

LO partonic cross section for a 2 → n process can be written as

dσ̂LO =
1

2s

∫

dΦn|MLO|2

∫

dΦn = (2π)4δ(4)
(

P −
n∑

i=1

qi

)
n∏

i=1

d3qi
(2π)32Ei

n-particle phase space

MLO: LO matrix element (contains model for hard interaction)

s = P 2 = (p̂1 + p̂2)2 square of centre-of-mass energy of hard process (p̂i = xipi)

Integration over phase space by Monte Carlo methods ⇒

any distribution can be determined simultaneously

Monte Carlo events can be unweighted

Many generic codes exist at LO:

MADGRAPH Alwall, Herquet, Maltoni, Mattelaer, Stelzer

WHIZARD Kilian, Ohl, Reuter

SHERPA Höche, Krauss, Schuhmann, Siegert, Winter

HELAC Papadopoulos, Worek

. . . many more

Terascale Monte Carlo School, Hamburg, March 10–14, 2014 Ansgar Denner (Würzburg) Matrix element/NLO calculations – p.10
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n-particle phase-space

ΦTP2LO partonic cross section
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LO matrix element: tree-level

ΦTP2LO partonic cross section

LO partonic cross section for a 2 → n process can be written as

dσ̂LO =
1

2s

∫

dΦn|MLO|2
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(

P −
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MLO: LO matrix element (contains model for hard interaction)
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Monte Carlo events can be unweighted
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HELAC Papadopoulos, Worek

. . . many more
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squared centre-of-mass energy of  
hard process 

• Integration over phase space by Monte Carlo methods 
➡ any distribution/histogram can be determined simultaneously
➡ Monte Carlo events can be unweighted 

• Integration over phase space analytically
➡ very fast evaluation
➡ analytical structure of the result can be investigated

Perturbation theory

We need the amplitude squared:

At leading order (LO) only Born amplitudes contribute:
⎛

⎝

⎞

⎠

∗⎛

⎝

⎞

⎠ ∼ g4

At next-to-leading order (NLO): One-loop amplitudes and Born amplitudes with an
additional parton.

2 Re

⎛

⎝

⎞

⎠

∗⎛

⎝

⎞

⎠ +

⎛

⎝

⎞

⎠

∗⎛

⎝

⎞

⎠

︸ ︷︷ ︸

∼g6, virtual part
︸ ︷︷ ︸

∼g6, real part

Real part contributes whenever the additional parton is not resolved.

|MLO|2
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NLO Ingredients

• NLO partonic cross section for a 2→n process can be written as Perturbation theory

We need the amplitude squared:

At leading order (LO) only Born amplitudes contribute:
⎛
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⎠ ∼ g4

At next-to-leading order (NLO): One-loop amplitudes and Born amplitudes with an
additional parton.

2 Re
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︸ ︷︷ ︸

∼g6, virtual part
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∼g6, real part

Real part contributes whenever the additional parton is not resolved.

Z
d�n(+1) n or n+1 particle phase space 

virtual one-loop matrix element

real tree-level matrix element

Perturbation theory

We need the amplitude squared:

At leading order (LO) only Born amplitudes contribute:
⎛

⎝

⎞

⎠

∗⎛

⎝

⎞

⎠ ∼ g4

At next-to-leading order (NLO): One-loop amplitudes and Born amplitudes with an
additional parton.

2 Re

⎛

⎝

⎞

⎠

∗⎛

⎝

⎞

⎠ +

⎛

⎝

⎞

⎠
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⎞

⎠

︸ ︷︷ ︸

∼g6, virtual part
︸ ︷︷ ︸

∼g6, real part

Real part contributes whenever the additional parton is not resolved.

|MNLO,R|2

Re{MLO
M⇤

NLO,V}

d�̂NLO =
1

2s

Z
d�n

⇥
|MLO|2 + 2Re{MLOM⇤

NLO,V}
⇤
+

1

2s

Z
d�n+1|MNLO,R|2

MNLO,V

MNLO,R

/ ↵

NLO = B + V +R

Note: real radiation might open up new partonic channels!
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NNLO Ingredients

• NNLO partonic cross section for a 2→n process can be written as

MNLO,V

Z
d�n(+1) n, n+1, n+2 particle phase space 

virtual one-loop matrix element

real tree-level matrix elementMNLO,R

double-virtual two-loop matrix element

real-virtual one-loop matrix element

double-real tree-level matrix elementMNNLO,RR

+
1

2s

Z
d�n+1

⇥
|MNLO,R|2 + 2Re|MNLO,RM⇤

NNLO,RV|
⇤
+

1

2s

Z
d�n+2|MNNLO,RR|2

/ ↵

/ ↵2

ΔNLO

ΔNNLO
MNNLO,RV

MNNLO,V

NNLO = B + V + V2 +  …

+ R + RV + RR

(
(
(

)
)
)

*

*

*( )

( )
( )

d�̂NNLO =
1

2s

Z
d�n

⇥
|MLO|2 + 2Re{MLOM⇤

NLO,V}+ 2Re{MLOM⇤
NNLO,V}

⇤
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Perturbation theory

We need the amplitude squared:

At leading order (LO) only Born amplitudes contribute:
⎛

⎝

⎞

⎠

∗⎛
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⎠ ∼ g4

At next-to-leading order (NLO): One-loop amplitudes and Born amplitudes with an
additional parton.
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∼g6, real part

Real part contributes whenever the additional parton is not resolved.
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Convergence of the perturbative expansion: Drell-Yan

➡Higher-orders are crucial for reliable predictions
➡Use these precision predictions to
‣ stress-test the SM: QCD and EW
‣ determine parameters and PDFs!

[Anastasiou et al.,2003] • NNLO calculation first performed for the inclusive 
cross section [Van Neerven et al., 1990]  
→NNLO/NLO at the few percent level

• Rapidity distribution: 13 years later!
• Bands obtained by studying scale variations  

varied in μ=[mZ/2,2mZ]
• LO and NLO bands do not overlap!
➡Error estimate at LO largely underestimated!

• large contribution coming from qg channel that 
opens up at NLO

• NLO and NNLO bands do overlap
➡Reliable error estimate only when all partonic 

channels contribute

B

R-qg
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Convergence of the perturbative expansion: inclusive Higgs

➡ Error estimate at LO largely underestimated!
➡ N3LO ~ 2 LO
➡ Higher-orders are crucial for reliable predictions  

  and precision tests of Higgs properties

The need for higher orders

HIGGS BOSON

▸ Precise measurement 

▸ 3.8 sigma deviation 

▸ 1500 papers about new 
physics on the arXiv 

▸ SM fails

Data Theory
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[Anastasiou et al]
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Figure 2: Cummulative contributions to the total relative uncertainty as a function of the
collider energy. according to eqs. (26)-(28).

In combination we find

��PP!H+X = �(PDF+↵S) + �(theory) = +3.63pb
�4.72pb

�
+7.46%
�9.7%

�
. (39)

To derive the various sources of uncertainties we followed the prescriptions
outlined above. In fig. 2 we show how the relative size of the various sources
of uncertainty varies as a function of the hadron collider energy.

In comparison to the numerical cross section predictions derived in ref. [3]
we observe only minor changes. The di↵erence arise solely due to the exact
computation of the N3LO QCD corrections in the heavy top quark e↵ective
theory obtained in ref. [16]. The deviations are well within the uncertainty
that was associated with the truncation of the threshold expansion used for
the results of ref. [3]. This particular source of uncertainty is now removed.

Finally, we use iHixs to derive state of the art predictions for the gluon
fusion Higgs production cross section at di↵erent collider energies. We strictly
follow the recommendations of [3, 4]. Figure 3 shows the state-of-the art
predictions and uncertainty estimates for the inclusive cross section obtained

18

[Dulata, Lazopoulosb, Mistlberger, ’18]

HL-LHC (3k fb-1)

➡ At this level: crucial to investigate any possible uncertainty 
  beyond naive scale variations



NLO computations
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 UV & IR divergences

• naively starting from NLO the predictions are divergent.  

• Virtual loop diagrams are UV & IR divergent, e.g.:

Quantum loop corrections

Loop diagrams are divergent !

Z d4k
(2π)4

1
(k2)2

=
1

(4π)2

∞
Z

0

dk2
1
k2

=
1

(4π)2

∞
Z

0

dx
x

This integral diverges at

• k2→ ∞ (UV-divergence) and at

• k2→ 0 (IR-divergence).

Use dimensional regularisation to regulate UV- and IR-divergences.

This (and many other) integral diverges at 
• k2 → ∞ (UV-divergence) 
• k2 → 0 (IR-divergence)

➡ Use dimensional regularisation to regulate these UV- and IR-divergences: D=4 →  D=4-2ε 

➡ Divergences are transformed into poles in ε, e.g.:

Regularization in QCD

Regularization: a way to make intermediate divergent quantities meaningful 

• In QCD dimensional regularization is today the standard procedure, 
based on the fact that d-dimensional integrals are more convergent if 
one reduces the number of dimensions.

�
d4l

(2�)4
� µ2�

�
ddl

(2�)d
, d = 4� 2� < 4

113

Note: in order to preserve the correct dimensions 
a mass scale μ is needed (regularisation scale) 

Regularization in QCD

Regularization: a way to make intermediate divergent quantities meaningful 

• In QCD dimensional regularization is today the standard procedure, 
based on the fact that d-dimensional integrals are more convergent if 
one reduces the number of dimensions.

�
d4l

(2�)4
� µ2�

�
ddl

(2�)d
, d = 4� 2� < 4

• N.B. to preserve the correct dimensions a mass scale µ is needed

113

• Divergences show up as intermediate poles 1/ε
� 1

0

dx

x
�

� 1

0

dx

x1��
=

1
�

➡ This “dim-reg” procedure is gauge invariant & Lorentz invariant, in contrast to many other 
 regularisation procedures (photon/gluon mass, cut-offs, Pauli-Villard,…)

UV poles

IR poles
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 UV Renormalisation
•  Dim-reg: UV & IR divergences are transformed into poles in ε

• Renormalisation: Parameters appearing in the Lagrangian are not observed quantities, 
but “bare” quantities. 
➡ absorb UV-divergences via redefinition (“renormalization”) of all couplings and 

 masses, e.g. 
➡ “Renormalisation constants” are related to self-energies and can be defined according 

to different schemes.  Note:  all scheme have to absorb the same divergences.

↵ren
s = Z↵s↵

bare
s

๏On-shell scheme: 
 

‣ standard scheme for the renormlization of masses & wave-functions  

๏MS-scheme (“modified minimal subtraction scheme”):

‣ standard scheme for the renormlization of αs

‣ in dim-reg, poles always appear in the combination 

‣ MS: subtract this combination and replace bare coupling with renormalized one 

The MS scheme

• Today standard scheme is the modified minimal subtraction scheme,  
MS

• After regularizing integrals via the dimensional regularization, poles 
appear always in the combination   

• Therefore in the MS-scheme, instead of subtracting poles minimally, 
one always subtracts that combination, and replaces the bare 
coupling with the renormalized one  

1
�

+ ln(4�)� �E

• It is then standard to quote the coupling and ΛQCD in this scheme, 
the current value is 

206MeV < �MS(5) < 231MeV

• Uncertainties in this quantity propagate in the QCD cross-sections 
115

⌃(p2 = m2) = 0
@⌃(p2)

@p2
|p2=m2 = 0 ⌃ = self-energy,
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The Kinoshita-Lee-Nauenberg theorem 
•  After the renormalization procedure IR poles remain.  
•  However there is the very fundamental (based on the structure of the S-matrix)  

Kinoshita-Lee-Nauenberg (KLM) theorem [Kinoshita; ’62, Lee, Nauenber; ’64]:

Measurable quantities, summed over indistinguishable states are 
free from IR divergences.

~

For IR-safe observables IR divergences in the virtual corrections 
cancel with corresponding divergences in the (indistinguishable) 
real radiation
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IR divergences
Consider as example γ*→qq  (dijet production in e+e-):  Soft gluon amplitude

[e+e� ! qq̄]

[Soft-collinear emission]

Start with �⇤ ! qq̄:

Mqq̄ = �ū(p1)ieq�µv(p2)
−ie γ µ

p1

p2

Emit a gluon:

Mqq̄g = ū(p1)igs ✏/t
A i

p/
1
+ /k

ieq�µv(p2)

� ū(p1)ieq�µ
i

p/
2
+ /k

igs ✏/t
Av(p2)

Make gluon soft ⌘ k ⌧ p1,2; ignore terms suppressed by powers of k :

Mqq̄g ' ū(p1)ieq�µt
Av(p2) gs

✓
p1.✏

p1.k
�

p2.✏

p2.k

◆
p/v(p) = 0,

p//k + /kp/ = 2p.k
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NLO-real
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Mqq̄g = ū(p1)igs ✏/t
A i

p/
1
+ /k

ieq�µv(p2)
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(ignore terms suppressed by powers of k)

Soft gluon amplitude
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use:
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Squared amplitude
[e+e� ! qq̄]

[Soft-collinear emission]

|M2

qq̄g | '
X

A,pol

����ū(p1)ieq�µt
Av(p2) gs
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p1.✏

p1.k
�
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2

s
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�
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2
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2
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(p1.k)(p2.k)| {z }
dS

Note property of factorisation into hard qq̄ piece and soft-gluon emission
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dS = EdE dcos ✓
d�

2⇡
·
2↵sCF

⇡

2p1.p2
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✓ ⌘ ✓p1k
� = azimuth
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IR divergences
Squared amplitude:

Squared amplitude
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LO ➡ real radiation ME  
  factorizes for soft gluon  

Add the phase-space:

➡ real radiation phase-space  
  factorizes for soft gluon  

hard underlying contribution

soft-gluon emission:

Squared amplitude
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Factorization!

Squared amplitude
[e+e� ! qq̄]
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IR divergences
Consider soft-gluon emission:

Rewrite “eikonal” in terms of E and θ:

Soft & collinear gluon emission
[e+e� ! qq̄]

[Soft-collinear emission]

Take squared matrix element and rewrite in terms of E , ✓,

2p1.p2
(2p1.k)(2p2.k)

=
1

E 2(1� cos2 ✓)

So final expression for soft gluon emission is

dS =
2↵sCF

⇡

dE

E

d✓

sin ✓

d�

2⇡

NB:

I It diverges for E ! 0 — infrared (or soft) divergence

I It diverges for ✓ ! 0 and ✓ ! ⇡ — collinear divergence

Soft, collinear divergences derived here in specific context of e+e� ! qq̄
But they are a very general property of QCD
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Thus we get: • diverges for E → 0:  
soft divergence

• diverges for θ → 0 or θ → π:  
collinear divergence  

Note: the structure of these IR divergences is universal! 
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For IR-safe observables we have (KLN theorem):

~ finte

(N)NLO subtractions

Parton-shower  
splitting kernels

Z
d�2

Real-virtual cancellations: total X-sctn
[Total cross sections]

[Real-virtual cancellation]

Total cross section: sum of all real and virtual diagrams

p1
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NLO Subtraction
• In an analytical calculation (of the phase-space) the IR divergences in the reals and the 

virtuals can be regularised in dim-reg → Corresponding ε-poles cancel explicitly in the 
sum R+V.

• This is not possible when the phase-space integration is performed with MC methods.  
V and R live in different phase-spaces, thus the integration has to be performed before 
they can be added: 

d�̂NLO =
1

2s

Z
d�n

⇥
|MLO|2 + 2Re{MLOM⇤

NLO,V}
⇤
+

1

2s

Z
d�n+1|MNLO,R|2 ~ finte

∞ ∞

• Possible solutions: 
phase space slicing: global subtraction 
subtraction methods: local subtraction
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Phase space slicing
• Idea: cut-off the real radiation phase-space in the IR,  

e.g.  E > δEcut and 1 − cos ∆θ > δθcut

d�̂NLO =
1

2s

Z
d�n

⇥
|MLO|2 + 2Re{MLOM⇤

NLO,V}
⇤
+

1

2s

Z
d�n+1|MNLO,R|2

1

2s

Z

>�Ecut,>�✓cut

d�n+1|MNLO,R|2 +
1

2s

Z

<�Ecut,<�✓cut

d�n+1|MNLO,R|2

~-1/ε
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Phase space slicing
• Idea: cut-off the real radiation phase-space in the IR,  

e.g.  E > δEcut and 1 − cos ∆θ > δθcut

d�̂NLO =
1

2s

Z
d�n

⇥
|MLO|2 + 2Re{MLOM⇤

NLO,V}
⇤
+

1

2s

Z
d�n+1|MNLO,R|2

1

2s

Z

>�Ecut,>�✓cut

d�n+1|MNLO,R|2 +
1

2s

Z

<�Ecut,<�✓cut

d�n+1|MNLO,R|2

~ ln2(δEcut)+ln2(δθcut) = finite
1

2s

Z
d�ndS|MLO|2

Integrate dS analytically
~1/ε-ln2(δEcut)-ln2(δθcut)

soft/eikonal approximation

~-1/ε
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Integrate numerically 



Phase space slicing
• Idea: cut-off the real radiation phase-space in the IR,  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Integrate numerically 



Phase space slicing
• Idea: cut-off the real radiation phase-space in the IR,  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Integrate numerically 

• However: cancellation (possibly several orders of magnitude) of δEcut & δθcut dependence happens only numerically! 
➡ Very bad numerical convergence! 
➡ At least at NLO not used anymore.



Phase space slicing
• Idea: cut-off the real radiation phase-space in the IR,  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Figure 4.9: Dependence on the residual slicing parameters δs and δθ of the vir-
tual+soft+collinear (blue) and hard gluon and quark radiation (green) contributions of the
NLO corrections ∆NLO to the partial decay width Γũ2→uχ̃0

1
for the parameter point SPS1a

as introduced in section 5.2.1. Also shown is the sum of these contributions (red) and the LO
contribution (black).

The DR scheme represents, in a certain sense, an intermediate step between the DS
scheme and a complete removal as explained above. Here, one removes, from a diagrammatic
perspective, the minimal set of contributions in the squared amplitude that contain a resonant
gluino. In our calculation this results in

dσ̂DR
qig→q̃iaq̃ibq̄i ∼ dΠ(2→3)

[
|Mnonres|

2 + 2Re(MnonresM∗
res) + δab 2Re

(
Mres,1M∗

res,2

) ]
.

(4.52)

In the different flavor cases the third term in eq. (4.52) does not appear. Comparing eq. (4.52)

with eq. (4.44), it is clear that the resonant terms |Mres,1|2 and |Mres,2|2 are removed. In
the definition of DR given in [254] also the interference term 2Re(MnonresM∗

res) is removed
(with a study of the impact of this contribution), whereas in our definition of the DR scheme,
we keep this interference term. Although the DR scheme formally violates gauge invariance,
a consistent description is achieved when the procedure presented here is combined with off-
shell contributions of all channels. In any case, the narrow-width approximation, both in the
DR and the DS scheme is not an exact description; as an approximation it has a natural
uncertainty arising from missing off-shell contributions and non-factorizable NLO corrections.

In our numerical results we basically employ the DR scheme, however, we compare it with
results in the DS scheme, both for inclusive K-factors and for differential distributions.

Independence of unphysical regulators

Here we want to demonstrate that our final results for dσ(1)pp→q̃q̃′(X) do not dependent on any
unphysical regulators. As an example, in figure 4.9 we plot the dependance on the slicing
parameters δs (left) and δθ (right) for ũLũL production at the LHC with

√
S = 14 TeV for the
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ε-poles cancel
pointwise in LO PS

• However: cancellation (possibly several orders of magnitude) of δEcut & δθcut dependence happens only numerically! 
➡ Very bad numerical convergence! 
➡ At least at NLO not used anymore.



NLO subtraction

• Add and subtract a term S that cancels locally the divergences in the real radiation  
(e.g. based on the soft/eikonal approximation):

d�̂NLO =
1

2s

Z
d�n

⇥
|MLO|2 + 2Re{MLOM⇤

NLO,V}
⇤
+

1

2s

Z
d�n+1|MNLO,R|2

=
1

2s

Z
d�n

⇥
|MLO|2 + 2Re{MLOM⇤

NLO,V}
⇤
+

1

2s

Z
d�n+1|MNLO,R|2�S + S

• Integrate this subtraction term analytically over the emission phase space: I=

Z
d�1S

0

=
1

2s

Z
d�n

⇥
|MLO|2 + 2Re{MLOM⇤

NLO,V}+I
⇤
+

1

2s

Z
d�n+1|MNLO,R|2�S

finite finite
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I=

Z
d�1S=

1

2s

Z
d�n

⇥
|MLO|2 + 2Re{MLOM⇤

NLO,V}+I
⇤
+

1

2s

Z
d�n+1|MNLO,R|2�S



The subtraction term S

38

The subtraction term S should be chosen such that: 

• it matches the singular behaviour of R

• it can be integrated numerically in a convenient way

• it can be integrated analytically over one-particle subspace.  
In d dimensions this yields to explicit poles in regulator.  

• It is universal, i.e. process independent (overall factor times Born) 

Procedure systematized in the seminal papers of 

•Catani-Seymour (dipole/CS subtraction, ’96): Sherpa, Herwig7, HELAC-NLO, Munich

•Frixione-Kunszt-Signer (FKS subtraction, ’96): POWHEG-BOX, MadGraph_aMC@NLO
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Marco Zaro, 25-12-2015

Kinematics of counterevents 

• If i and j are on-shell in the event, for the counterevent the 
combined particle i+j must be on shell!

• i+j can be put on shell only be reshuffling the momenta of the 
other particles!

• It can happen that event and counterevent end up in different 
histogram bins!
• Use IR-safe observables and don’t ask for infinite resolution!!
• Still, these precautions do not eliminate the problem…

49

3.2 Initial-state parton splitting, DGLAP evolution
3.2.1 Final and initial-state divergences
In Eq. (26a) we wrote the universal form for the final-state ‘splitting’ of a quark into a quark and a soft
gluon. Let’s rewrite it with different kinematic variables, considering a hard process h with cross section
σh, and examining the cross section for h with an extra gluon in the final state, σh+g. We have

p
zp

E =

θ

(1−z)p

σh σh+g ≃ σh
αsCF

π

dz

1− z

dk2t
k2t

, (41)

where E in Eq. (26a) corresponds to E = (1 − z)p and we’ve introduced kt = E sin θ ≃ Eθ. If we
avoid distinguishing a collinear q+ g pair from a plain quark (measurements with IRC safe observables)
then, as we argued before, the divergent part of the gluon emission contribution always cancels with a
related virtual correction

p p
σh σh+V ≃ −σh

αsCF

π

dz

1− z

dk2t
k2t

. (42)

Now let us examine what happens for initial-state splitting, where the hard process occurs after the
splitting and the momentum entering the hard process is modified p→ zp:

zp
p

(1−z)p

σh σg+h(p) ≃ σh(zp)
αsCF

π

dz

1− z

dk2t
k2t

, (43)

where we have made explicit the hard process’s dependence on the incoming momentum, and we assume
that σh involves momentum transfers ∼ Q ≫ kt, so that we can ignore the extra transverse momentum
entering σh. For virtual terms, the momentum entering the process is unchanged, so we have

p p
σh σg+h(p) ≃ −σh(p)

αsCF

π

dz

1− z

dk2t
k2t

, (44)

The total cross section then gets contributions with two different hard cross sections:

σg+h + σV+h ≃
αsCF

π

∫ Q2

0

dk2t
k2t

︸ ︷︷ ︸

infinite

∫ 1

0

dz

1− z
[σh(zp)− σh(p)]

︸ ︷︷ ︸

finite

. (45)

Note the limits on the integrals, in particular theQ2 upper limit on the transverse-momentum integration:
the approximations we’re using are valid as long as the transverse momentum emitted in the initial state is
much smaller than the momentum transfers Q that are present in the hard process. Of the two integrations
in Eq. (45), the one over z is finite, because in the region of the soft divergence, z → 1, the difference of
hard cross sections, [σh(zp) − σh(p)], tends to zero. In contrast, the kt integral diverges in the collinear
limit: the cross section with an incoming parton (and virtual corrections) appears not to be collinear safe.
This is a general feature of processes with incoming partons: so how are we then to carry out calculations
with initial-state hadrons?

In Section 2.3.1, when trying to make sense of final-state divergences, we introduced a (non-
perturbative) cutoff. Let’s do something similar here, with a cutoff, µF, called a factorization scale
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j
i+j

Real emission Subtraction term

Z
dy

✓
1

1� y

◆

+

g(y) =

Z
dy

g(y)� g(1)

1� y

Recoil and misbinning

•Assuming i and j are on-shell in the real emission event,  
in the subtraction event the combined particle i+j has to be on-shell

•i+j can only be on-shell when other particles are reshuffled

→It can happen that event and counter event end 
up in different histogram bins   

Marco Zaro, 25-12-2015

An example in 4-lepton production

• The NLO result shows the typical 
peak-dip structure that hampers fixed-
order computation!

• Can be cured by increasing the statistics
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Figure 3: As in fig. 1, for the inclusive η of the opposite-charge, Z-id matched lepton pairs (left
panel), and the inclusive ∆φ distance of the opposite-charge, non-Z-id matched lepton pairs (right
panel).

is quite small over the whole range in pT , but tends to grow larger towards larger pT . This

effect has the same origin as that observed in the right panel of fig. 1, but it is much more

moderate than there. This is due to the fact that in the present case the whole range in pT

is associated with complete NLO corrections. The PDF uncertainty is seen to be similar to

or slightly smaller than that due to scale variation; parton densities are well determined in

the x range probed here. Finally, there is no difference between the two leptonic channels

for this observable; as already mentioned above, this conclusion is independent of whether

one applies the Z-id cuts. The pT of the lepton pairs shown in the right panel of fig. 2

follows the same pattern as the one we have just discussed, but the differences between

the various predictions are larger in this case. In particular, aMC@LO is closer to NLO

than to LO, which is a consequence of the more important role played by extra radiation in

this case (as one expects, the present one being a correlation between two particles rather

than a single-inclusive observable). Again, the closeness of NLO and aMC@NLO results

shows the desired perturbative behaviour. The more significant impact of extra radiation

on this variable is reflected in the slightly larger scale dependence at large pT ’s w.r.t. what

happens for the transverse momentum of the individual leptons discussed before. The two

leptonic channels agree well, also when removing the Z-id cuts.

Figure 3 shows two observables constructed after applying the Z-id cuts, namely the

pseudorapidity of lepton pairs with opposite charge which are also Z-id matched (left

panel; this is then the pseudorapidity of would-be Z bosons), and the azimuthal distance

between leptons of opposite charge which are not Z-id matched (right panel; thus, these

are leptons emerging from different would-be Z bosons). As in the case of fig. 2, there are

two entries in each histogram for any given event. These two observables are dominated

by small transverse momenta, and therefore it is not suprising that, at both O(α0
S) and
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pp->4l at NLO 

→Difficult to achieve arbitrary resolution with  
    numerical integration. 



Subtraction schemes

40

Dipole CS subtraction FKS subtraction

• widely used
• automated in Sherpa, MadDipole, Helac-NLO 
• Scaling of subtraction terms: N3

• Recoil (momentum shift) of an emitter taken by 
one specific spectator

• Proven to work efficiently for simple and 
complicated processes

• Somewhat less popular
• automated in MadGraph5_aMC@NLO, POWHEG-BOX 
• Scaling of subtraction terms: N2

• Recoil (momentum shift) of an emitter taken by all 
particles

• Proven to work efficiently for simple and complicated 
processes



The Kinoshita-Lee-Nauenberg theorem 
•  After the renormalization procedure IR poles remain.  
•  However there is the very fundamental (based on the structure of the S-matrix)  

Kinoshita-Lee-Nauenberg (KLM) theorem [Kinoshita; ’62, Lee, Nauenber; ’64]:

Measurable quantities, summed over indistinguishable states are 
free from IR divergences.

~

For IR-safe observables IR divergences in the virtual corrections 
cancel with corresponding divergences in the (indistinguishable) 
real radiation
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IR safety

Gavin Salam (CERN) QCD basics 4 ICTP-SAIFR school, July 2015

Key requirement: infrared and collinear safety

12

Consequences of collinear unsafety[Theory v. experiment]

[Cone algorithms]

jet 2
jet 1jet 1jet 1 jet 1

αs x (+ )∞nαs x (− )∞n αs x (+ )∞nαs x (− )∞n

Collinear Safe Collinear Unsafe

Infinities cancel Infinities do not cancel

Invalidates perturbation theory
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IR safe IR unsafe

An observable O is infrared and collinear safe if 
An observable     is infrared and collinear safe if

Infrared safety: definition 

On+1(k1, k2, . . . , ki, kj , . . . kn)� On(k1, k2, . . . ki + kj , . . . kn)

whenever one of the ki/kj becomes soft or ki and kj are collinear 

O

i.e. the observable is insensitive to emission of soft particles or to collinear 
splittings

9

whenever one of the ki/kj becomes soft or ki and kj are collinear 

i.e. the observable is insensitive to emission of soft particles or to 
collinear splittings.

In the IRC unsafe algorithm, a collinear splitting leads to a different set of final state jets and thus to the 
lack of cancellation of soft and collinear divergences (KLN theorem) 
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IR safety: examples

Are these observables IR safe? 

‣  energy of the hardest parton in an event
‣  multiplicity of gluons
‣  momentum flow into a cone in rapidity and angle
‣  cross-section for producing one gluon with E > Emin and θ > θmin 
‣  jet cross-sections 
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‣  momentum flow into a cone in rapidity and angle
‣  cross-section for producing one gluon with E > Emin and θ > θmin 
‣  jet cross-sections 

NO
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IR safety: examples

Are these observables IR safe? 

‣  energy of the hardest parton in an event
‣  multiplicity of gluons
‣  momentum flow into a cone in rapidity and angle
‣  cross-section for producing one gluon with E > Emin and θ > θmin 
‣  jet cross-sections 

NO
NO
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IR safety: examples

Are these observables IR safe? 

‣  energy of the hardest parton in an event
‣  multiplicity of gluons
‣  momentum flow into a cone in rapidity and angle
‣  cross-section for producing one gluon with E > Emin and θ > θmin 
‣  jet cross-sections 

NO
NO

YES
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IR safety: examples

Are these observables IR safe? 

‣  energy of the hardest parton in an event
‣  multiplicity of gluons
‣  momentum flow into a cone in rapidity and angle
‣  cross-section for producing one gluon with E > Emin and θ > θmin 
‣  jet cross-sections 

NO
NO

YES
NO
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IR safety: examples

Are these observables IR safe? 

‣  energy of the hardest parton in an event
‣  multiplicity of gluons
‣  momentum flow into a cone in rapidity and angle
‣  cross-section for producing one gluon with E > Emin and θ > θmin 
‣  jet cross-sections 

NO
NO

YES
NO

DEPENDS
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IR safety: examples

Are these observables IR safe? 

‣  energy of the hardest parton in an event
‣  multiplicity of gluons
‣  momentum flow into a cone in rapidity and angle
‣  cross-section for producing one gluon with E > Emin and θ > θmin 
‣  jet cross-sections 

NO
NO

YES
NO

DEPENDS, YES for IR-safe jet definitions  
(i.e. all jet definitions used nowadays)
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IR safety: examples

Are these observables IR safe? 

‣  energy of the hardest parton in an event
‣  multiplicity of gluons
‣  momentum flow into a cone in rapidity and angle
‣  cross-section for producing one gluon with E > Emin and θ > θmin 
‣  jet cross-sections 

NO
NO

YES
NO

DEPENDS, YES for IR-safe jet definitions  
(i.e. all jet definitions used nowadays)
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Recap

•Higher-order corrections mandatory for reliable predictions at the LHC
•NLO corrections often O(100%)
•ΔNLO=V+R
•ΔNNLO=VV+RV+RR
•KLN theorem ensures IR finiteness of corrections at each perturbative order…
•…for IR safe observables
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Questions?
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Motivation: NLO multileg
• For a multitude of multileg processes NLO predictions are needed for current state-of-the-art 

applications at the LHC.
• Consider for example ttH production, which is very important for the direct determination of 

the top-Yukawa coupling.
• Due to the small cross section we have to consider the tricky H →bb decay mode:

➜ efficient automation needed!
6

Thomas CALVET, SM@LHC2018, Apr 11th 2018

ttH(bb) Challenges

ttH(bb) tt+jets 

2. tt+jets background
� 3 main components: tt+lf (uds), tt+cc, tt+bb

¾ tt+bb: irreducible, 30*signal, large uncertainties 𝒪 35%

� Analysis sensitivity ∝ ability to separate and control tt+lf/cc/bb/H

|High multiplicity|

• signal: O(1⇥ 10
3) graphs

• background: O(3⇥ 10
3) graphs

• 1-loop signal: O(2⇥ 10
5) graphs

• 1-loop background: O(3⇥ 10
5) graphs

• real(extra gluon) signal: O(1⇥ 10
4) graphs

• real(extra gluon) background: O(5⇥ 10
4) graphs

H

q̄

q

b̄

b

b̄

b

l

⌫

g

g

t

t̄

W
+

W
-

9997

• need milions of evaluations in practical Monte Carlo calculations 
• need many partonic processes
• similar for many other processes besides ttH production

signal background
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Tree Matrix elements

(I) Textbook Feynman diagram construction:
1. draw all Feynman diagrams
2. put in the explicit Feynman rules and get the amplitude 
3. do some algebra, simplifications 
4. square the amplitude 
5. sum/average over outgoing/incoming states  

L ! |Mtree|2

Automated tools for  
      (1-2): FeynArts/QGRAF  
      (3-5): FormCalc/Form/CompHEP/CalcHEP

Bottlenecks  
      a) number of Feynman diagrams grows factorially! 
       b) algebra becomes more cumbersome with more particles 

Brute force

Number of Feynman
diagrams contributing to
gg→ ng at tree level:

2 4
3 25
4 220
5 2485
6 34300
7 559405
8 10525900

Feynman rules:

= g f abc
[

(k2− k3)µgνλ+(k3− k1)νgλµ
+(k1− k2)λgµν]

= −ig2
[

f abe f ecd
(

gµλgνρ−gµρgνλ
)

+ f ace f ebd
(

gµνgλρ−gµρgλν
)

+ f ade f ebc
(

gµνgλρ−gµλgνρ
)]

Feynman diagrams are not the method of choice !
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Helicity amplitudes

• The Monte Carlo integration has to be performed numerically  
➜ only numerical representation of the amplitudes required

• Idea: construct the amplitude purely numerical (as complex numbers) from numerical 
representation of external wave-functions and spinors combined with vertex routines. 
➜ squaring the amplitude becomes very cheap (squaring complex numbers is numerically 
cheap)

• Build algorithms that constructs amplitudes automatically
• Try to recycle sub-expressions as much as possible, e.g.

How to avoid to compute the same sub-expression again and
again

Lower part identical in all three diagrams.

Strategy: Compute this sub-expression once and store the result. 55



Recurrence relations
• Pioneered by [Berends, Giele; ’88] algorithms based on recurrence relations can be designed 

that calculate SM tree-level helicity amplitudes with complexity
• off-shell currents for external legs are wave functions 

O(n4)

ΦTP2Off-shell currents at tree level

Basic building blocks of tree-level recursion:
off-shell current of particle P with n external legs

w(P, C, {l1, . . . , ln}) = n
P

w is a scalar, spinor or vector corresponding to P

C represents the colour

{l1, . . . , ln} list of primary external legs

off-shell currents for external legs are wave functions

= uλ(p), = ūλ(p), = ϵλ(p), = 1

Amplitude for process with N external particles:

M = N−1
P̄N × (propagator of P̄N )−1 × P̄N

amputate off-shell line and multiply with wave function
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• Amplitude for process with N external particles: 

ΦTP2Off-shell currents at tree level

Basic building blocks of tree-level recursion:
off-shell current of particle P with n external legs

w(P, C, {l1, . . . , ln}) = n
P

w is a scalar, spinor or vector corresponding to P

C represents the colour

{l1, . . . , ln} list of primary external legs

off-shell currents for external legs are wave functions

= uλ(p), = ūλ(p), = ϵλ(p), = 1

Amplitude for process with N external particles:

M = N−1
P̄N × (propagator of P̄N )−1 × P̄N

amputate off-shell line and multiply with wave function
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• Recursion relation:

ΦTP2Tree-level recursion

Recursion relation

n
P =

i+j=n
∑

{i},{j}

∑

Pi,Pj

i

j

Pi

Pj

P
+

i+j+k=n
∑

{i},{j},{k}

∑

Pi,Pj ,Pk

i

j

k

Pi

Pj

Pk

P

incoming currents× vertex× propagator

2-leg currents: =
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• In the SM we have:

ΦTP2Tree-level recursion

Recursion relation

n
P =

i+j=n
∑

{i},{j}

∑

Pi,Pj

i

j

Pi

Pj

P
+

i+j+k=n
∑

{i},{j},{k}

∑

Pi,Pj ,Pk

i

j

k

Pi

Pj

Pk

P

incoming currents× vertex× propagator

2-leg currents: =

3-leg currents: = + +

4-leg currents: = + +

+ + +
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No Feynman diagrams are 
calculated in this approach! 
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Recurrence relations: history|History|

• Berends, Giele 1987: planar multi-gluon amplitudes

• Caravaglios, Moretti 1995: formulation for arbitrary lagrangians

• Draggiotis, Kleiss, Papadopoulos 1998: multi-gluon amplitudes

• Caravaglios, Mangano, Moretti, Pittau 1998: multi-jet processes

• Kanaki, Papadopoulos 1999: HELAC (standard model)

• Moretti, Ohl, Reuter 2001: O’Mega

• Mangano, Moretti, Piccinini, Pittau, Polosa 2003: ALPGEN

• Gleisberg, Hoeche 2008: Comix

• Kleiss, van den Oord 2011: Camorra

• Actis, Denner, Hofer, Scharf, Uccirati 2012: Recola (one-loop)

99918

➡Used in all modern amplitude generators
57
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Traditional NLO Matrix elements
• For one-loop matrix elements the complexity based on Feynman diagrams is worse than 

factorial. 
• Conventional approach, e.g. 

ΦTP2A typical 6-point diagram

qq̄ → qq̄qq̄ (pp → tt̄bb̄ or e+e− → 4f )

q2(p2,σ2) + q̄1(p1,σ1) → q3(p3,σ3) + q̄4(p4,σ4) + q5(p5,σ5) + q̄6(p6,σ6)

g

g

g

p2

p1

p3

p4

p5

p6

q
pk momenta
σk helicities
ik colour indices

analytic expression (colour factorises)

Mσ1...σ6
i1...i6

(p1, . . . , p6) = g6(T aT b)i1i2(T
bT c)i3i4(T

cT a)i5i6

×
∫

dDq
ū(p5,σ5)γ

µ(q/ + p/5 +m5)γ
νv(p6,σ6)

(q2)[(q + p5)2 −m2
5]

×
v̄(p1,σ1)γ

ν(q/ + p/5 + p/6 − p/1 +m1)γ
λu(p2,σ2)

[(q + p5 + p6)2][(q + p5 + p6 − p1)2 −m2
1]

×
ū(p3,σ3)γ

λ(q/ − p/4 +m3)γ
µv(p4,σ4)

[(q − p3 − p4)2][(q − p4)2 −m2
3]
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ΦTP2A typical 6-point diagram

qq̄ → qq̄qq̄ (pp → tt̄bb̄ or e+e− → 4f )

q2(p2,σ2) + q̄1(p1,σ1) → q3(p3,σ3) + q̄4(p4,σ4) + q5(p5,σ5) + q̄6(p6,σ6)

g

g

g

p2

p1

p3

p4

p5

p6

q
pk momenta
σk helicities
ik colour indices

analytic expression (colour factorises)

Mσ1...σ6
i1...i6

(p1, . . . , p6) = g6(T aT b)i1i2(T
bT c)i3i4(T

cT a)i5i6

×
∫

dDq
ū(p5,σ5)γ

µ(q/ + p/5 +m5)γ
νv(p6,σ6)

(q2)[(q + p5)2 −m2
5]

×
v̄(p1,σ1)γ

ν(q/ + p/5 + p/6 − p/1 +m1)γ
λu(p2,σ2)

[(q + p5 + p6)2][(q + p5 + p6 − p1)2 −m2
1]

×
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µv(p4,σ4)

[(q − p3 − p4)2][(q − p4)2 −m2
3]
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Typical 6-point amplitude:

ΦTP2A typical 6-point diagram

qq̄ → qq̄qq̄ (pp → tt̄bb̄ or e+e− → 4f )

q2(p2,σ2) + q̄1(p1,σ1) → q3(p3,σ3) + q̄4(p4,σ4) + q5(p5,σ5) + q̄6(p6,σ6)

g

g

g

p2

p1

p3

p4

p5

p6

q
pk momenta
σk helicities
ik colour indices

analytic expression (colour factorises)

Mσ1...σ6
i1...i6

(p1, . . . , p6) = g6(T aT b)i1i2(T
bT c)i3i4(T

cT a)i5i6

×
∫

dDq
ū(p5,σ5)γ

µ(q/ + p/5 +m5)γ
νv(p6,σ6)

(q2)[(q + p5)2 −m2
5]

×
v̄(p1,σ1)γ

ν(q/ + p/5 + p/6 − p/1 +m1)γ
λu(p2,σ2)

[(q + p5 + p6)2][(q + p5 + p6 − p1)2 −m2
1]

×
ū(p3,σ3)γ

λ(q/ − p/4 +m3)γ
µv(p4,σ4)

[(q − p3 − p4)2][(q − p4)2 −m2
3]
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Feynman rules
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Traditional NLO Matrix elements
• Define tensor integrals:

ΦTP26-point tensor integrals

q + k1 q + k2

q + k3

q + k4q + k5

q m0

m1 m2

m3

m4m5

denominator factors:

Ni = (q+ki)2−m2
i +iϵ, k0 = 0

i = 0, . . . , 5

integral definition

Fµ1...µP (k1, . . . , k5,m0, . . . ,m5) =
(2πµ)4−D

iπ2

∫

dDq
qµ1 · · · qµP

N0N1 . . . N5

decomposition of tensor integral into covariants: (scalar integral F = F0)

Fµ =
5∑

i=1

kµi Fi, Fµν =
5∑

i,j=1

kµi k
ν
j Fij + gµνF00

Fµνρ =
5∑

i,j,k=1

kµi k
ν
j k

ρ
kFijk +

5∑

i=1

(gµνkρi + gνρkµi + gρµkνi )F00i

Fi, Fij , Fijk, F00i tensor coefficients

⇒ separation between tensors and integrals
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ΦTP26-point tensor integrals

q + k1 q + k2

q + k3

q + k4q + k5

q m0

m1 m2

m3

m4m5

denominator factors:

Ni = (q+ki)2−m2
i +iϵ, k0 = 0

i = 0, . . . , 5

integral definition

Fµ1...µP (k1, . . . , k5,m0, . . . ,m5) =
(2πµ)4−D
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∫

dDq
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decomposition of tensor integral into covariants: (scalar integral F = F0)
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5∑
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kµi Fi, Fµν =
5∑

i,j=1

kµi k
ν
j Fij + gµνF00

Fµνρ =
5∑

i,j,k=1

kµi k
ν
j k

ρ
kFijk +

5∑
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Fi, Fij , Fijk, F00i tensor coefficients

⇒ separation between tensors and integrals
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• Construct decomposition of the diagram into “tensor-integrals” and “standard matrix elements”

ΦTP2Structure of 1-loop contributions

Structure of diagram after insertion of tensor-integral decomposition

Mσk
ik

(pk) = Cik
︸︷︷︸

factorised
colour structure

∑

m

Fm({pa · pb}) M̂{λk}
m ({pk})

︸ ︷︷ ︸

standard matrix
elements

colour structures Cik

factorises for most diagrams (3 colour structures for diagrams with 4-g vertex)

low computational cost in Feynman-diagram approach

standard matrix elements M̂{λk}
m ({pk})

comprise all tensorial and spinorial objects, purely kinematical

depend on helicities of external particles

examples:

v̄(p1,σ1)γ
νp/6γ

λu(p2,σ2)× ū(p3,σ3)γ
λp/1γ

µv(p4,σ4)× ū(p5,σ5)γ
µp/3γ

νv(p6,σ6)

v̄(p1,σ1)γ
µu(p2,σ2)× ū(p3,σ3)γµv(p4,σ4)× ū(p5,σ5)p/2v(p6,σ6)

Colour and helicity (sums) factorise from loop integrals!
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• “standard matrix elements”: purely kinematical objects
• This decomposition can be automated, but large algebraic expressions! (e.g. FeynArts) 
➜  used to be a major bottleneck

• Reduce tensor-integrals to scalar integrals:

ΦTP2Structure of 1-loop contributions II

invariant functions Fm({pa · pb}):

Fm({pa · pb}) =
∑

j1...jR

Km,j1...jR ({pa · pb})

tensor loop coefficients
︷ ︸︸ ︷

Tj1...jR ({pa · pb})

linear combinations of tensor coefficients Tj1...jR (F0, Fi, Fij , Fijk)

coefficients Km,j1...jR ({pa · pb}) depend on invariants, masses, couplings

examples: Fρστ
1 = g6F334

Fρστ
2 = −g6(F3 + F34 + F23 + F234)

tensor coefficients Tj1...jR ({pa · pb})

(numerically) reduced to scaler A0, B0, C0 and D0 (1-, 2-, 3-, 4-point) functions:

Tj1...jR =
∑

i

aiA0(i) +
∑

j

bjB0(j) +
∑

k

ckC0(k) +
∑

l

dlD0(l)

=
∑

i

ai +
∑

j

bj +
∑

k

ck +
∑

l

dl

with coefficients ai, bj , ck, dl depending on invariants and masses

⇒ Every one-loop amplitude can be reduced to A0, B0, C0 and D0.
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ΦTP2Structure of 1-loop contributions II
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∑
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∑

l

dlD0(l)

=
∑

i
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∑
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l
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⇒ Every one-loop amplitude 
can be reduced to A0, B0, C0 and D0.

A0 B0 C0 D0 59



NLO Matrix elements: Solutions

• unitarity-cut techniques (e.g. BlackHat, CutTools)
• extension of recursion-relation technique to NLO (e.g. Recola)
• combination of Feynman diagrams and recursion relations  

(e.g. OpenLoops)
…

All methods: numerical ⇒ problem of numerical stability 
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Unitarity methods: Ideas

• Starting point: In 4 + ε dimensions, any one-loop amplitude can be 
represented by a linear combination of scalar one-loop integrals 

ΦTP2Unitarity-inspired methods: idea

Starting point: In 4 + ϵ dimensions, any one-loop amplitude can be
represented by a linear combination of scalar one-loop integrals

M1-loop = =
∑

l

dl +
∑

k

ck

+
∑

j

bj +
∑

i

ai +R

=
∑

l

dlD0(l) +
∑

k

ckC0(k) +
∑

j

bjB0(j) +
∑

i

aiA0(i) +R

R: rational terms = finite terms resulting from dimensional regularization
(D − 4)× 1/(D − 4) terms

calculation of amplitude ⇔ determination of coefficients ai, bj , ck, dl and R

coefficients ai, bj , ck, dl and R can be computed using (generalized)
unitarity techniques
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• calculation of amplitude ⇔ determination of coefficients ai,bj,ck,dl and R 

• these coefficients can be determined from cuts (=on-shell propagators) of the  
one-loop diagram (“unitarity methods”) 
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Unitarity methods

• relates one-loop amplitudes to products of tree amplitudes 

• Conventional Unitarity: only double cuts:

ΦTP2(Conventional) unitarity

Conventional unitarity based on double cuts

−i DiscM1-loop = =
∑

l

dl +
∑

k

ck +
∑

j

bj

compute discontinuity on both sides of equation
discontinuities of basic scalar integrals known
and characteristic for corresponding integrals

reconstruct the coefficients from the cuts Bern, Dixon, Dunbar, Kosower ’94

need to consider all possible cuts in general

problems:

! same coefficient can contribute to different cuts
⇒ problem of disentangling the coefficients

! R and ai cannot be determined from double cuts
(ai do not appear in massless theories)

virtue: one can directly work with amplitudes (no Feynman diagrams)
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• reconstruct the coefficients from the cuts on both sides of the equation

• Cut: one-loop diagram ➜ two tree diagrams

ΦTP2Unitarity cut

Cut separates a one-loop diagram into two tree diagrams

discontinuity can be computed by replacing cut-propagators by δ-functions under

the loop integral Cutcosky ’60

i
q21 −m2

1

→ 2πδ+(q21 −m2
1),

i
q22 −m2

2

→ 2πδ+(q22 −m2
2)

pm+1

pnp1

pm

q2−q2

−q1 q1

M1 M2

−i DiscM1-loop(p1, . . . , pn) =

∫
[dq] 2πδ+(q21 −m2

1) 2πδ
+(q22 −m2

2)

×Mtree
1 (p1, . . . , pm, q1,−q2)×Mtree

2 (pm+1, . . . , pn,−q1, q2)

relates one-loop amplitudes to products of tree amplitudes

cut simplifies calculation loop integral

shorthands: δ+(q2 −m2) = δ(q2 −m2)θ(q0) [dq] =
d4q

(2π)4
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Generalized unitary
• Consider all kinds of cuts:

ΦTP2Generalized unitarity

a unitarity cut is the replacement
i

q2 −m2
→ 2πδ+(q2 −m2)

cutting a line puts its momentum on-shell

can apply more or less than two cuts ⇒ multiple cuts

=
∑

l

dl +
∑

k

ck +
∑

j

bj +
∑

i

ai

=
∑

l

dl +
∑

k

ck +
∑

j

bj

=
∑

l

dl +
∑

k

ck

=
∑

l

dl

⇒ efficiently determine the coefficients of scalar integrals
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• OPP = Generalized Unitarity at the integrand-level: requires multiple evaluation of the 
numerator function N(q)  

“triangulate”  the matrix element
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OpenLoops recursion

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

Numerator recursion

Connect sub-trees along the loop to build the numerator

β

α
In =

β

α

in

In−1 N β
α (In; q) = Xβ

γδ(q) N γ
α (In−1; q) w δ(in)

For fixed loop momentum q, the numerator N (q) = Nα
α (q) can be

evaluated by a “conventional” tree generator and used as input for
OPP reduction. [Ossola, Papadopoulos, Pittau]

Done by “old” MadLoop (diagrammatic), or HELAC (current recursion).

By the nature of loop integrals, the functional dependence
on the loop momentum is needed. OPP reduction instead uses
expensive multiple evaluations of N (q) for loop momenta
which satisfy cut conditions Di = Dj = · · · = 0.

OpenLoops:
Nµ1...µr

r encodes the functional dependence on q:
N (q) =

∑

r Nµ1

r . . . qµr
qµ1...µr

OpenLoops • Philipp Maierhöfer IPPP Seminar

‣  Treat one-loop diagram as ordered set of sub-trees                                connected by 
propagators 
 
 
 
 
 

‣  Build numerator connecting subtrees along the loop                  

 

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

From tree recursion to loop diagrams

Recursive construction of tree wave functions

Starting from external legs, connect wave functions wα with vertices and
propagators to recursively build “sub-trees”. Wave functions of sub-trees
are 4-tuples of complex numbers (for the spinor/Lorentz index).

i =
j

k
wβ(i) =

Xβ
γδ

p2
i − m2

i

wγ(j)w δ(k)

external lines are not depicted Xβ
γδ describes the interaction of i , j , k

Loop diagrams

A one-loop diagram is an ordered set of sub-trees In = {i1, . . . , in},
connected by loop propagators.

q 0

1

n−1

i1 i2

in-1in

cut D0−−−−−→ N β
α (In; q) =

1

n−1

i1 i2

in-1in

α

β ≡
β

α
In
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cut one loop propagator 
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From tree recursion to loop diagrams

Recursive construction of tree wave functions

Starting from external legs, connect wave functions wα with vertices and
propagators to recursively build “sub-trees”. Wave functions of sub-trees
are 4-tuples of complex numbers (for the spinor/Lorentz index).

i =
j

k
wβ(i) =

Xβ
γδ

p2
i − m2

i

wγ(j)w δ(k)

external lines are not depicted Xβ
γδ describes the interaction of i , j , k

Loop diagrams

A one-loop diagram is an ordered set of sub-trees In = {i1, . . . , in},
connected by loop propagators.

q 0

1

n−1

i1 i2

in-1in

cut D0−−−−−→ N β
α (In; q) =

1

n−1

i1 i2

in-1in

α

β ≡
β

α
In
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From tree recursion to loop diagrams

Recursive construction of tree wave functions

Starting from external legs, connect wave functions wα with vertices and
propagators to recursively build “sub-trees”. Wave functions of sub-trees
are 4-tuples of complex numbers (for the spinor/Lorentz index).

i =
j

k
wβ(i) =

Xβ
γδ

p2
i − m2

i

wγ(j)w δ(k)

external lines are not depicted Xβ
γδ describes the interaction of i , j , k

Loop diagrams

A one-loop diagram is an ordered set of sub-trees In = {i1, . . . , in},
connected by loop propagators.

q 0

1

n−1

i1 i2

in-1in

cut D0−−−−−→ N β
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1
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α

β ≡
β

α
In
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The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

Numerator recursion

Connect sub-trees along the loop to build the numerator

β

α
In =

β

α

in

In−1 N β
α (In; q) = Xβ

γδ(q) N γ
α (In−1; q) w δ(in)

For fixed loop momentum q, the numerator N (q) = Nα
α (q) can be

evaluated by a “conventional” tree generator and used as input for
OPP reduction. [Ossola, Papadopoulos, Pittau]

Done by “old” MadLoop (diagrammatic), or HELAC (current recursion).

By the nature of loop integrals, the functional dependence
on the loop momentum is needed. OPP reduction instead uses
expensive multiple evaluations of N (q) for loop momenta
which satisfy cut conditions Di = Dj = · · · = 0.

OpenLoops:
Nµ1...µr

r encodes the functional dependence on q:
N (q) =

∑

r Nµ1

r . . . qµr
qµ1...µr
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‣  Factorize one-loop amplitude into colour factors, tensor coefficients and tensor integrals 
 

            

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

From loop amplitudes to scalar integrals

To calculate a one-loop amplitude, we start from Feynman diagrams,
factorised into colour factors, tensor coefficients, and tensor integrals.

pN

p1 q

p2 p3

p4

p5

. . .

= C ·
R
∑

r=0

Nµ1...µr

r ·
Di=(q+

∑
i

ℓ=0
pℓ)

2
−m2

i
∫

ddq
qµ1

. . . qµr

D0 D1 . . . DN−1

Reduce amplitude
to a linear combination
of scalar basis integrals

Integrand
reduction

Tensor integral
reduction

∫

ddq

[

∑

i1

ai1

Di1

tadpoles

+
∑

i1,i2

bi1i2

Di1Di2

bubbles

+
∑

i1,i2,i3

ci1i2 i3

Di1Di2Di3

triangles

+
∑

i1,i2,i3,i4

di1i2i3i4

Di1Di2Di3Di4

boxes

]
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From loop amplitudes to scalar integrals

To calculate a one-loop amplitude, we start from Feynman diagrams,
factorised into colour factors, tensor coefficients, and tensor integrals.
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p1 q

p2 p3

p4

p5

. . .

= C ·
R
∑
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r ·
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∑
i
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pℓ)

2
−m2
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∫

ddq
qµ1

. . . qµr

D0 D1 . . . DN−1

Reduce amplitude
to a linear combination
of scalar basis integrals

Integrand
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Tensor integral
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∫

ddq

[

∑

i1

ai1

Di1
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+
∑

i1,i2

bi1i2

Di1Di2
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∑
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∑
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]
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OpenLoops recursion

‣   Recursively build “open loops” polynomials                   
•  disentangle loop momentum q from the coefficients  

 
 

•  recursion in d=4: 

 
 

•  model and process independent algorithm

•  numerical implementation requires only universal building blocks, derived from the Feynma rules of the theory

‣    ε-dimensional part of the numerator x poles of the tensor integrals yield R2 rational terms

•  numerical recursion in D=4 ➞ restore R2  via process independent counter terms
    [Draggiotis, Garzelli, Malamos, Papadopoulos, Pittau ‘09, ‘10; Shao, Zhang, Chao ‘11]

 
 

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

OpenLoops recursion

Start from N β
α (In; q) = Xβ

γδ(q) N γ
α (In−1; q) w δ(in)

and disentangle the loop momentum q from the coefficients

N β
α (In; q) =

n
∑

r=0

N β
µ1...µr ;α(In) qµ1 . . . qµr , Xβ

γδ = Y β
γδ + qνZβ

ν;γδ

Leads to the recursion formula for “open loops” polynomials N β
µ1...µr ;α:

N β
µ1...µr ;α(In) =

[

Y β
γδ N

γ
µ1...µr ;α(In−1) + Zβ

µ1;γδ
N γ

µ2...µr ;α(In−1)
]

w δ(in)

Numerical implementation requires only universal building blocks,
derived from the Feynman rules of the theory.

Naturally works with both, tensor integrals and OPP

Nα
µ1...µr ;α are the coefficients of the tensor integrals.

Fast evaluations of N (q) → input for OPP reduction.
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OpenLoops recursion

Start from N β
α (In; q) = Xβ

γδ(q) N γ
α (In−1; q) w δ(in)

and disentangle the loop momentum q from the coefficients
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n
∑
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γδ N
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µ1...µr ;α(In−1) + Zβ

µ1;γδ
N γ
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]

w δ(in)

Numerical implementation requires only universal building blocks,
derived from the Feynman rules of the theory.

Naturally works with both, tensor integrals and OPP

Nα
µ1...µr ;α are the coefficients of the tensor integrals.

Fast evaluations of N (q) → input for OPP reduction.
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R2 = ([N ]d=4�2✏ � [N ]d=4) · [TI]UV
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OpenLoops recursion:  
recycle loop structures

Complicated diagrams require only 
“last missing piece”

Illustration:

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

Sharing Loop Structures Between Diagrams

β

α

in-1in

In−2

β

α

in-1in

In−2

Open Loops Recycling:
Lower-point open-loops can be
shared between diagrams if the
cut is put appropriately.

⇒ Exploit the freedom of putting the cut and choosing the direction
⇒ to maximise recyclability. In particular, diagrams which are related
⇒ by pinching a loop propagator should be cut equally.

Example:

q

parent

q

child 1

q

child 2
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Sharing Loop Structures Between Diagrams

β

α

in-1in

In−2

β

α

in-1in

In−2

Open Loops Recycling:
Lower-point open-loops can be
shared between diagrams if the
cut is put appropriately.

⇒ Exploit the freedom of putting the cut and choosing the direction
⇒ to maximise recyclability. In particular, diagrams which are related
⇒ by pinching a loop propagator should be cut equally.

Example:

q

parent

q

child 1

q

child 2
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OpenLoops recycling:
Lower-point open-loops can be 
shared between diagrams if 

• cut is put appropriately

• direction chosen to maximise 
recyclability
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OpenLoops recursion

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

OpenLoops recursion

Start from N β
α (In; q) = Xβ

γδ(q) N γ
α (In−1; q) w δ(in)

and disentangle the loop momentum q from the coefficients

N β
α (In; q) =

n
∑

r=0

N β
µ1...µr ;α(In) qµ1 . . . qµr , Xβ

γδ = Y β
γδ + qνZβ

ν;γδ

Leads to the recursion formula for “open loops” polynomials N β
µ1...µr ;α:

N β
µ1...µr ;α(In) =

[

Y β
γδ N

γ
µ1...µr ;α(In−1) + Zβ

µ1;γδ
N γ

µ2...µr ;α(In−1)
]

w δ(in)

Numerical implementation requires only universal building blocks,
derived from the Feynman rules of the theory.

Naturally works with both, tensor integrals and OPP

Nα
µ1...µr ;α are the coefficients of the tensor integrals.

Fast evaluations of N (q) → input for OPP reduction.
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‣   Tensorial coefficients                   can directly be used with tensor integral libraries (COLLIER).  
 
[Denner, Dittmaier, Hofer ; ‘16] 

‣   Fast evaluation of                                                     at multiple q-values,  required in OPP reduction methods (CutTools).  
 
[Ossola, Papadopolous, Pittau; ’07] 

N (q) =
X

Nµ1...µrq
µ1 . . . qµr

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

From tree recursion to loop diagrams

Recursive construction of tree wave functions

Starting from external legs, connect wave functions wα with vertices and
propagators to recursively build “sub-trees”. Wave functions of sub-trees
are 4-tuples of complex numbers (for the spinor/Lorentz index).

i =
j

k
wβ(i) =

Xβ
γδ

p2
i − m2

i

wγ(j)w δ(k)

external lines are not depicted Xβ
γδ describes the interaction of i , j , k

Loop diagrams

A one-loop diagram is an ordered set of sub-trees In = {i1, . . . , in},
connected by loop propagators.

q 0

1

n−1

i1 i2

in-1in

cut D0−−−−−→ N β
α (In; q) =

1

n−1

i1 i2

in-1in

α

β ≡
β

α
In
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=

Z
dDN (q)

D0D1 . . . Dn�1
=

RX

r=0

Nµ1...µr

Z
qµ1 . . . qµr

D0D1 . . . Dn�1| {z }
tensor integral
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On-the-fly OpenLoops reduction

• Interleaved amplitude construction and integrand reduction ⇒ “on-the-fly” (OFR) reduction

• At each Open Loops step perform “on-the-fly” rank=2 ⇒ rank=1 reduction:  

Amplitude generation and tensor reduction in OpenLoops 1

Example:

n: # of attached
external legs

n1 2 3 4 5 6 7

# of tensor

coefficientsrank

1

2

3

4

5

6

7

5

15

35

70

126

210

10

OpenLoops 1 OpenLoops 2

• complexity associated with tensor rank remains small
• allows for very targeted stability improvements

Amplitude generation and tensor reduction in OpenLoops 1

Example:

n: # of attached
external legs

n1 2 3 4 5 6 7

# of tensor

coefficientsrank

1

2

3

4

5

6

7

5

15

35

70

126

210

330
OpenLoops

complexity grows exponentially
with tensor rank

Collier

CutTools

Numerical tensor integral reduction to scalar MI

10

Amplitude generation and tensor reduction in OpenLoops 2

Example:

n1 2 3 4 5 6 7

# of tensor

coefficientsrank

1

2

3

4

5

6

7

5

15

35

70

126

210

330

4 pinched
subtopologies

4 double pinched subtopologies

OpenLoops

+ OFR

complexity associated with tensor
rank remains small!

12
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NLO Tools
• NLO Monte-Carlo integrators (+subtraction): 
• MadGraph_aMC@NLO	(FKS)	

• Sherpa	(CS)	

• POWHEG-BOX	(FKS)	

• Herwig7	(CS)	

• Whizard	(FKS)	

• HelacNLO	(CS)	

• MUNICH	(CS)	

• …

• one-loop (& tree) amplitude provider : 
• BlackHat	(Unitarity)	

• MadLoop	(OpenLoops)	

• GoSam	(Unitarity	&	OPP)	

• OpenLoops	(OpenLoops)	

• Recola	(NLO	Recursion)	

• HelacNLO	(OPP)	

• …

• integral reduction libraries: 
• CutTools	

• Golem95	

• PJFry	

• COLLIER	

• Ninja	

• …• tree amplitude provider : 
• MadGraph	

• Comix	

• Amegic	

• Omega	

• …

• scaler one-loop libraries
• QCDLoop	

• OneLoop	

• COLLIER	

• … 69



Perturbative expansion: revised

d� = d�LO + ↵S d�NLO + ↵EW d�NLOEW

NLO QCD NLO EW
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Relevance of EW higher-order corrections I

Numerically                                    NLO EW ~ NNLO QCD  

Possible large (negative) enhancement due to soft/collinear logs from virtual EW gauge bosons: 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Figure 5: Transverse-momentum distribution for W -boson production at the LHC.
(a) LO distribution for pp→W+j and pp→W−j. (b) Relative NLO (dotted), NLL
(thin solid), NNLL (squares) and NNLO (thick solid) electroweak correction wrt. the
LO distribution for pp→W+j. (c) Relative NLO (dotted), NLL (thin solid), NNLL
(squares) and NNLO (thick solid) electroweak correction wrt. the LO distribution
for pp→W−j.
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Figure 5: Transverse-momentum distribution for W -boson production at the LHC.
(a) LO distribution for pp→W+j and pp→W−j. (b) Relative NLO (dotted), NLL
(thin solid), NNLL (squares) and NNLO (thick solid) electroweak correction wrt. the
LO distribution for pp→W+j. (c) Relative NLO (dotted), NLL (thin solid), NNLL
(squares) and NNLO (thick solid) electroweak correction wrt. the LO distribution
for pp→W−j.
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pp → W++j

[Kühn et. al.; 2007]

co
rr.

O(↵) ⇠ O(↵2
s) )EW Sudakov logarithms at Q ⇠ TeV � MW

Soft/collinear logarithms from virtual EW bosons [Bauer, Becher, Ciafaloni,

Comelli, Denner, Fadin, Kühn, Lipatov, Manohar Martin, Melles, Penin, S.P., Smirnov, . . . ]

Z, W
± bosons ⇠ light particles at ŝ � M

2

W,Z

) large logarithms of IR type

�,Z, W±

Universality and factorisation [Denner,S.P. ’01]

�M
1�loop

LL+NLL
=

↵

4⇡

nX

k=1

8
<

:
1
2

X

l 6=k

X

a=�,Z,W±

I
a(k)I ā(l) ln2 ŝkl

M2
+ �

ew(k) ln
ŝ

M2

9
=

; M0

large negative terms / ↵w ln2(Q2
/M

2

W ) ⇠ 25% � ↵S in any TeV scale observable

size depends on external EW charges: not very large for gg ! tt̄

) EW corrections important for SM tests and BSM searches at TeV scale
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Comelli, Denner, Fadin, Kühn, Lipatov, Manohar Martin, Melles, Penin, S.P., Smirnov, . . . ]

Z, W
± bosons ⇠ light particles at ŝ � M
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Universality and factorisation: [Denner, Pozzorini; ’01] 

➜ overall large effect in the tails of distributions: pT, minv, HT,…

[Ciafaloni, Comelli,’98; 
Lipatov, Fadin, Martin, Melles, '99; 
Kuehen, Penin, Smirnov, ’99;  
Denner, Pozzorini, '00]
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Relevance of EW higher-order corrections II

Real photon radiation
• soft/coll. photon unresolved
• needed to cancel QED singularities

Photon initial states
• QED factorisation needed to absorb IS photon singularities
• possible strong enhancement, e.g. for VV

Real W,Z,h radiation (HBR)
• partial cancellation with virtual Sudakov logs (KLN theorem not applicable) 

(strongly dependent on experimental selection)
• free from singularities ⟹ separate processes 
• themselves receive large virtual EW corrections  

& inclusion requires care (double-counting issues) 

        

EW Sudakov logarithms III

Real photon emission

mandatory since soft/collinear � unresolved

cancels QED singularities

�

Real Z,W emission [Ciafaloni,. . . ]

not mandatory since Z,W always resolved (in principle)

even for inclusive case: only partial ln(ŝ/MW ) cancellation

$ free SU(2) charges, collinear IS logs, kinematic MZ,W e↵ects

Z,W
±

W,Z emissions in practice

free from singularities ) trivial LO implementation as separate processes with extra
W/Z (di↵erent physics!)

typically modest ln(ŝ/MW ) cancellation (strongly process/observable dependent)

S. Pozzorini (Zurich University) Top Physics Top2014 11 / 36
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even for inclusive case: only partial ln(ŝ/MW ) cancellation

$ free SU(2) charges, collinear IS logs, kinematic MZ,W e↵ects

Z,W
±

W,Z emissions in practice

free from singularities ) trivial LO implementation as separate processes with extra
W/Z (di↵erent physics!)

typically modest ln(ŝ/MW ) cancellation (strongly process/observable dependent)

S. Pozzorini (Zurich University) Top Physics Top2014 11 / 36

Other physically/technically nontrivial NLO EW features I

Cancellation of FS Photon singularities

requires IR subtraction method [Catani,Dittmaier,Seymour,

Trocsanyi; Frixione, Kunszt, Signer]

QED–QCD IR interplay requires nontrivial definition of
unresolved photons (e.g. q ! q� fragmentation)

leptons can receive significant corrections

�

Cancellation of IS Photon singularities

requires QED factorisation and PDF evolution [MRST2004, NNPDF2.3]

�-induced processes ) possible TeV scale enhancements (large uncertainty)

�

�

S. Pozzorini (Zurich University) Top Physics Top2014 12 / 36
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• Naively processes with a massive s-channel propagator diverge when  
• Experimentally we now resonances follow Breit-Wigner (BW) shape
• Origin: all-order summation of 1PI corrections to propagator of  

massive particles 
 
 
 
 
 
 
 

• However: this summation mixes different order of perturbation theory.  
Thus, in general it might (and will) break gauge invariance when applied naively.

• (Usually) not a problem at LO, i.e. also for not for vector bosons decays into leptons at NLO QCD

• Alternative: narrow-width approximation (NWA)
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Figure 4.1: Illustration of the process under consideration. The circle illustrates all lowest
order hadronic contributions to the given final state.

of an unstable particle via Dyson summation of self-energy contributions
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where M0 is the bare mass of the intermediate particle and Σ its self-energy contribution,
which is related to its width Γ via the optical theorem: Γ ∼ 1

M ImΣ(M2). However, via
a simple replacement of propagators with their regularized version, only parts of higher-
order contributions are included, and results might become gauge dependent. I.e. , Ward
identities can be violated. A consistent calculation, e.g., within the complex mass scheme,
manifestly preserves gauge invariance at any order of perturbation theory (see for example
ref. [237] for a definition of the complex mass scheme at leading order), however such a
calculation is technically involved, often computationally prohibitive and will not be pursued
here. Approximations used in this work at LO and NLO are discussed in the following.

4.2.1 Born approximations

To be specific, we want to consider the process illustrated in figure 4.1, i.e. the hadroproduc-
tion of two jets j = {q, q̄, g} and two electroweak gauginos χ̃l = {χ̃0

l , χ̃
±
l } at LO,

pp → jjχ̃iχ̃j(+X) . (4.2)

The two gauginos are assumed to be stable for the moment. If unstable they decay via an
electroweak decay chain which is unaffected by NLO QCD corrections1. For χi,j = χ̃0

1 this
processes directly contributes to the experimental signature pp → 2j+ E̸T (+X), which chap-
ter 5 is dedicated to.

Within the MSSM the dominant contribution to process (4.2) comes from on-shell or
nearly on-shell intermediate squarks, if kinematically available. Thus, the complete leading-
order matrix element for the corresponding partonic process can be expanded in poles of
different orders and is given by

M =
R12(k21 , k

2
2 , {θi})

(k21 −M2
q̃1
)(k22 −M2

q̃2
)
+

R1(k21, k
2
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+
R2(k21 , k

2
2 , {θi})

k22 −M2
q̃2

+N(k21 , k
2
2 , {θi}) , (4.3)

1From three-body decays or from the decay of SM gauge bosons or Higgs bosons in the electroweak decay
chain, colored objects can still be emitted. However, corresponding QCD corrections are sub-leading.

Decays of heavy particles

p2 = M2

�/M ! 0

1

p2 � k2
propagator ~

propagator ~

However: unable to capture off-shell effects

=
1

p2 �M0
+

1

p2 �M0
(�i⌃)

1

p2 �M0
+ . . .

=
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M ImΣ(M2). However, via
a simple replacement of propagators with their regularized version, only parts of higher-
order contributions are included, and results might become gauge dependent. I.e. , Ward
identities can be violated. A consistent calculation, e.g., within the complex mass scheme,
manifestly preserves gauge invariance at any order of perturbation theory (see for example
ref. [237] for a definition of the complex mass scheme at leading order), however such a
calculation is technically involved, often computationally prohibitive and will not be pursued
here. Approximations used in this work at LO and NLO are discussed in the following.

4.2.1 Born approximations

To be specific, we want to consider the process illustrated in figure 4.1, i.e. the hadroproduc-
tion of two jets j = {q, q̄, g} and two electroweak gauginos χ̃l = {χ̃0

l , χ̃
±
l } at LO,

pp → jjχ̃iχ̃j(+X) . (4.2)

The two gauginos are assumed to be stable for the moment. If unstable they decay via an
electroweak decay chain which is unaffected by NLO QCD corrections1. For χi,j = χ̃0

1 this
processes directly contributes to the experimental signature pp → 2j+ E̸T (+X), which chap-
ter 5 is dedicated to.

Within the MSSM the dominant contribution to process (4.2) comes from on-shell or
nearly on-shell intermediate squarks, if kinematically available. Thus, the complete leading-
order matrix element for the corresponding partonic process can be expanded in poles of
different orders and is given by
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1From three-body decays or from the decay of SM gauge bosons or Higgs bosons in the electroweak decay
chain, colored objects can still be emitted. However, corresponding QCD corrections are sub-leading.

Optical theorem→
=

1

k2 �M2
0 � iM0�

1Z

�1

dk2

(k2 �m2)2 +m2�
=

⇡

m�
�(k2 �m2)

Z
dk2|M |2 ⇠ ⇠ BW

1Z
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dk2

(k2 �m2)2 +m2�
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⇡

m�
�(k2 �m2)

Advantage: reduces complexity in NLO computation
:



‣   Leptonic decays of gauge bosons are trivial at NLO QCD.  At NLO EW corrections in 
production, decay and non-factorizable contributions have to be considered.

‣   Scheme of choice: complex-mass-scheme [Denner, Dittmaier, et. al.]

•  gauge invariant and exact NLO 
•  computationally very expensive: one extra leg per two-body decay

‣   Analytical continuation at the level of the Lagrangian: M→M-iΓM 
➡effects propagators, incl. numerators
➡all derived couplings, incl. weak mixing angle:
➡position of the pole in the renormalisation

Decays of heavy particlesDecays of Z/W bosons

Leptonic Z and W decays are notrivial at NLO EW (in contrast to NLO QCD)

NLO EW corrections to production⇥resonance⇥decay + non-fact corrections

W
+p

p

⌫

`
+

W
+p

p

⌫

`
+

W
±p

p

⌫

`
+

Option A: complex mass scheme [Denner, Dittmaier]

exact NLO description (always desirable)

high complexity corresponding to total number of particles after decays

Option B: narrow-width approximation (production⇥decay)

simpler but applicability to V+multijets limited to certain O
�
↵
n
S↵

m+1
�
(see later)

captures all large ln(ŝ/M2

W ) e↵ects (present only in production sub-process)

typical uncertainty <
⇠ 1–3% (apart form �

⇤
/Z

⇤
! `

+
`
� at small m``)

S. Pozzorini (Zurich University) V +multijets EW SM@LHC2015 8 / 28

sin ✓2W = 1� M2
W

M2
Z
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NLO Tools

• one-loop (& tree) amplitude provider : 
• BlackHat	(Unitarity)	

• MadLoop	(OpenLoops)	

• GoSam	(Unitarity	&	OPP)	

• OpenLoops	(OpenLoops)	

• Recola	(NLO	Recursion)	

• HelacNLO	(OPP)	

• …

• integral reduction libraries: 
• CutTools	

• Golem95	

• PJFry	

• COLLIER	

• Ninja	

• …• tree amplitude provider : 
• MadGraph	

• Comix	

• Amegic	

• Omega	

• …

• scaler one-loop libraries
• QCDLoop	

• OneLoop	

• COLLIER	

• …

• NLO Monte-Carlo integrators (+subtraction): 
• MadGraph_aMC@NLO	(FKS)	

• Sherpa	(CS)	

• POWHEG-BOX	(FKS)	

• Herwig7	(CS)	

• Whizard	(FKS)	

• HelacNLO	(CS)	

• MUNICH	(CS)	

• …
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Perturbative expansion: revised II

      γ, Z      γ, Z      

d� = d�(↵n
s↵

m) + d�(↵n�1
s ↵m+1) + �(↵n�2

s ↵m+2) + . . .

γ, Z
Example: qq̅ → qq̅

• In general combined expansion in αS and α necessary:

LO “subleading Born contributions”: LO2, LO3
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d� = d�(↵n
s↵

m) + d�(↵n�1
s ↵m+1) + �(↵n�2

s ↵m+2) + . . .

LO

• In general combined expansion in αS and α necessary:

• also at NLO:

· · ·+ �(↵n+1
s ↵m) + d�(↵n

s↵
m+1) + �(↵n�1

s ↵m+2) + �(↵n�2
s ↵m+3) + . . .

“NLO QCD” “NLO EW” “subleading one-loop contributions”: NLO3, NLO4

O(↵s) O(↵)

“subleading Born contributions”: LO2, LO3
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Perturbative expansion: revised II



      γ, Z      γ, Z      

d� = d�(↵n
s↵

m) + d�(↵n�1
s ↵m+1) + �(↵n�2

s ↵m+2) + . . .

γ, Z

• In general combined expansion in αS and α necessary:

Example: qq̅ → qq̅

· · ·+ �(↵n+1
s ↵m) + d�(↵n

s↵
m+1) + �(↵n�1

s ↵m+2) + �(↵n�2
s ↵m+3) + . . .

• also at NLO:

LO “subleading Born contributions”: LO2, LO3

“NLO QCD” “NLO EW” “subleading one-loop contributions”: NLO3, NLO4
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Perturbative expansion: revised II



      γ, Z      γ, Z      

d� = d�(↵n
s↵

m) + d�(↵n�1
s ↵m+1) + �(↵n�2

s ↵m+2) + . . .

γ, Z

• In general combined expansion in αS and α necessary:

Example: qq̅ → qq̅

· · ·+ �(↵n+1
s ↵m) + d�(↵n

s↵
m+1) + �(↵n�1

s ↵m+2) + �(↵n�2
s ↵m+3) + . . .

• also at NLO:

γ, Z

γ γ

γ, Z

γ, Z

LO “subleading Born contributions”: LO2, LO3

“NLO QCD” “NLO EW” “subleading one-loop contributions”: NLO3, NLO4
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Perturbative expansion: revised II



      γ, Z      γ, Z      

d� = d�(↵n
s↵

m) + d�(↵n�1
s ↵m+1) + �(↵n�2

s ↵m+2) + . . .

γ, Z

• In general combined expansion in αS and α necessary:

Example: qq̅ → qq̅

· · ·+ �(↵n+1
s ↵m) + d�(↵n

s↵
m+1) + �(↵n�1

s ↵m+2) + �(↵n�2
s ↵m+3) + . . .

• also at NLO:

γ, Z

γ γ

γ, Z

γ, Z

Note:          

• No diagrammatic separation in NLO QCD and EW

• An IR finite & gauge invariant result is only obtained 
including all virtual and real contributions of a given 
perturbative order. 

LO “subleading Born contributions”: LO2, LO3

“NLO QCD” “NLO EW” “subleading one-loop contributions”: NLO3, NLO4
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Perturbative expansion: revised II



Example: dijet production at the LHC
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Figure 2. Single-inclusive transverse momentum.

was previously mentioned, a solid (dashed) pattern indicates that the corresponding result

is positive (negative). The three LO results are displayed as histograms overlaid with

symbols: red with full diamonds for ⌃LO1
, green with open boxes for ⌃LO2

, and brown

with open circles for ⌃LO3
. The four NLO results are associated with plain histograms:

blue for ⌃NLO1
, purple for ⌃NLO2

, yellow for ⌃NLO3
, and cyan for ⌃NLO4

; the sum of all

contributions is represented by the black histogram. The middle inset presents the ratios

of the results shown in the upper inset, over the all-orders prediction; in other words, these

are the fractional contributions of the ⌃LOi and ⌃NLOi terms to the most accurate result

obtained from our simulations. The patterns employed in the middle inset are identical

to those of the upper inset. Finally, the bottom inset presents the relative theoretical

– 12 –

[Frederix et al.: 1612.06548] 

LO1

LO2

LO3

NLO1

NLO2

NLO3
NLO4

Be aware of double counting: LO3 = DY with hadronic decays
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Rare electroweak processes

W

W

W

W

vector-boson scattering

W

W

W

W

VVV production

→ talk of E.Maina

Stefan Dittmaier, Standard Model Theory EPS Conference on HEP, Venice, July 5–12, 2017 – 32

•direct access to quartic EW gauge couplings 
•VBS: longitudinal gauge bosons at high energies 
•VBS key process to investigate electroweak symmetry 
breaking (off-shell Higgs exchange ensures unitarity)

Physics goals in VBS and VVV production

• direct access to quartic EW gauge couplings

W

W

W

W

• longitudinal gauge bosons at high energies

↪→ probe SM unitarization mechanism

• window to electroweak symmetry breaking

via off-shell Higgs exchange

H

W

W

W

W

Note: severe QCD background to VBS signatures

W

W

g

g

g

W

W
g

Wγ/Z

W

Stefan Dittmaier, Standard Model Theory EPS Conference on HEP, Venice, July 5–12, 2017 – 33

Interpretation of multi-particle processes: case study VBS

Signature: 2l + 2n + 2 jets
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Note: severe QCD background to VBS signatures + interference:

Physics goals in VBS and VVV production

• direct access to quartic EW gauge couplings

W

W

W

W

• longitudinal gauge bosons at high energies

↪→ probe SM unitarization mechanism

• window to electroweak symmetry breaking

via off-shell Higgs exchange

H

W

W

W

W

Note: severe QCD background to VBS signatures

W

W

g

g

g

W

W
g

Wγ/Z

W

Stefan Dittmaier, Standard Model Theory EPS Conference on HEP, Venice, July 5–12, 2017 – 33

vs.
Physics goals in VBS and VVV production

• direct access to quartic EW gauge couplings

W

W

W

W

• longitudinal gauge bosons at high energies

↪→ probe SM unitarization mechanism

• window to electroweak symmetry breaking

via off-shell Higgs exchange

H

W

W

W

W

Note: severe QCD background to VBS signatures

W

W

g

g

g

W

W
g

Wγ/Z

W

Stefan Dittmaier, Standard Model Theory EPS Conference on HEP, Venice, July 5–12, 2017 – 33

d� = d�(↵2
S↵

4) + d�(↵S↵
5) + d�(↵6) + . . .

QCD-background VBS-signalinterference

LO

NLO· · ·+ d�(↵3
S↵

4) + d�(↵2
S↵

5) + d�(↵S↵
6) + �(↵7)

“NLO QCD” “NLO EW”

O(↵s)

O(↵)

“NLO QCD”“NLO EW”

O(↵s)

O(↵)

VV+2jets production
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Note: severe QCD background to VBS signatures + interference:

Physics goals in VBS and VVV production

• direct access to quartic EW gauge couplings

W

W

W

W

• longitudinal gauge bosons at high energies

↪→ probe SM unitarization mechanism

• window to electroweak symmetry breaking

via off-shell Higgs exchange

H

W

W

W

W

Note: severe QCD background to VBS signatures

W

W

g

g

g

W

W
g

Wγ/Z

W

Stefan Dittmaier, Standard Model Theory EPS Conference on HEP, Venice, July 5–12, 2017 – 33

vs.
Physics goals in VBS and VVV production

• direct access to quartic EW gauge couplings

W

W

W

W

• longitudinal gauge bosons at high energies

↪→ probe SM unitarization mechanism

• window to electroweak symmetry breaking

via off-shell Higgs exchange

H

W

W

W

W

Note: severe QCD background to VBS signatures

W
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g

g

g

W

W
g

Wγ/Z

W

Stefan Dittmaier, Standard Model Theory EPS Conference on HEP, Venice, July 5–12, 2017 – 33

d� = d�(↵2
S↵

4) + d�(↵S↵
5) + d�(↵6) + . . . LO

NLO· · ·+ d�(↵3
S↵

4) + d�(↵2
S↵

5) + d�(↵S↵
6) + �(↵7)

“NLO QCD” “NLO EW”

O(↵s)

“NLO QCD”“NLO EW”

O(↵)

➡ separation meaningless at NLO 
➡ only well defined measurements: fiducial cross sections

QCD-background VBS-signalinterference

VV+2jets production



LO contributions at: O
�
↵6

�
, O

�
↵s↵5

�
, and O

�
↵s

2↵4
�

(EW contribution/signal, interference, and QCD
contribution/background)

! Example of W+W+:
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[Ballestrero, MP et al.; 1803.07943]

The contributions have di↵erent kinematic

Need for exclusive cuts to enhance
the EW contribution
! typical cuts are mjj and |�yjj|.

Common
feature
of all VBS
signatures

Mathieu PELLEN Theory predictions for vector-boson scattering at the LHC 13 / 48
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The contributions have di↵erent kinematic

Need for exclusive cuts to enhance
the EW contribution
! typical cuts are mjj and |�yjj|.

Common
feature
of all VBS
signatures
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VBS

d� = d�(↵2
S↵

4) + d�(↵S↵
5) + d�(↵6) + . . .

[Ballestrero, et al.; 1803.07943] 

•The three contributions have very different kinematics 
• typical “VBF” cuts to enhance EW mode: Δyjj > 2.5 and mjj ~> 500 GeV
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The contributions have di↵erent kinematic

Need for exclusive cuts to enhance
the EW contribution
! typical cuts are mjj and |�yjj|.

Common
feature
of all VBS
signatures

Mathieu PELLEN Theory predictions for vector-boson scattering at the LHC 13 / 48
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VBS production @ NLO QCD (in VBF-approx)

FIG. 4: Invariant mass distribution of the tagging jets in WBF pp → e+νeµ
+νµjj production at

the LHC for two different choices of µ0 [panels (a) and (b)] at LO (dashed) and NLO (solid). Their

ratios, the K factors as defined in Eq. (8), are displayed for µ0 = mW in panel (c) and for µ0 = Q

in panel (d).

entire range of Mjj for µ0 = Q, but pronounced shape distortions at LO for µ0 = mW .

IV. SUMMARY AND CONCLUSIONS

In this work, we have presented a NLO-QCD calculation for WBF W+W+jj and

W−W−jj production at the LHC, which takes leptonic decays of the weak gauge bosons

fully into account. We have developed a flexible Monte-Carlo program that allows for the

calculation of cross sections and distributions within typical WBF cuts. The QCD correc-
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[Jäger, Oleari, Zeppenfeld, ’09]

• very small QCD corrections 
(as for all VBF-type processes)
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VBS-W+W+ @ full NLO 

Set-up of Ref. [9] Present work DHK [9]

σLO [fb] 1.2230(4) 1.2218(2)

σNLO [fb] 1.2975(15) 1.2917(8)

Table 6: Comparison of fiducial cross sections at LO [order O
(

α6
)

] and NLO [order O
(

αsα4
)

]

for the process pp → µ+νµe+νejj against the literature in the set-up of Ref. [9]. DHK denotes

the results of Ref. [9]. The cross sections are expressed in femtobarn and the statistical

uncertainty from the Monte Carlo integration on the last digit is given in parenthesis.
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Figure 5: Transverse-momentum distributions at a centre-of-mass energy
√
s = 13TeV at

the LHC for pp → µ+νµe+νejj: (a) for the anti-muon (left) and (b) the hardest jet (right).

The upper panels show the three LO contributions as well as the sum of all NLO predictions.

The two lower panels show the relative NLO corrections with respect to the full LO, defined

as δi = δσi/
∑

σLO, where i = O
(

α7
)

,O
(

αsα6
)

,O
(

α2
sα

5
)

,O
(

α3
sα

4
)

. In addition, the NLO

photon-induced contributions of order O
(

α7
)

computed with LUXqed is provided separately.

butions are presented along with the NLO photon-induced contributions of order O
(

α7
)

. The

latter are computed for the LUXqed PDF and are thus normalised to the Born contributions

obtained with the corresponding PDF. Remember that these photon-induced contributions

are not included in our definition of the NLO corrections of order O
(

α7
)

.

In Fig. 5, two transverse-momentum distributions are displayed. Starting with the distri-

bution in the transverse momentum of the anti-muon, the upper panel in Fig. 5a shows that

the EW-induced contribution is dominant over the whole phase space. Concerning the relative

NLO corrections in the lower panel, the largest contribution is the one of order O
(

α7
)

. It

ranges from −10% at 20GeV (the cut on the transverse momentum of the charged lepton) to

−40% at 800GeV. The large corrections for high transverse momenta are due to logarithms of

– 14 –

SM predictions for VBS

NLO QCD
+ parton shower:

VBS Jäger et al. ’06–’09; Denner et al. ’12

QCD VBS bkg Melia et al. ’10,’11; Greiner et al. ’12; Campanario et al ’13

(Pure) NLO EW for W+W+ + 2jets: Biedermann, Denner, Pellen ’16
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2 → 6 particles at NLO EW !
(8-point functions)

1-loop automation with

RECOLA + COLLIER

Actis et al. ’16 Denner et al. ’16

• VBS cuts: Mjj > 500GeV, pT,j > 30GeV, pT,ℓ > 20GeV, etc.

• NLO EW corr. to σ: −16% → relevant for upcoming measurements !

Stefan Dittmaier, Standard Model Theory EPS Conference on HEP, Venice, July 5–12, 2017 – 35

[Biedermann, Denner, Pellen ’16+’17] 

•2 → 6 particles at NLO EW !
•highly challenging computation! 

•NLO corrections dominated by α7 : 

SM predictions for VBS

NLO QCD
+ parton shower:
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Order O
(

α7
)

O
(

αsα6
)

O
(

α2
sα

5
)

O
(

α3
sα

4
)

Sum

δσNLO [fb] −0.2169(3) −0.0568(5) −0.00032(13) −0.0063(4) −0.2804(7)

δσNLO/σLO [%] −13.2 −3.5 0.0 −0.4 −17.1

Table 3: NLO corrections for the process pp → µ+νµe+νejj at the orders O
(

α7
)

, O
(

αsα6
)

,

O
(

α2
sα

5
)

, and O
(

α3
sα

4
)

and for the sum of all NLO corrections. The contribution δσNLO

corresponds to the absolute correction for the central scale choice while δσNLO/σLO gives the

relative correction normalised to the sum of all LO contributions at the central scale. The

absolute contributions are expressed in femtobarn while the relative ones are expressed in per

cent. The statistical uncertainty from the Monte Carlo integration on the last digit is given

in parenthesis.

at the fiducial cross-section level. The hierarchy of the NLO corrections follows roughly the

pattern observed at LO: at the integrated cross-section level, each NLO correction is roughly

one order of magnitude smaller than the corresponding LO contribution. Thus, one expects

that the bulk of the O
(

αsα6
)

corrections stems from the QCD corrections to the EW-induced

process, while only a small contribution results from the EW corrections to the interference.

We emphasise, however, again that QCD corrections to the EW-induced process and EW

corrections to the LO interference cannot be defined independently. Indeed, using the full

matrix element, they both contribute at the order O
(

αsα6
)

as discussed in Sect. 2.2. The

contributions at the order O
(

α2
sα

5
)

are small because the corresponding LO contributions are

already suppressed and moreover the EW corrections to the QCD-induced LO contribution

and the QCD corrections to the LO interference cancel to a large extent. Upon calculating

the NLO cross section with the different scales of Eq. (3.11), we find

σNLO = 1.3577(7)+1.2(1)%
−2.7(1)% fb, (3.13)

i.e. a reduction of the LO scale dependence by a factor five.

We have also calculated the photon-induced NLO contributions as shown in Table 4. Since

the photon PDF from the NNPDF-3.0 QED set is known to give rather sizeable contributions

with a large error, we have also calculated these contributions using the PDF of the recent

LUXqed_plus_PDF4LHC15_nnlo_100 set [51]. For LUXqed we use the MS factorisation

scheme throughout, while we have verified that the effect of the factorisation scheme is irrel-

evant at the level of accuracy of the results given. The photon-induced NLO contributions

are dominated by those of order O
(

α7
)

and amount to 2.7% based on NNPDF-3.0 QED and

1.5% based on LUXqed. The photon-induced contributions of orders O
(

αsα6
)

and O
(

α2
sα

5
)

are negligible. Hence in the following, only the photon-induced contributions of order O
(

α7
)

are displayed in the distributions. Note that in our definition of the NLO corrections at order

O
(

α7
)

, the photon-induced contributions are not included but are shown separately. This

means that for the combined distributions (Fig. 7), the NLO predictions do not include the

photon-induced contributions.
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•VERY large inclusive EW corrections  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! Huge NLO electroweak correction (!)
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Set-up of Ref. [9] Present work DHK [9]

σLO [fb] 1.2230(4) 1.2218(2)

σNLO [fb] 1.2975(15) 1.2917(8)

Table 6: Comparison of fiducial cross sections at LO [order O
(

α6
)

] and NLO [order O
(

αsα4
)

]

for the process pp → µ+νµe+νejj against the literature in the set-up of Ref. [9]. DHK denotes

the results of Ref. [9]. The cross sections are expressed in femtobarn and the statistical

uncertainty from the Monte Carlo integration on the last digit is given in parenthesis.
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Figure 5: Transverse-momentum distributions at a centre-of-mass energy
√
s = 13TeV at

the LHC for pp → µ+νµe+νejj: (a) for the anti-muon (left) and (b) the hardest jet (right).

The upper panels show the three LO contributions as well as the sum of all NLO predictions.

The two lower panels show the relative NLO corrections with respect to the full LO, defined

as δi = δσi/
∑

σLO, where i = O
(
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)

,O
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)
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)

. In addition, the NLO

photon-induced contributions of order O
(
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)

computed with LUXqed is provided separately.

butions are presented along with the NLO photon-induced contributions of order O
(
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)

. The

latter are computed for the LUXqed PDF and are thus normalised to the Born contributions

obtained with the corresponding PDF. Remember that these photon-induced contributions

are not included in our definition of the NLO corrections of order O
(
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)

.

In Fig. 5, two transverse-momentum distributions are displayed. Starting with the distri-

bution in the transverse momentum of the anti-muon, the upper panel in Fig. 5a shows that

the EW-induced contribution is dominant over the whole phase space. Concerning the relative

NLO corrections in the lower panel, the largest contribution is the one of order O
(
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)

. It

ranges from −10% at 20GeV (the cut on the transverse momentum of the charged lepton) to

−40% at 800GeV. The large corrections for high transverse momenta are due to logarithms of
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! Huge NLO electroweak correction (!)
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NLO EW corrections

E↵ective vector-boson approximation:

u

u

d

d

⌫e

e+

⌫µ

µ+

W+

W+

Simplify the discussion to W+W+
! W+W+

Leading logarithm approximation [Denner, Pozzorini; hep-ph/0010201]
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(double EW logs, collinear single EW logs, and single logs from

parameter renormalisation included) (angular-dependant logarithms omitted)
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NLO EW corrections

�LL = �LO
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For Q = hm4`i ⇠ 390GeV

�LLEW = �16% (!)

! Corrections 3-4 times larger than for qq̄ ! W+W+

C ew larger for bosons than fermions

hm4`i larger for VBS (massive t-channel [Denner, Hahn; hep-ph/9711302])
NB: hm4`i ⇠ 250GeV for qq̄ ! W+W+

Large NLO EW corrections:
intrinsic feature of VBS at the LHC
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➡Large NLO EW corrections:  
 intrinsic feature of  VBS at the LHC 

VBS-W+W+ @ full NLO 
[Biedermann, Denner, Pellen ’16+’17] 
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Quality of VBF approximation @  LO

[Slide: M. Pellen]

Quality of the VBS approximation (LO)
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[Ballestrero, MP et al.; 1803.07943]

For low mjj and low �yjj, significant s-channel
contributions
! tri-boson contributions with resonant W-boson

Good approximation in fiducial region for W+W+

! confirmed for W±Z [Andersen, MP et al.; 1803.07977]

Common
feature
of all
VBS sig-
natures
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Physics goals in VBS and VVV production

• direct access to quartic EW gauge couplings

W

W

W

W

• longitudinal gauge bosons at high energies

↪→ probe SM unitarization mechanism

• window to electroweak symmetry breaking

via off-shell Higgs exchange

H

W

W

W

W

Note: severe QCD background to VBS signatures
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W
g

Wγ/Z
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Stefan Dittmaier, Standard Model Theory EPS Conference on HEP, Venice, July 5–12, 2017 – 33
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Quality of VBF approximation @  NLO

[Slide: M. Pellen]

Quality of the VBS approximation (NLO)
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The approximations are in general worse at NLO

Approximation can fail by up to 20% even in fiducial region
! OK now for current experimental precision but might be
important in the future

Similar behaviour expected for other signatures:
! but harder to predict
! full computation not available for other signatures (yet)
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Physics goals in VBS and VVV production

• direct access to quartic EW gauge couplings
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• longitudinal gauge bosons at high energies

↪→ probe SM unitarization mechanism

• window to electroweak symmetry breaking
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Figure 3: Di�erential distributions at LO and NLO for pp æ µ
+

‹µe+
‹eb̄bb̄b: transverse

momentum of the two bottom quarks not originating from a top quark, and invariant mass of
the two bottom quarks not originating from a top quark.

originating from a top quark by maximising the likelihood function L, defined as a product of
two Breit–Wigner distributions corresponding to the top-quark and antitop-quark propagators,

Lij = 1
1
p

2

µ≠‹̄µbi
≠ m

2
t

22

+ (mt�t)2

1
1
p

2

e+‹ebj
≠ m

2
t

22

+ (mt�t)2

, (3.4)

where the momenta pabc are defined as pabc = pa + pb + pc. The combination of bottom quarks
{bi, bj} that maximises this function defines the two bottom quarks originating from top
quarks. From the 2 or 3 bottom quarks left in the event, the two hardest ones, i.e. those with
highest transverse momenta, define the bottom–antibottom pair that does not originate from
the top-quark decay and whose transverse-momentum and invariant-mass distributions are
shown in Figure 3. The distribution in the transverse momentum of the two bottom quarks
not coming from a top decay shows rather stable corrections around 100% apart from low
transverse momentum, where the QCD corrections reach 110%. The di�erence between the
full calculation and the one in DPA does not show significant variations over the phase space
neither at LO nor at NLO QCD but is largely inherited from the fiducial cross section. In
particular, the di�erence between the tt-DPA and the full calculation at NLO is within the
integration errors, as for all following distributions. The distribution in the invariant mass of
the bottom–antibottom pair, on the other hand, exhibits larger variations between the full
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Precision for the highest multiplicities
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Figure 4: Di�erential distributions at LO and NLO for pp æ µ
+

‹µe+
‹eb̄bb̄b: transverse

momentum of the second-hardest b jet, rapidity of the hardest b jet, invariant mass of the
hardest and second-hardest b jet, and HT observable (see text for definition).

qualitative behaviour. The full NLO QCD corrections are essentially flat in this distribution.
They are a bit above +100% at rapidity 2.5 and slightly below +100% in the central region.
The distribution in the invariant mass of the two hardest bottom quarks is depicted in the
bottom left of Figure 4. These bottom quarks can either originate from a top-quark decay
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         (2->6) @ NLO QCD

• Thorough understanding of theory systematics in this channel crucial for  
  ttH measurements where H->bb  

• ttbb receives sizeable QCD corrections 
• Very important confirmation of (ttbb) double pole approximation 



Back to the perturbative expansion…

d� = d�LO + ↵S d�NLO + ↵EW d�NLOEW

+↵2

S d�NNLO + ↵2

EW
d�NNLOEW + ↵S↵EW d�NNLOQCDxEW

NLO QCD NLO EW

NNLO QCD NNLO EW NNLO QCD-EW

92

In order to match experimental precision  
NNLO QCD is becoming mandatory for 
many processes
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“Slicing” Subtraction

•qT-subtraction: pp→V, pp→H, pp→VV/4l, pp→HH
•N-jettiness subtraction: pp→V+jet
•Projection to Born: pp→H+2jet (VBF)

•Antenna subtraction: pp→V+jet, pp→2jets, …
•Sector decomposition: pp→tt, pp→AAA 
•“colourful” subtraction: e+e-→3jets
•join subtraction and sector decomposition: pp→VH,…

➡ Pretty much all 2→2 processes are known at NNLO QCD
➡ First steps towards 2→3 (pp→AAA down since 2019)
➡ Bottleneck: two-loop virtual amplitudes (can not cover here) 10�5
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Figure 2. pT distribution of the hardest photon �1 (left), �2 (center) and the softest one �3 (right). Top
plot shows the absolute distribution at NNLO (red), NLO (blue) and LO (green) versus ATLAS data
(black). Middle plot shows same distributions but normalized to the NLO. Bottom plot shows central
NNLO predictions for 6 di↵erent scale choices (only the central scale is shown) with respect to the
default choice µ0 = HT /4. The bands represent the 7-point scale variations about the corresponding
central scales.

In general we observe that the scale variation increases when going from LO to NNLO

and that all scales are consistent at a given order within their scale uncertainties. For a

proper interpretation of the reliability of the theoretical predictions it is therefore imperative

to understand the issue of perturbative convergence. We devote sec. 3.4 to this issue but here

we only say in advance that we believe the NNLO predictions are probably the first order for

which the theory prediction, with its associated scale variation, is reliable.

To summarize, based on the above discussion we conclude that our default scale choice

is in perfect agreement with the experimental measurement

�fid(ATLAS) = 72.6 ± 6.5(stat.) ± 9.2(syst.) fb ,

�fid(NNLO QCD; HT /4) = 67.5+7.4 (11%)
�5.7 (8%) (scales) fb . (3.5)

Clearly, the inclusion of the NNLO QCD correction plays a crucial role in this agreement.

The MC error on the fiducial NNLO prediction is below 1%. The fiducial predictions

based on the various scale choices are available in electronic form with the arXiv submission

of this article.

3.3 Di↵erential distributions

A very large number of di↵erential distributions have been measured by the ATLAS collabo-

ration in ref. [67]. In this work we have computed the theory predictions in NNLO QCD for

all of them.

We start by showing in fig. 2 the predictions for the pT distributions of the three individual

photons: the hardest one �1 (left), �2 (center) and the softest one �3 (right). We show the

– 9 –
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Consider again γ*→qq  (dijet production in e+e-)  

Soft gluon amplitude
[e+e� ! qq̄]

[Soft-collinear emission]

Start with �⇤ ! qq̄:

Mqq̄ = �ū(p1)ieq�µv(p2)
−ie γ µ

p1

p2

Emit a gluon:

Mqq̄g = ū(p1)igs ✏/t
A i

p/
1
+ /k

ieq�µv(p2)

� ū(p1)ieq�µ
i

p/
2
+ /k

igs ✏/t
Av(p2)

Make gluon soft ⌘ k ⌧ p1,2; ignore terms suppressed by powers of k :

Mqq̄g ' ū(p1)ieq�µt
Av(p2) gs

✓
p1.✏

p1.k
�

p2.✏

p2.k

◆
p/v(p) = 0,

p//k + /kp/ = 2p.k

Gavin Salam (CERN) QCD basics 2 5 / 17

For this process we can define n-jet rates: 

Our method
To make the discussion simpler, let us consider                                as an examplee+e� � 2 jets

Same LO topology after crossing

RLO
2jets = 1

Consider the two-jet rate:

At LO all events are two-jet like

RNLO
2jets = 1�RLO

3jets

At NLO all events are two-jet like except 
those that contribute to the LO three-jet rate

��, Z

q

q̄

S. Catani, MG (2007)

Rn�jets = �(> n� jets)/�(tot)

?
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Our method
To make the discussion simpler, let us consider                                as an examplee+e� � 2 jets

Same LO topology after crossing

RLO
2jets = 1

Consider the two-jet rate:

At LO all events are two-jet like

RNLO
2jets = 1�RLO

3jets

At NLO all events are two-jet like except 
those that contribute to the LO three-jet rate

RNNLO
2jets = 1�RNLO

3jets �RLO
4jets

At NNLO all events are two-jet 
like except those that 
contribute to the NLO three-jet 
rate and to the LO four jet rate

��, Z

q

q̄

S. Catani, MG (2007)

At NNLO all events are two-jet like except 
those that contribute to the NLO three-jet 
rate and to the LO four jet rate 

➡Use NLO (LO) information to construct NNLO objects
➡In general:               can be obtained from an                 computationRNnLO

2jet N
n�1

LO
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•This method can be applied to compute NNLO QCD corrections to any pp→F processes,  
where F is a colourless system (F may consist of lepton-pairs, vector bosons, Higgs Bosons,…)

S. Catani, MG (2007)

Let us consider a more general class of processes: the production of colourless 
high-mass systems F in hadron collisions (F may consist of lepton pairs, vector 
bosons, Higgs bosons......)

Strategy: start from NLO calculation of F+jet(s) and observe that as soon as
                  the transverse momentum of the F               one can write:

qT → 0

qT ̸= 0

But.....
the singular behaviour of                       is well known from  the resummation
program of large logarithmic contributions at small transverse momenta

G. Parisi, R. Petronzio (1979)
 J. Collins, D.E. Soper, G. Sterman (1985)

S. Catani, D. de Florian, MG (2000)

cc̄� F

d�F
(N)NLO|qT �=0 = d�F+jets

(N)LO

d�F+jets
(N)LO

Define a counterterm to deal with singular behaviour at

At LO it starts with F
c

c̄

The qT subtraction method

i1

i2

LO qT=pT(F)=0

NNLO

NLO d�F

NLO
|qT 6=0 = d�F+jets

LO

d�F

NNLO
|qT 6=0 = d�F+jets

NLO

•For which standard NLO techniques can be used
•However,                               (IR singular)

Missing contribution: d�F

NNLO
|qT!0

d�F

NLO
|qT!0 ! 1
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choose

where

Then the calculation can be extended to include the                  contribution:qT = 0

where I have subtracted the truncation of the counterterm at (N)LO and added 
a contribution at                  to restore the correct normalizationqT = 0

The function            can be computed in QCD perturbation theory

d�F
(N)NLO = HF

(N)NLO ⇥ d�F
LO +

�
d�F+jets

(N)LO � d�CT
(N)LO

⇥

HF

HF = 1 +
��S

⇥

⇥
HF (1) +

��S

⇥

⇥2
HF (2) + .......

d�CT ⇥ d�(LO) � �F (qT /Q)

�F (qT /Q) �
⇥⇤

n=1

��S

⇥

⇥n 2n⇤

k=1

�F (n;k) Q
2

q2
T

lnk�1 Q2

q2
T

Solution: construct counterterm which subtracts the singularity for qT→0 based on eikonal 
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where

Then the calculation can be extended to include the                  contribution:qT = 0

where I have subtracted the truncation of the counterterm at (N)LO and added 
a contribution at                  to restore the correct normalizationqT = 0

The function            can be computed in QCD perturbation theory

d�F
(N)NLO = HF

(N)NLO ⇥ d�F
LO +

�
d�F+jets

(N)LO � d�CT
(N)LO

⇥

HF

HF = 1 +
��S

⇥

⇥
HF (1) +

��S

⇥

⇥2
HF (2) + .......

d�CT ⇥ d�(LO) � �F (qT /Q)

�F (qT /Q) �
⇥⇤

n=1

��S

⇥

⇥n 2n⇤

k=1

�F (n;k) Q
2

q2
T

lnk�1 Q2

q2
T

where:

NNLO cross section:

can be computed via perturbative expansion and involves the two-loop virtual contributions.
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qT subtraction: independence of qTcut
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NLOStability: the easy caseNNLO
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NNLO for diboson processes

Introduction Motivation for NNLO QCD accuracy in VV production

Data–theory comparison for VV cross sections — status spring 2019/

– ZZ⇤!4`

– ZZ!``⌫⌫

– ZZ!4`

ZZ

– WZ!`⌫``

WZ

– WW!eµ, [njet = 1]
– WW!eµ, [njet � 0]

– WW!eµ, [njet = 0]

WW

– WV!`⌫J
WV!`⌫jj

– Z�!⌫⌫�

– [njet = 0]

Z�!``�
– [njet = 0]

W�!`⌫�
��

0.6 0.8 1.0 1.2 1.4 1.6

ratio with respect to theory

Status: March 2019

ATLAS Preliminary

Run 1,2
p
s = 7,8,13 TeV

NNLO QCD

NLO QCD

LHC pp
p
s = 7 TeV

Data
stat
stat � syst

LHC pp
p
s = 8 TeV

Data
stat
stat � syst

LHC pp
p
s = 13 TeV

Data
stat
stat � syst

Diboson Cross Section Measurements

theoσ / expσProduction Cross Section Ratio:   
0.5 1 1.5 2

CMS PreliminaryJan 2019

All results at:
http://cern.ch/go/pNj7

γγ  0.12± 0.01 ±1.06 -15.0 fb
(NLO th.), γW  0.13± 0.03 ±1.16 -15.0 fb

(NLO th.), γZ  0.05± 0.01 ±0.98 -15.0 fb
(NLO th.), γZ  0.05± 0.01 ±0.98 -119.5 fb

WW+WZ  0.14± 0.13 ±1.01 -14.9 fb
WW  0.09± 0.04 ±1.07 -14.9 fb
WW  0.08± 0.02 ±1.00 -119.4 fb
WW  0.08± 0.05 ±0.96 -12.3 fb
WZ  0.06± 0.07 ±1.05 -14.9 fb
WZ  0.07± 0.04 ±1.02 -119.6 fb
WZ  0.05± 0.02 ±0.96 -135.9 fb
ZZ  0.07± 0.13 ±0.97 -14.9 fb
ZZ  0.08± 0.06 ±0.97 -119.6 fb
ZZ  0.05± 0.04 ±1.14 -135.9 fb

7 TeV CMS measurement (stat,stat+sys) 
8 TeV CMS measurement (stat,stat+sys) 
13 TeV CMS measurement (stat,stat+sys) 

CMS measurements
 theory(NLO)vs. NNLO 

[CMS collaboration, January 2019]

[ATLAS collaboration, March 2019]

VV production (with leptonic decays) at NNLO QCD is important:

Standard Model test ! trilinear gauge-boson couplings

Background for Higgs analyses and BSM searches

,! Inclusion of NNLO QCD corrections improves agreement with Standard Model.

Stefan Kallweit (UNIMIB) Combination of NNLO QCD and NLO EW in VV April 19, 2019, LHCEWWG-MB 4 / 20

Remarkable agreement of inclusive diboson  
cross sections with NNLO QCD

Allows for stringent SM tests

Dibosons important background for Higgs  
and BSM searches



Back to the perturbative expansion…

d� = d�LO + ↵S d�NLO + ↵EW d�NLOEW

+↵2

S d�NNLO + ↵2

EW
d�NNLOEW + ↵S↵EW d�NNLOQCDxEW

NLO QCD NLO EW

NNLO QCD NNLO EW NNLO QCD-EW

For cases where  QCD and EW corrections 
are sizeable, also mixed QCD-EW corrections 
of relative             have to be considered.O(↵↵s)
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Combination of QCD and EW corrections
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(N)NLO QCD NLO EW
Example: V+jets

•NLO EW: up to -25(40)% at 1(2) TeV•NLO QCD: 60%
•NNLO QCD: 10%

➡Very naive estimate: NNLO QCD-EW=NLO QCD x NLO EW=15% at 1 TeV

[1705.04664] [1705.04664]
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Combination of QCD and EW corrections

Here j1 denotes the first jet, while the total transverse energy H
tot
T is defined in terms of the jet

and W -boson transverse momenta12 as

H
tot
T = pT,W +

X

k

pT,jk , (6.3)

where all jets that satisfy (6.1) are included.
Our default NLO results are obtained by combining QCD and EW predictions,

�
NLO
QCD = �

LO
+ ��

NLO
QCD, �

NLO
EW = �

LO
+ ��

NLO
EW , (6.4)

with a standard additive prescription

�
NLO
QCD+EW = �

LO
+ ��

NLO
QCD + ��

NLO
EW , (6.5)

where ��
NLO
QCD and ��

NLO
EW correspond to pp ! W + n-jet contributions of O(↵

n+1
S ↵) and O(↵

n
S↵

2
),

respectively. As LO contributions, in Sections 6.1–6.3 only the leading-QCD terms of O(↵
n
S↵) will

be included, while LO EW–QCD mixed and photon-induced terms of O(↵
n�1
S ↵

2
) will be discussed

in Section 6.4. In order to identify potentially large effects due to the interplay of EW and QCD
corrections beyond NLO, we will also consider the following factorised combination of EW and
QCD corrections,

�
NLO
QCD⇥EW = �

NLO
QCD

✓
1 +

��
NLO
EW

�LO

◆
= �

NLO
EW

 
1 +

��
NLO
QCD

�LO

!
. (6.6)

If this approach can be justified by a clear separation of scales—such as in situations where QCD
corrections are dominated by soft interactions well below the EW scale—the factorised formula
(6.6) can be regarded as an improved prediction. Otherwise, the difference between (6.5) and (6.6)
should be considered as an estimate of unknown higher-order corrections.

In the following sections, we will present QCD+EW and QCD⇥EW NLO corrections relative
to �

NLO
QCD, which corresponds to the ratios

�
NLO
QCD+EW

�
NLO
QCD

=

 
1 +

��
NLO
EW

�
NLO
QCD

!
, (6.7)

�
NLO
QCD⇥EW

�
NLO
QCD

=

✓
1 +

��
NLO
EW

�LO

◆
. (6.8)

Note that the QCD⇥EW ratio (6.8) corresponds to the usual NLO EW correction relative to LO,
which is free from NLO QCD effects, while the QCD+EW ratio (6.7) depends on �

NLO
QCD. In particu-

lar, for observables that receive large NLO QCD corrections, the relative QCD+EW correction can
be drastically suppressed as compared to the QCD⇥EW one. This feature is typically encountered
in observables that receive huge QCD corrections of real-emission type. In such situations, NLO
QCD+EW predictions for pp ! W +n jets are dominated by tree-level contributions with one extra
jet, and the inclusion of NLO QCD+EW corrections for pp ! W +(n+1) jets becomes mandatory.

6.1 W+
+ 1 jet

Among the various W+(multi)jet production processes, the inclusive production of a W boson
in association with (at least) one jet is the one that features the strongest sensitivity to NLO
QCD radiation. This is clearly illustrated by the results shown in Figures 13–14 and Table 2. In
particular, large NLO QCD effects arise in the tails of the inclusive distributions in the W -boson and

12Note that at variance with the definition (5.3) of ĤT, here we use transverse momenta and not transverse energies.
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in observables that receive huge QCD corrections of real-emission type. In such situations, NLO
QCD+EW predictions for pp ! W +n jets are dominated by tree-level contributions with one extra
jet, and the inclusion of NLO QCD+EW corrections for pp ! W +(n+1) jets becomes mandatory.
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Among the various W+(multi)jet production processes, the inclusive production of a W boson
in association with (at least) one jet is the one that features the strongest sensitivity to NLO
QCD radiation. This is clearly illustrated by the results shown in Figures 13–14 and Table 2. In
particular, large NLO QCD effects arise in the tails of the inclusive distributions in the W -boson and
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Difference between these two approaches 
indicates size of missing mixed EW-QCD 
corrections.
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[1705.04664]

Z+jet 
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Mixed QCD-EW uncertainties
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Bold estimate: 

O(↵↵s)Consider real            correction to V+jet 

Educated guess of QCD–EW combination uncertainty
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NLO EW to V+2jets 
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strong support for 
• factorization 
• multiplicative QCD x EW combination

Z(ℓ+ℓ−)+ jet
Z(ℓ+ℓ−) + 2 jets

full NLO EW
without QCD-EW interference in V+j

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1

pp →Z(ℓ+ℓ−)+ jets @ 13 TeV

d
σ

L
O

/
d

p
T

,V
[p

b
/

G
eV

]

-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0

0.1

κ
N

L
O

E
W

10 2 10 3

-0.1

-0.05

0

0.05

0.1

pT,V [GeV]

κ
V

jj
N

L
O

E
W
−

κ
V

j
N

L
O

E
W

pTj,2 > 30 GeV



Combination of QCD and EW corrections
Example: VV
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Figure 1. Distributions in the transverse momentum of the leading vector boson in ZZ (left), WW

(center) and ZW (right) production at 13 TeV. The top panel shows absolute predictions at LO, NLO
QCD, NNLO QCD, NNLO QCD+EW and NNLO QCDxEW. The centre panel shows the individual EW
and QCD corrections, while the lower panel show corrections due to the different NNLO QCD and NLO
EW combinations with respect to NNLO QCD. Bands correspond to standard scale variation.

QCD K-factors, which generate NLO QCD corrections growing in pT and reaching up to 500-
1000% in the TeV range. These huge corrections originate from V +jet topologies with a second
softly radiated vector boson. Despite these giant NLO QCD corrections, the corresponding NNLO
corrections with respect to NLO are moderate, at the level of 30%-50% and rather stable over the
entire considered pT range. Here the dominant V +jet topologies are included at NLO and scale
uncertainties at NNLO QCD are at the 10% level.

Turning to the EW corrections shown in the second panel with respect to LO, in ZZ production
we observe the typical Sudakov behaviour with logarithmically growing negative corrections reaching
about �50% at pT,V1 = 1TeV. No such behaviour can be observed in WW or ZW production. Here,
the EW corrections are very small and increase with pT, even turning positive in the tails of the
distributions. This positive increase at high pT can be attributed to photon-induced Bremsstrahlung
contributions as depicted in Fig. ??. In the case of WW and ZW production there is a t-channel
contribution which receives a logarithmic enhancement at large energies. No such contribution
exists in the case of ZZ production.

At the combined level the giant QCD K-factors induce a pathological behaviour of the EW
corrections. In fact, in the additive prescription, eq. (3.12) the dominant V +jet topologies do not
receive any EW corrections resulting in a significant underestimate of the higher-order EW cor-
rections in this combination. In the standard multiplicative combination, eq. (3.13), the photon-
induced Bremsstrahlung induces a similarly pathological behaviour in WW and ZW production,
whereas the modified multiplicative combination, eq. (3.14), yields a Sudakov behaviour with in-
creasing EW corrections for all three considered channels. Still, the difference between the different
QCD-EW combinations should be interpreted as an uncertainty. This would results in O(1) uncer-
tainties at large pT for all channels, thus by far exceeding NNLO scale uncertainties. In Section 3.4
we investigate the possibility to tame such a pathological behaviour via an appropriate jet veto.
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•NLO/LO=2-5! (“giant K-factor”)

•at large pTV1: VV is dominated by  
V+jets (w/ soft V radiation)

•O(1) difference in 

General remarks on EW corrections for VV production Combination of QCD and EW corrections

Combination of QCD and EW corrections and setup/

Combination of (N)NLO QCD and NLO EW corrections:

additive: d�(N)NLO

QCD+EW
= d�LO(1+ �(N)NLO

QCD
+ �EW) + d�ggLO

multiplicative: d�(N)NLO

QCD⇥EW
= d�LO(1 + �(N)NLO

QCD
)(1 + �EW) + d�ggLO

,! can cover (universal) dominant e↵ects of mixed QCD–EW corrections
(uncertainty estimate needed: to which extent?).

But: Only applicable if assumption of factorization is justified.

Setup of calculation (simplified selection, only for illustration purposes):

EW input and renormalization in Gµ scheme.

Uncertainties from 7-point scale variation around µR = µF = 1
2 (ET,V1 + ET,V2).

PDF set NNPDF31 nnlo as 0118 luxqed( nf 4) at each order.

Only very basic set of phase-space selections:

60GeV < m`` < 120GeV for each SFOS lepton pair,
pT,` > 25GeV for each lepton, pT,miss > 25GeV,
lepton–photon recombination for dR(�, `) < 0.1.

Two setups: inclusive and with jet-veto (HT,jet < 0.2HT,lep).
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•NNLO uncertainty: 5-10%
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Combination of QCD and EW corrections
Example: VV
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Figure 7. Distributions in the transverse momentum of the leading vector boson in ZZ (left), WW (center)
and ZW (right) production at 13TeV subject to the jet veto defined in eq. (??). Predictions and labels as
in Fig. 1.

pT,`1 [GeV]

d
�
/
d
�
N
N
L
O

Q
C
D
�
1[
%
]

20001000500200100

0

�20

�40

�60

�80

�100
NNLO QCD⇥EW (�-ind. added)
NNLO QCD⇥EW
NNLO QCD+EW
NNLO QCD

pT,`1 [GeV]

d
�
/
d
�
N
N
L
O

Q
C
D
�
1[
%
]

20001000500200100

0

�20

�40

�60

�80

�100

K
�
fa
ct
or

[%
]

+80
+60
+40
+20

0
�20
�40
�60
�80
�100

NNLO QCD/NLO QCD
NLO QCD/LO
NLO EW/LOK

�
fa
ct
or

[%
]

+80
+60
+40
+20

0
�20
�40
�60
�80
�100

d
�
/
d
p
T
,
`
1
[f
b
/
G
eV

]

LHC
p
s = 13TeVpp ! e�e+⌫µ⌫̄µ

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8

10�9 NNLO QCD⇥EW
NNLO QCD+EW
NNLO QCD
NLO QCD
NLO EW
LO

d
�
/
d
p
T
,
`
1
[f
b
/
G
eV

]

LHC
p
s = 13TeVpp ! e�e+⌫µ⌫̄µ

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8

10�9

pT,`1 [GeV]

d
�
/
d
�
N
N
L
O

Q
C
D
�
1[
%
]

20001000500200100

0

�20

�40

�60

�80

�100
NNLO QCD⇥EW (�-ind. added)
NNLO QCD⇥EW
NNLO QCD+EW
NNLO QCD

pT,`1 [GeV]

d
�
/
d
�
N
N
L
O

Q
C
D
�
1[
%
]

20001000500200100

0

�20

�40

�60

�80

�100

K
�
fa
ct
or

[%
]

+80
+60
+40
+20

0
�20
�40
�60
�80
�100

NNLO QCD/NLO QCD
NLO QCD/LO
NLO EW/LOK

�
fa
ct
or

[%
]

+80
+60
+40
+20

0
�20
�40
�60
�80
�100

d
�
/
d
p
T
,
`
1
[f
b
/
G
eV

]

LHC
p
s = 13TeVpp ! e�µ+

⌫µ⌫̄e

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8

10�9 NNLO QCD⇥EW
NNLO QCD+EW
NNLO QCD
NLO QCD
NLO EW
LO

d
�
/
d
p
T
,
`
1
[f
b
/
G
eV

]

LHC
p
s = 13TeVpp ! e�µ+

⌫µ⌫̄e

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8

10�9

pT,`1 [GeV]

d
�
/
d
�
N
N
L
O

Q
C
D
�
1[
%
]

20001000500200100

0

�20

�40

�60

�80

�100
NNLO QCD⇥EW (�-ind. added)
NNLO QCD⇥EW
NNLO QCD+EW
NNLO QCD

pT,`1 [GeV]

d
�
/
d
�
N
N
L
O

Q
C
D
�
1[
%
]

20001000500200100

0

�20

�40

�60

�80

�100
K
�
fa
ct
or

[%
]

+80
+60
+40
+20

0
�20
�40
�60
�80
�100

NNLO QCD/NLO QCD
NLO QCD/LO
NLO EW/LOK

�
fa
ct
or

[%
]

+80
+60
+40
+20

0
�20
�40
�60
�80
�100

d
�
/
d
p
T
,
`
1
[f
b
/
G
eV

]

LHC
p
s = 13TeVpp ! e�e+µ⌫

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8

10�9 NNLO QCD⇥EW
NNLO QCD+EW
NNLO QCD
NLO QCD
NLO EW
LO

d
�
/
d
p
T
,
`
1
[f
b
/
G
eV

]

LHC
p
s = 13TeVpp ! e�e+µ⌫

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8

10�9

Figure 8. Distributions in the transverse momentum of the leading lepton in ZZ (left), WW (center) and
ZW (right) production at 13TeV subject to the jet veto defined in eq. (??). Predictions and labels as in
Fig. 1.
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jet veto

•NLO/LO=~<1.5 (“normal K-factor”)

•Reliable estimate of O(as a) from

   Here: 10-20% in TeV range

•However:  
additional uncertainty due to  
efficiency of jet veto

General remarks on EW corrections for VV production Combination of QCD and EW corrections

Combination of QCD and EW corrections and setup/

Combination of (N)NLO QCD and NLO EW corrections:

additive: d�(N)NLO

QCD+EW
= d�LO(1+ �(N)NLO

QCD
+ �EW) + d�ggLO

multiplicative: d�(N)NLO

QCD⇥EW
= d�LO(1 + �(N)NLO

QCD
)(1 + �EW) + d�ggLO

,! can cover (universal) dominant e↵ects of mixed QCD–EW corrections
(uncertainty estimate needed: to which extent?).

But: Only applicable if assumption of factorization is justified.

Setup of calculation (simplified selection, only for illustration purposes):

EW input and renormalization in Gµ scheme.

Uncertainties from 7-point scale variation around µR = µF = 1
2 (ET,V1 + ET,V2).

PDF set NNPDF31 nnlo as 0118 luxqed( nf 4) at each order.

Only very basic set of phase-space selections:

60GeV < m`` < 120GeV for each SFOS lepton pair,
pT,` > 25GeV for each lepton, pT,miss > 25GeV,
lepton–photon recombination for dR(�, `) < 0.1.

Two setups: inclusive and with jet-veto (HT,jet < 0.2HT,lep).

Stefan Kallweit (UNIMIB) Combination of NNLO QCD and NLO EW in VV April 19, 2019, LHCEWWG-MB 12 / 20

vs.

General remarks on EW corrections for VV production Combination of QCD and EW corrections

Combination of QCD and EW corrections and setup/

Combination of (N)NLO QCD and NLO EW corrections:

additive: d�(N)NLO

QCD+EW
= d�LO(1+ �(N)NLO

QCD
+ �EW) + d�ggLO

multiplicative: d�(N)NLO

QCD⇥EW
= d�LO(1 + �(N)NLO

QCD
)(1 + �EW) + d�ggLO

,! can cover (universal) dominant e↵ects of mixed QCD–EW corrections
(uncertainty estimate needed: to which extent?).

But: Only applicable if assumption of factorization is justified.

Setup of calculation (simplified selection, only for illustration purposes):

EW input and renormalization in Gµ scheme.

Uncertainties from 7-point scale variation around µR = µF = 1
2 (ET,V1 + ET,V2).

PDF set NNPDF31 nnlo as 0118 luxqed( nf 4) at each order.

Only very basic set of phase-space selections:

60GeV < m`` < 120GeV for each SFOS lepton pair,
pT,` > 25GeV for each lepton, pT,miss > 25GeV,
lepton–photon recombination for dR(�, `) < 0.1.

Two setups: inclusive and with jet-veto (HT,jet < 0.2HT,lep).

Stefan Kallweit (UNIMIB) Combination of NNLO QCD and NLO EW in VV April 19, 2019, LHCEWWG-MB 12 / 20

108



d� = d�LO + ↵S d�NLO + ↵EW d�NLOEW

+↵2

S d�NNLO + ↵2

EW
d�NNLOEW + ↵S↵EW d�NNLOQCDxEW

NLO QCD NLO EW

NNLO QCD NNLO EW NNLO QCD-EW

What about this contribution?
•Explicit calculation for most processes out of reach
•Uncertainty estimates?

109

And again…



Pure EW uncertainties

110

How to estimate corresponding pure 
EW uncertainties of relative           ?  

[7] TODO (): We should test the degree of correlation of QCD cor-
rections/uncertainties (and resulting cancellation in ratios) by means of
NLO studies. Afterwards, if possible, also through NNLO K-factors.

223

4.2 Pure EW uncertainties of relative O(↵2)224

First of all, note that for each process the corresponding QCD predictions and225

EW corrections should be computed in the same EW input scheme, otherwise226

NLO EW accuracy could be spoiled (here one should be especially careful if227

(N)NLO QCD and NLO EW corrections are computed with different tools).228

As a conservative estimate of missing higher-order EW effects we propose to229

take 10% of the NLO EW correction plus 50% of the 2-loop NLL Sudakov logs,230

i.e.231

d

dx
�
(V )
EW(~"EW, ~"QCD) = (1� 0.1 "EW,1)

d

dx
�
(V )
NLOEW(~"QCD)232

+ (1 + 0.5 "EW,2)
d

dx
�
(V )
NNLOEW(~"QCD), (15)233

with nuisance parameters "EW,i 2 [�1, 1]. The first term (0.1 "EW,1) is supposed234

to describe uncertainties of order ↵ times the NLO EW correction, which are235

not included in the NLL Sudakov approximation. The second term (0.5 "EW,2)236

mimics further uncertainties of the NLL two-loop approximation as well as the237

lack of Sudakov resummation. For instance, in the extreme scenario of an NLO238

EW correction �NLO = �50%, the expected NNLO EW Sudakov correction239

(based on exponentiation) amounts (assuming "EW,1 = "EW,2) to �NNLO =240

��
2
NLO

/2 = 12.5%, and our uncertainty estimate to �0.1�NLO + 0.5�NNLO =241

5% + 6.25% ' 11%, while the unknown N3NLO EW terms are expected to be242

as small as �NNNLO = �
3
NLO

/6 = �NLO�NNLO/3 ' 2%.243

[8] The above prescription is still under discussion: see Sect.8.1

244

Given the universal nature of Sudakov EW corrections and the fact that245

pp ! V j involves only very few independent EW coupling structures, it is nat-246

ural to assume that the known NLO+NNLO EW corrections and the unknown247

higher-order effects depend on the process (V = W
±
, Z, �) in a very similar248

way. Thus we recommend to vary the nuisance parameters ~"EW in eq. (15) in a249

correlated way across processes.250

8
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Pure EW uncertainties
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NLO EW corrections are  
negative & sizeable at large pT,V
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M2
+ �

ew(k) ln
ŝ
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Comelli, Denner, Fadin, Kühn, Lipatov, Manohar Martin, Melles, Penin, S.P., Smirnov, . . . ]

Z, W
± bosons ⇠ light particles at ŝ � M
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NLO EW corrections are  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a(k)I ā(l) ln2 ŝkl
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Z+jet

nLO EW

Large EW corrections dominated 
by Sudakov logs! 

Uncertainty estimate of NLO EW 
from naive exponentiation
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Large EW corrections dominated 
by Sudakov logs 

Uncertainty estimate of NLO EW 
from naive exponentiation x 2:

check against two-loop Sudakov logs 
[Kühn, Kulesza, Pozzorini, Schulze; 05-07]

nLO EW

Uncertainty assessment and numerical results Higher-order EW corrections
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Recap

•NLO QCD+EW corrections fully automated in several tools
•Based on efficient evaluation of tree and one-loop amplitudes via numerical methods
• ..and automated subtraction methods (CS and FKS)
•QCD and EW corrections overlap and are not unambiguously defined for processes  

involving four quarks at LO  
•NLO results are available up to very high multiplicities
•Remaining perturbative uncertainties from NNLO QCD, EW, and QCD-EW are  

often becoming relevant
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