Precision calculations for the LHC

University of Sussex

Jonas M. Lindert

Science & Technology Facilities Council

UK Research and Innovation

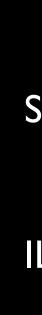
X NExT PhD Workshop 31.03 & 01.04.2021

Ask me anything!

Me: Jonas Lindert

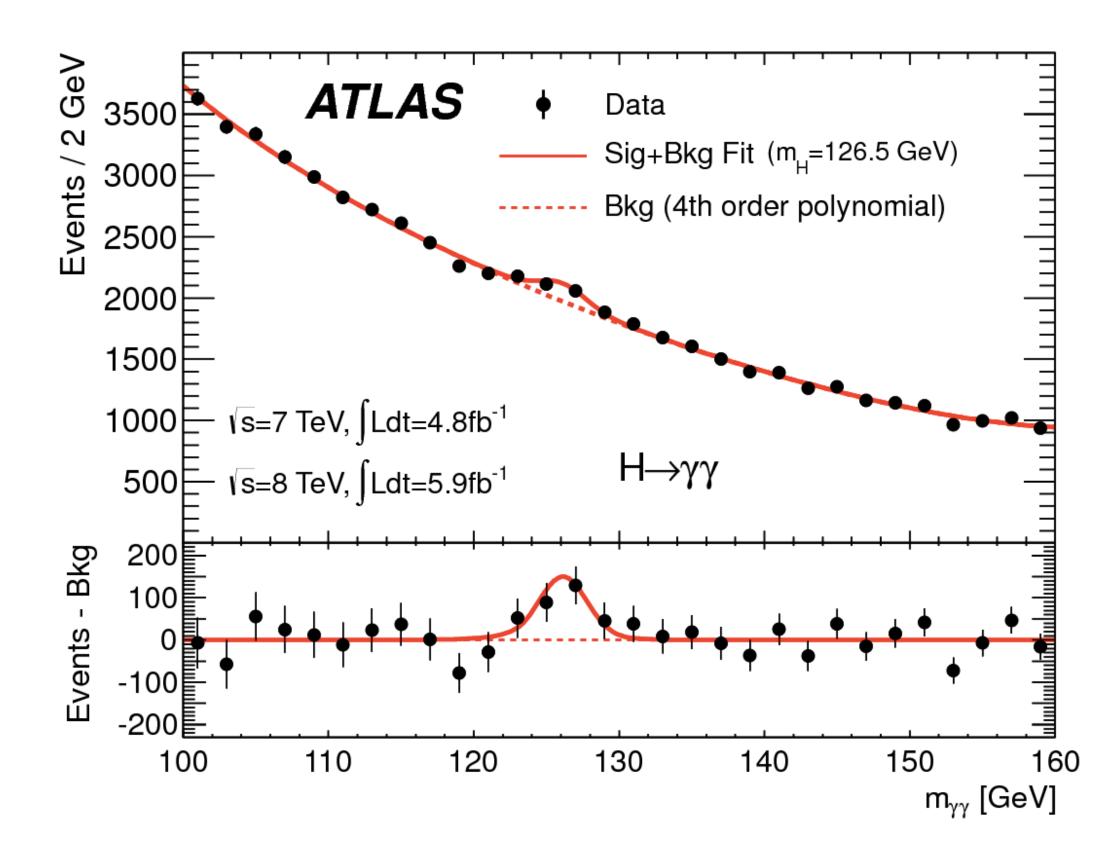
Steps into HEP-PH:

- Undergrad at RWTH Aachen, Germany (MSc in 2010). MSc thesis on: SUSY Parameter Determination at the LHC
- PhD at Max-Planck Institute for Physics, Munich in 2013 PhD thesis: Aspects of SUSY phenomenology at the LHC
- PostDoc at University of Zurich, Switzerland 2013-2016
- PostDoc at Durham University 2016-2019
- Since 2019 STFC Ernest Rutherford Fellow at Sussex



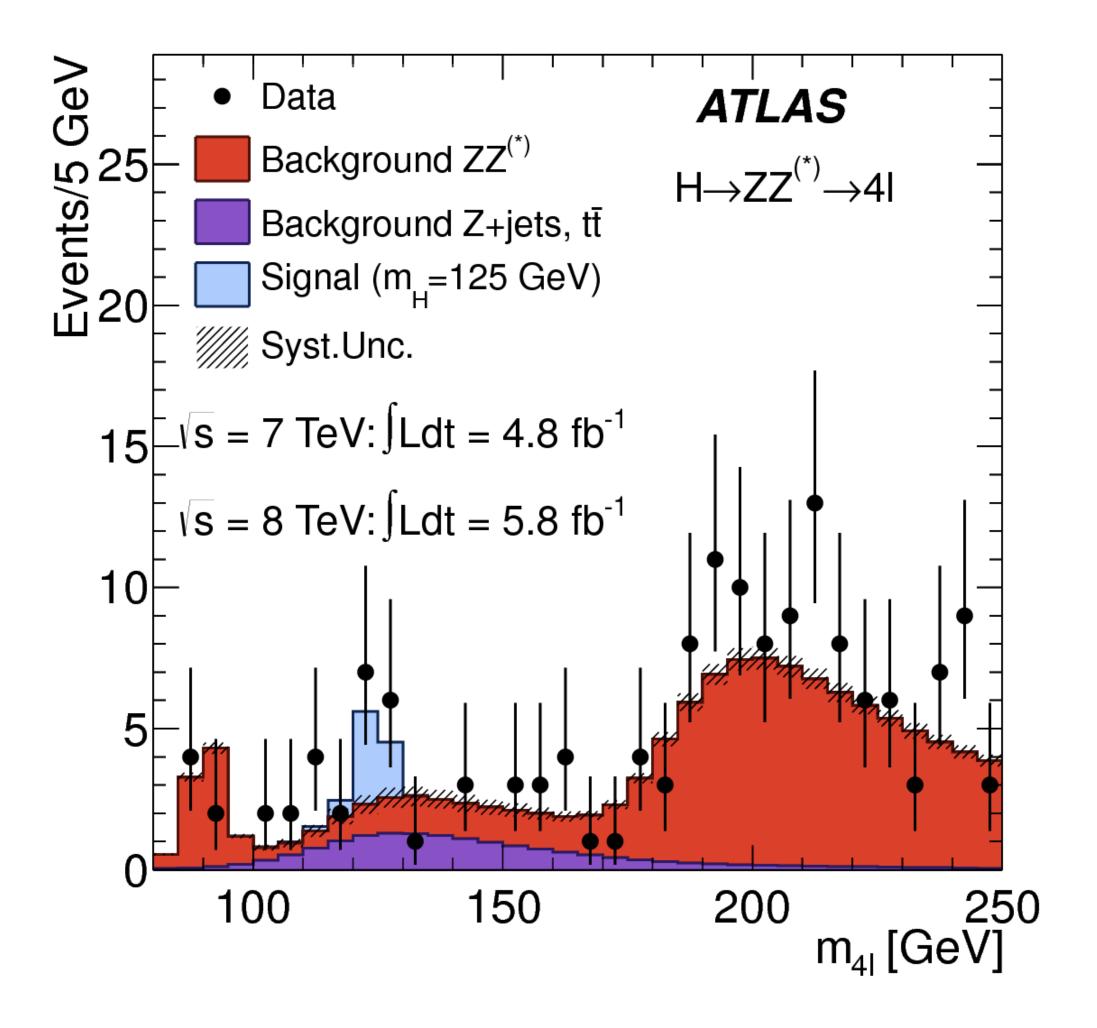
BSM SM precision

W physics	Higgs physics
unds	Top physics
LHC OpenLoops	
_O QCD+E	W NNLO
	NLO-PS
	unds



• Higgs at 125 GeV allowed for very clean discovery in $\gamma\gamma$ & 41 channels

From a pheno perspective finding the Higgs was "easy"...



• Bump hunting: little to no theoretical input needed.

Is the S(125 GeV) really the SM Higgs? • CP properties? Is there a small CP-odd admixture? • Precise couplings with vector-bosons/fermions as in SM? •what is the Higgs width? Is there a significant invisible decay? •only one Higgs doublet?

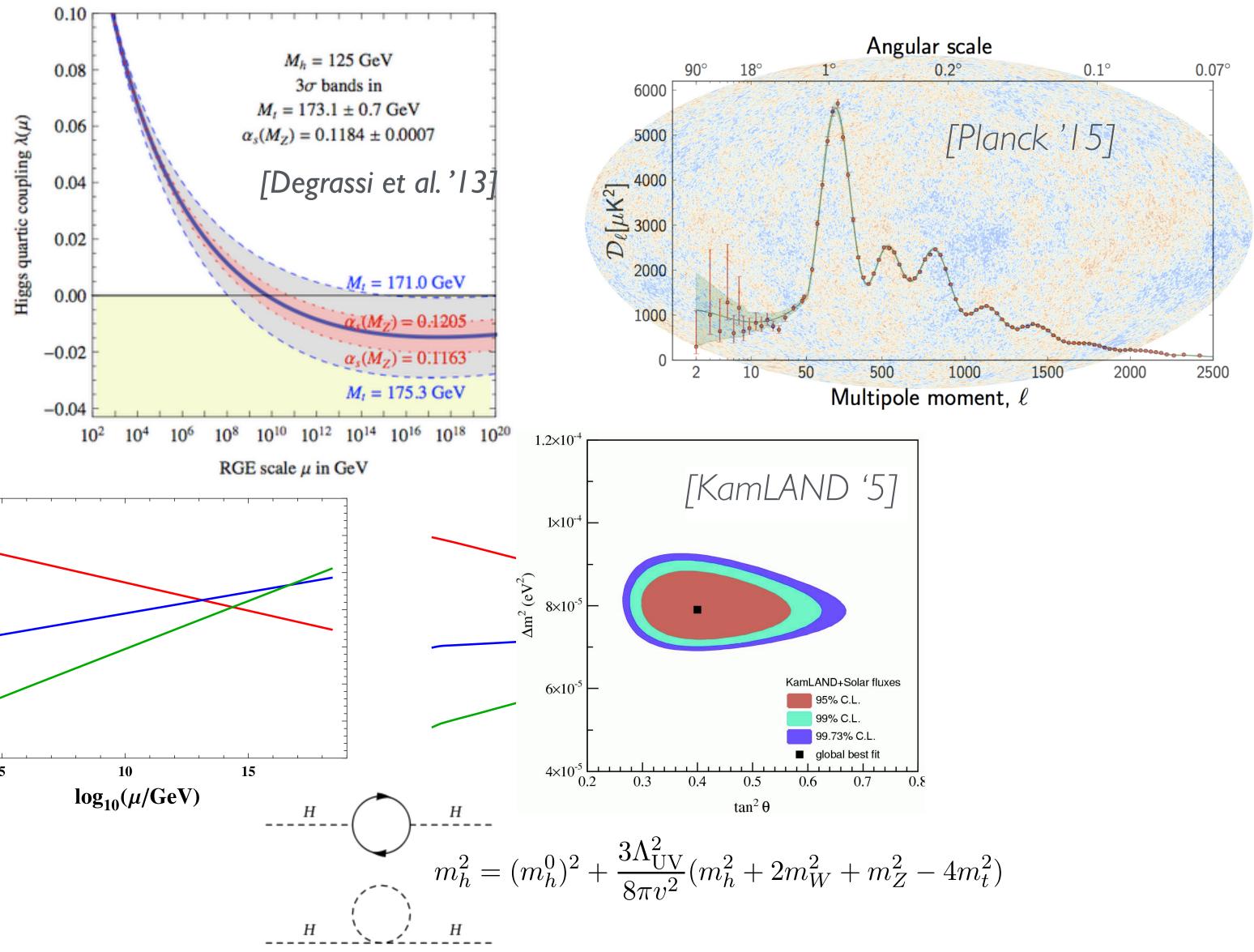
•what is the Higgs potential? self-coupling?

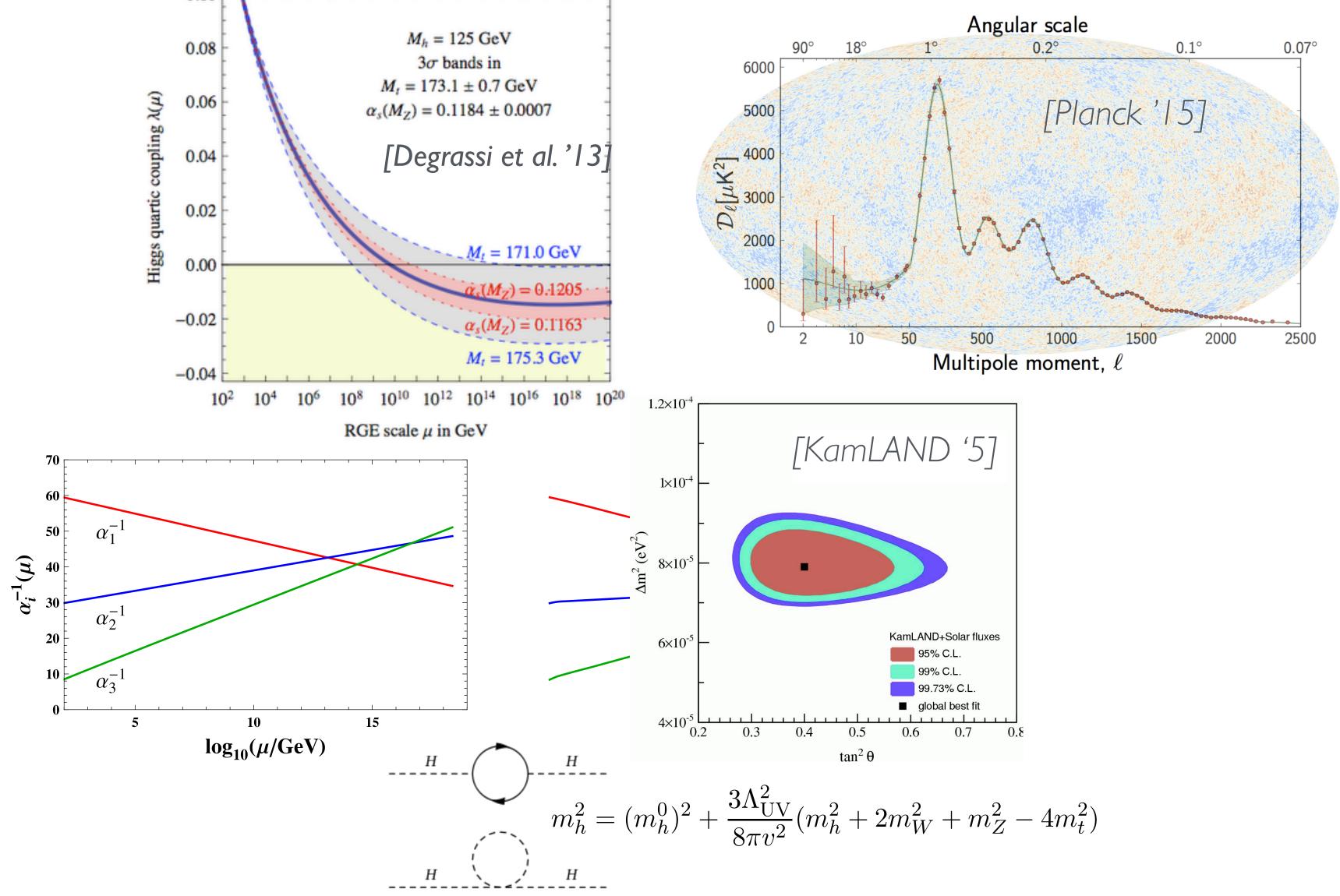
precision is key!

... understanding the Higgs and its properties is tough!

1 = - + FAL FAL

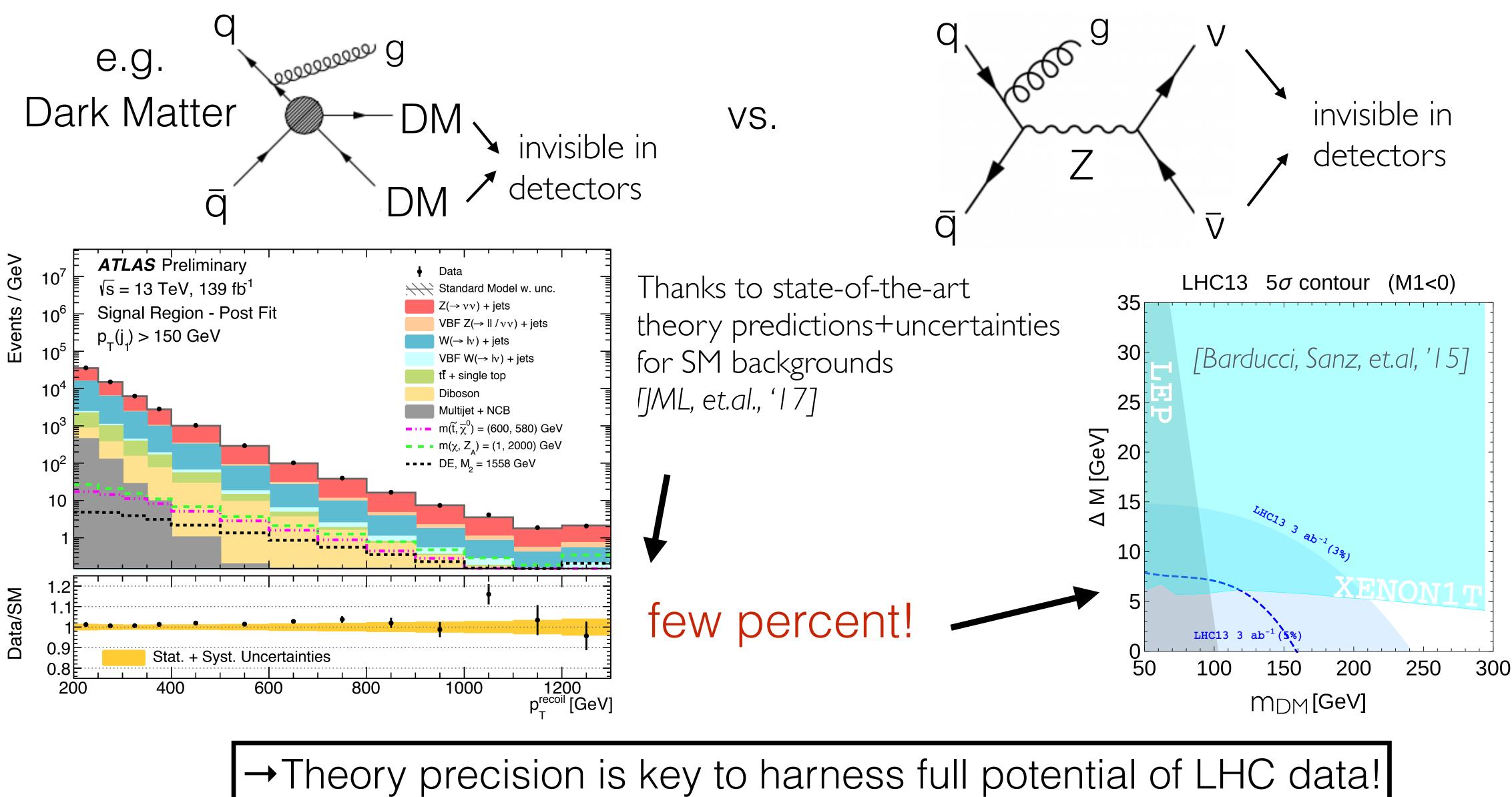
EW vacuum stability Dark Matter GUT unification Neutrino masses Hierarchy problem



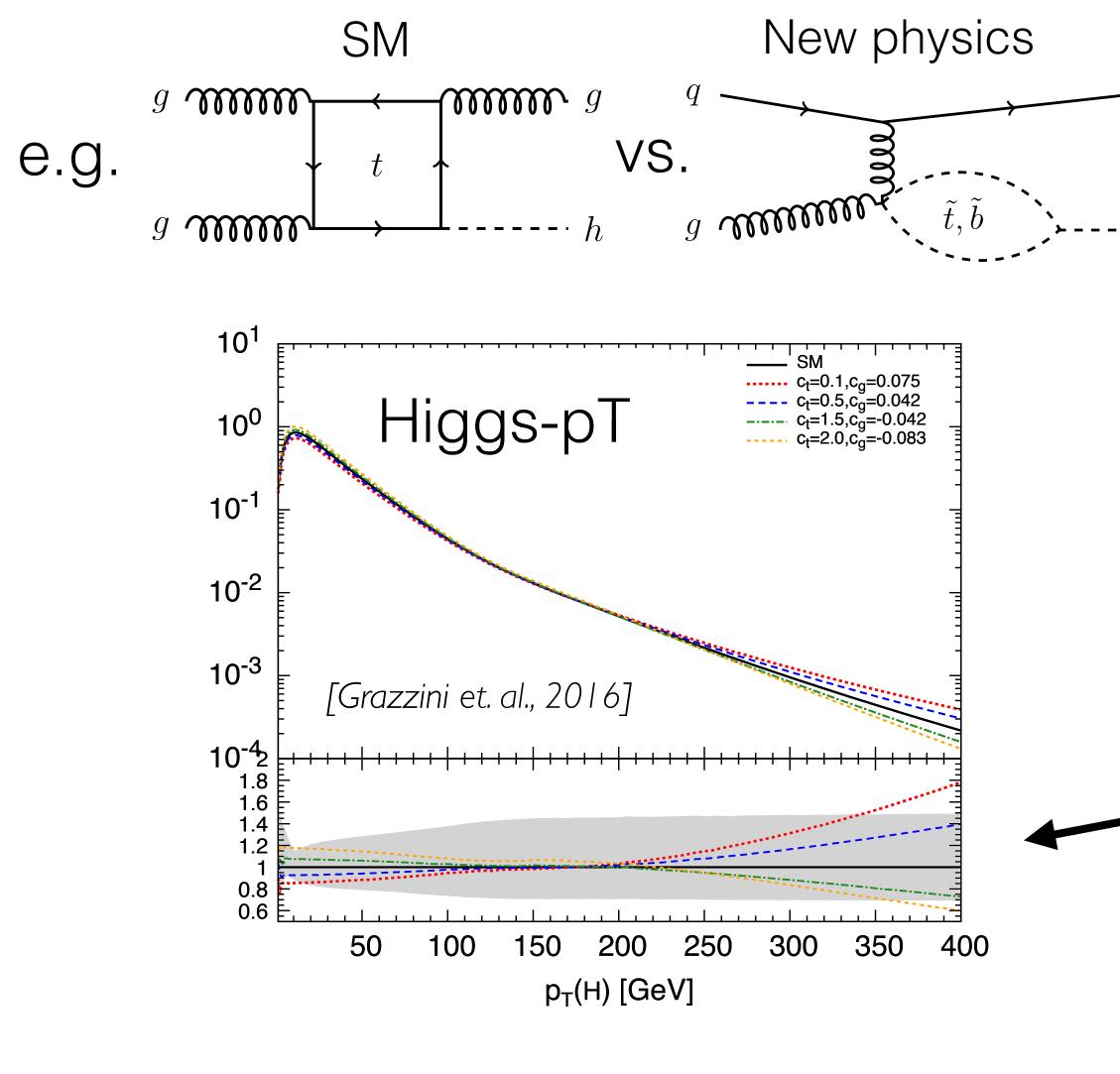


The motivation for BSM searches are as compelling as ever

Direct searches for new physics: overwhelming SM backgrounds

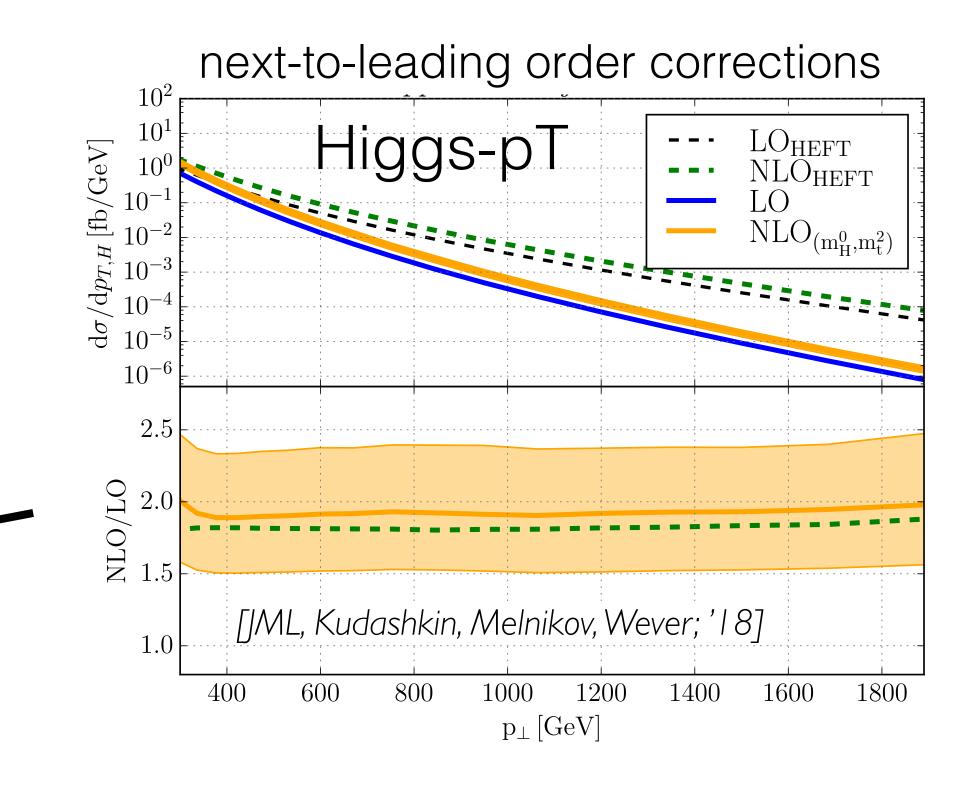


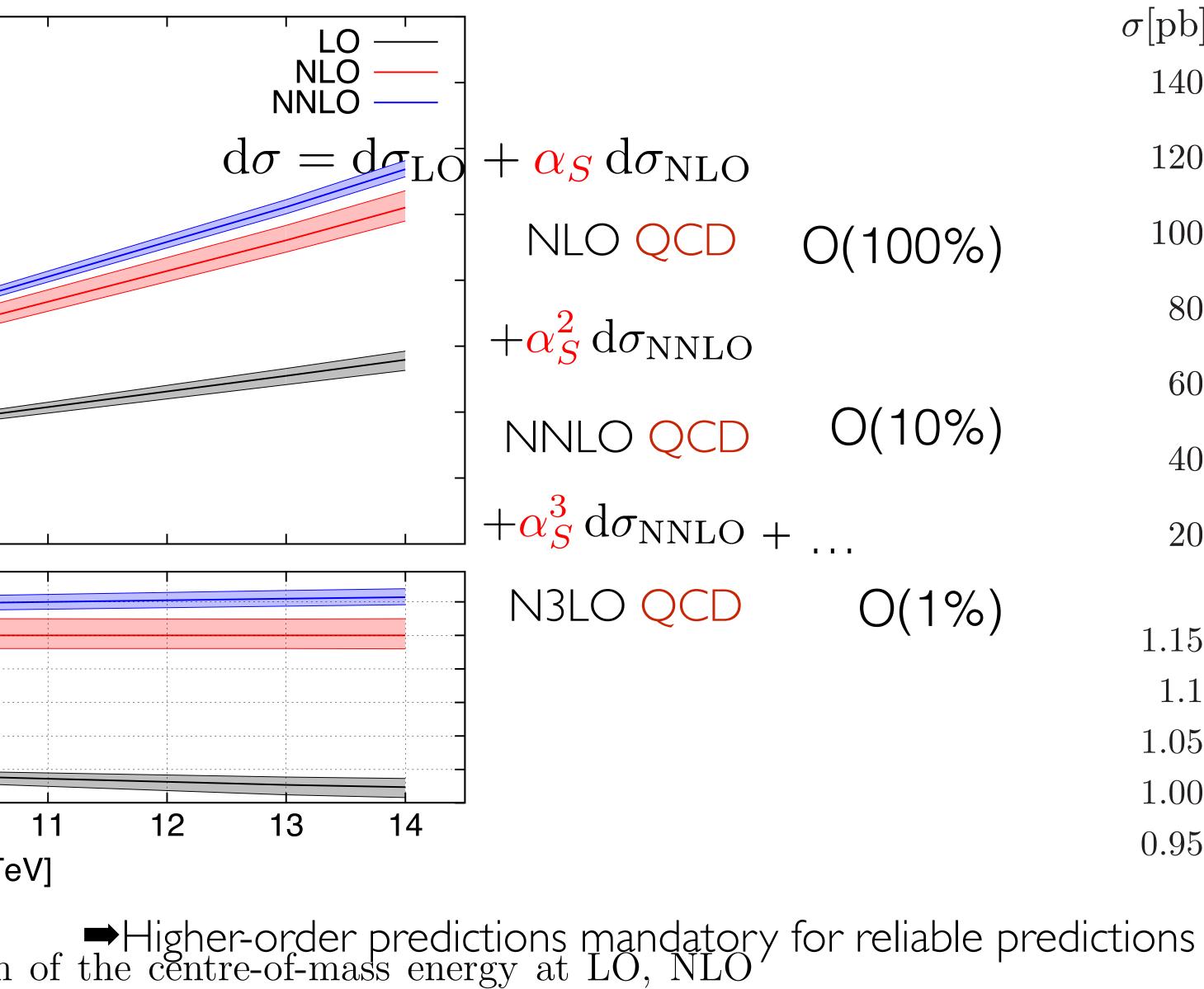
Indirect searches: disentangling very small effects



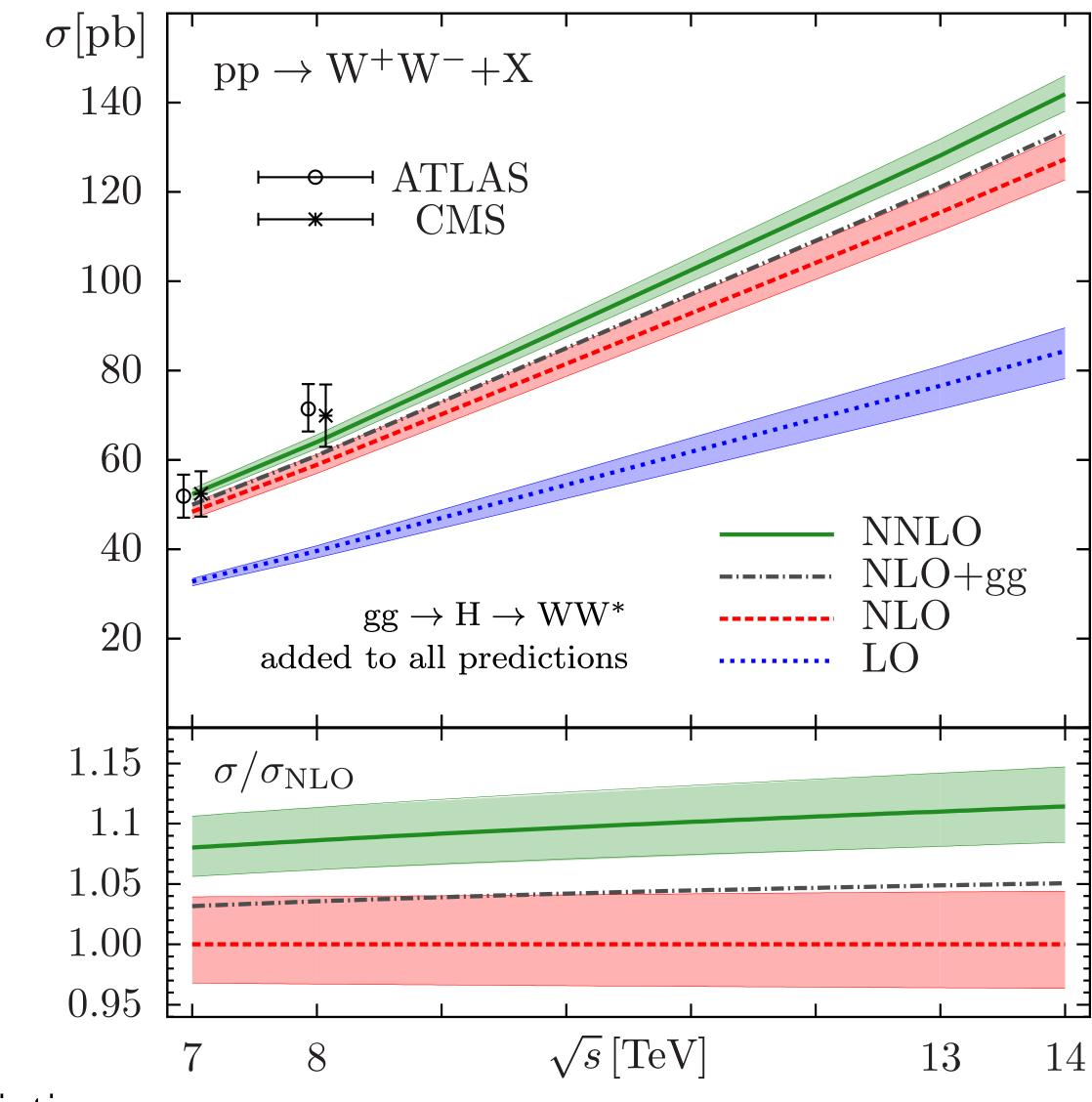
 \rightarrow Theory precision opens the door to new analysis strategies!

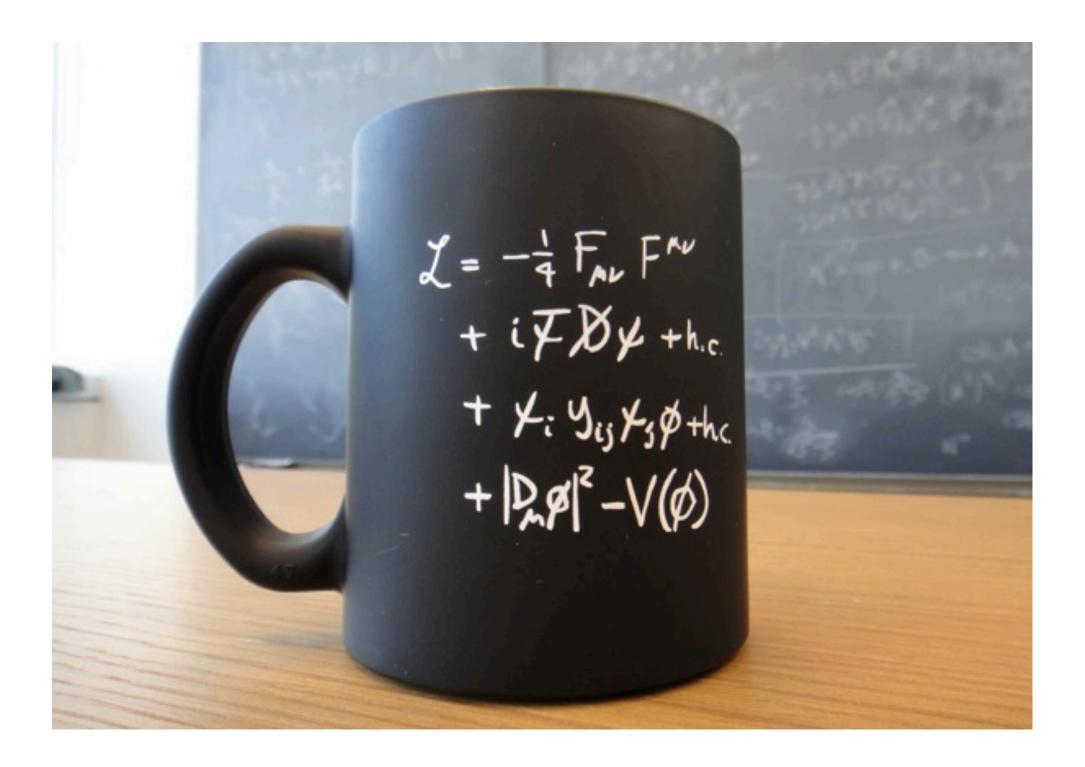
- Look for BSM effects in small deviations from SM predictions: \rightarrow Higgs processes natural place to look at
- \rightarrow very good control on theory necessary!



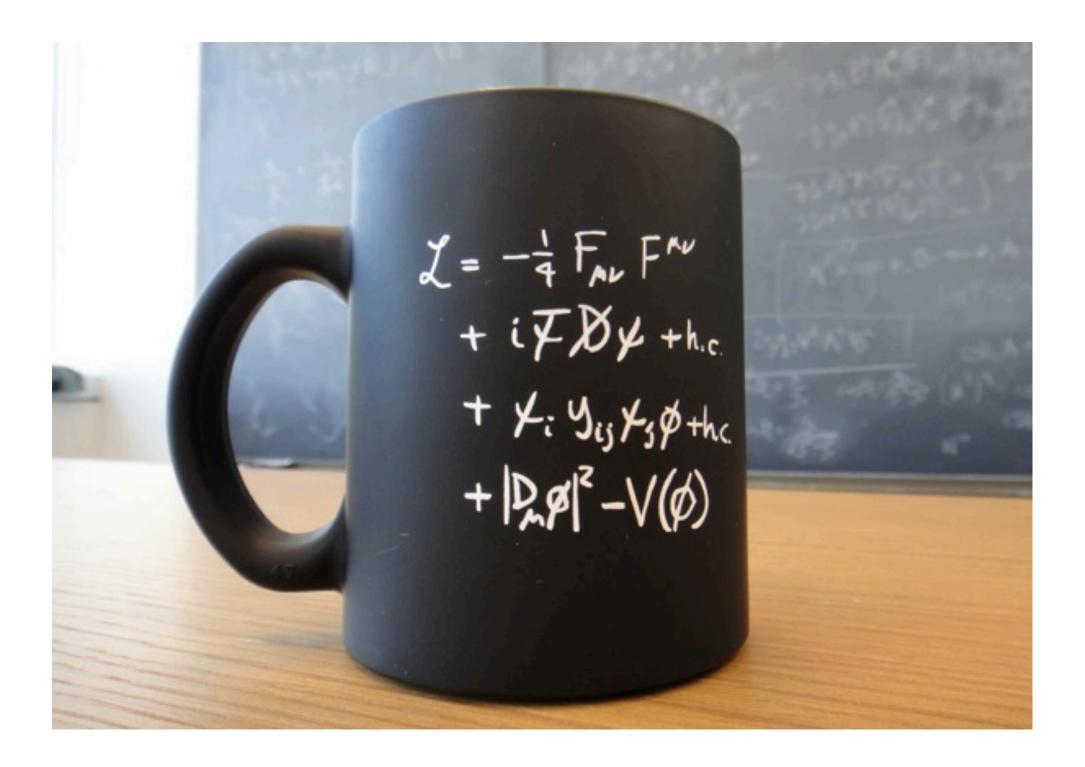


Perturbative expansion for diboson production



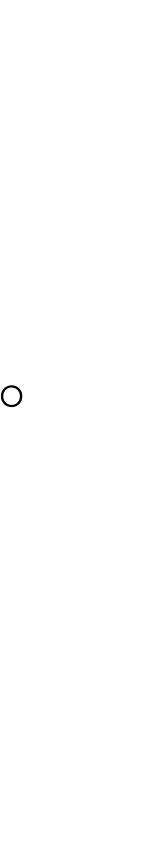


$|\mathcal{M}|^2 - \sigma$



$|\mathcal{M}|^2 - \sigma$

- Expand SU(2) Higgs field around vacuum in either unitary or Feynman gauge
- Transform SU(3)xSU(2)xU(1) gauge fields and goldstones into mass eigenstates (g,W,Z,Y)
- Expand covariant derivates including non-abelian structures
- Add ghost fields

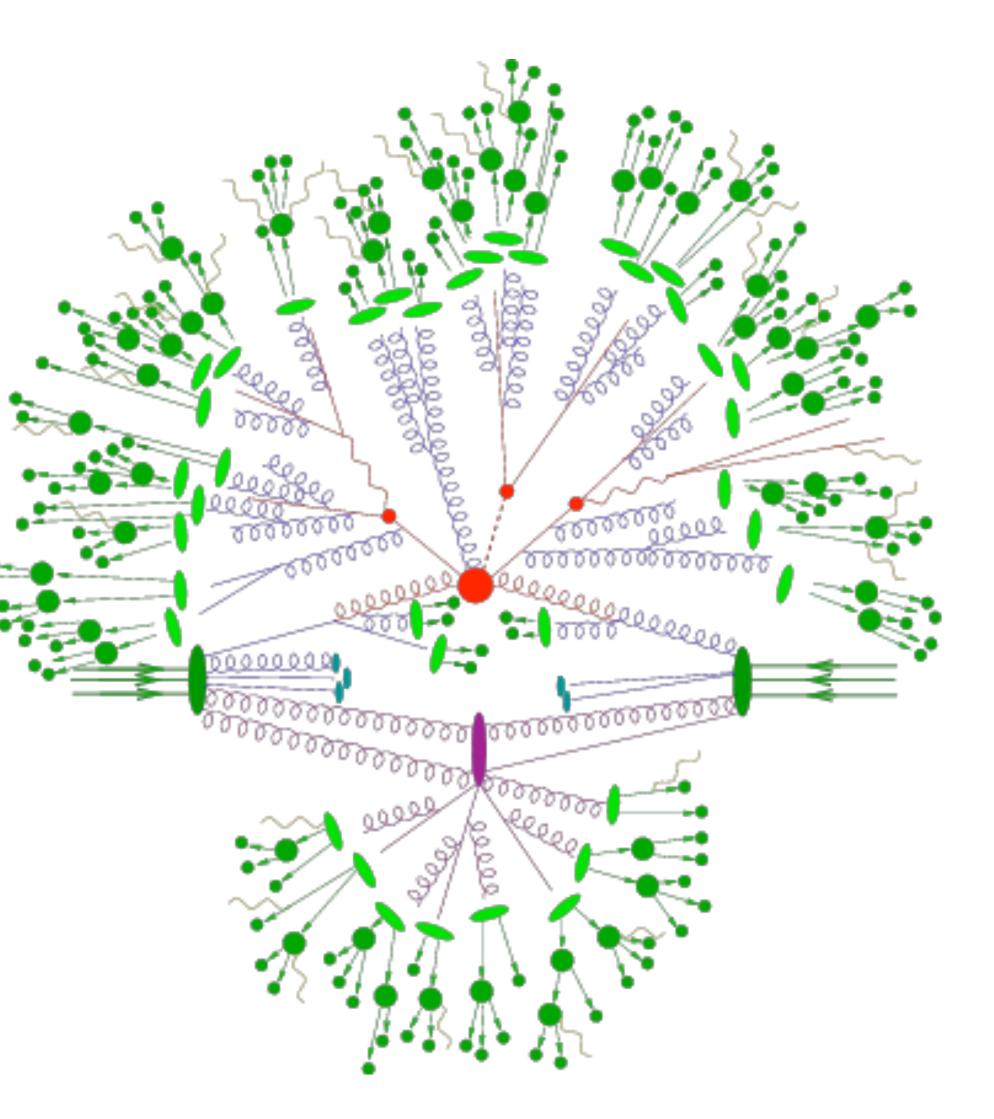


$$\begin{split} & \mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g_{\mu}^{a} \partial_{\nu} g_{\mu}^{a} - \frac{1}{2} g_{\mu}^{a} d^{a} d^{a} g_{\mu}^{b} g_{\nu}^{c} - \frac{1}{4} g_{\mu}^{2} d^{a} d^{b} d^{a} d^{b} d^{b}$$

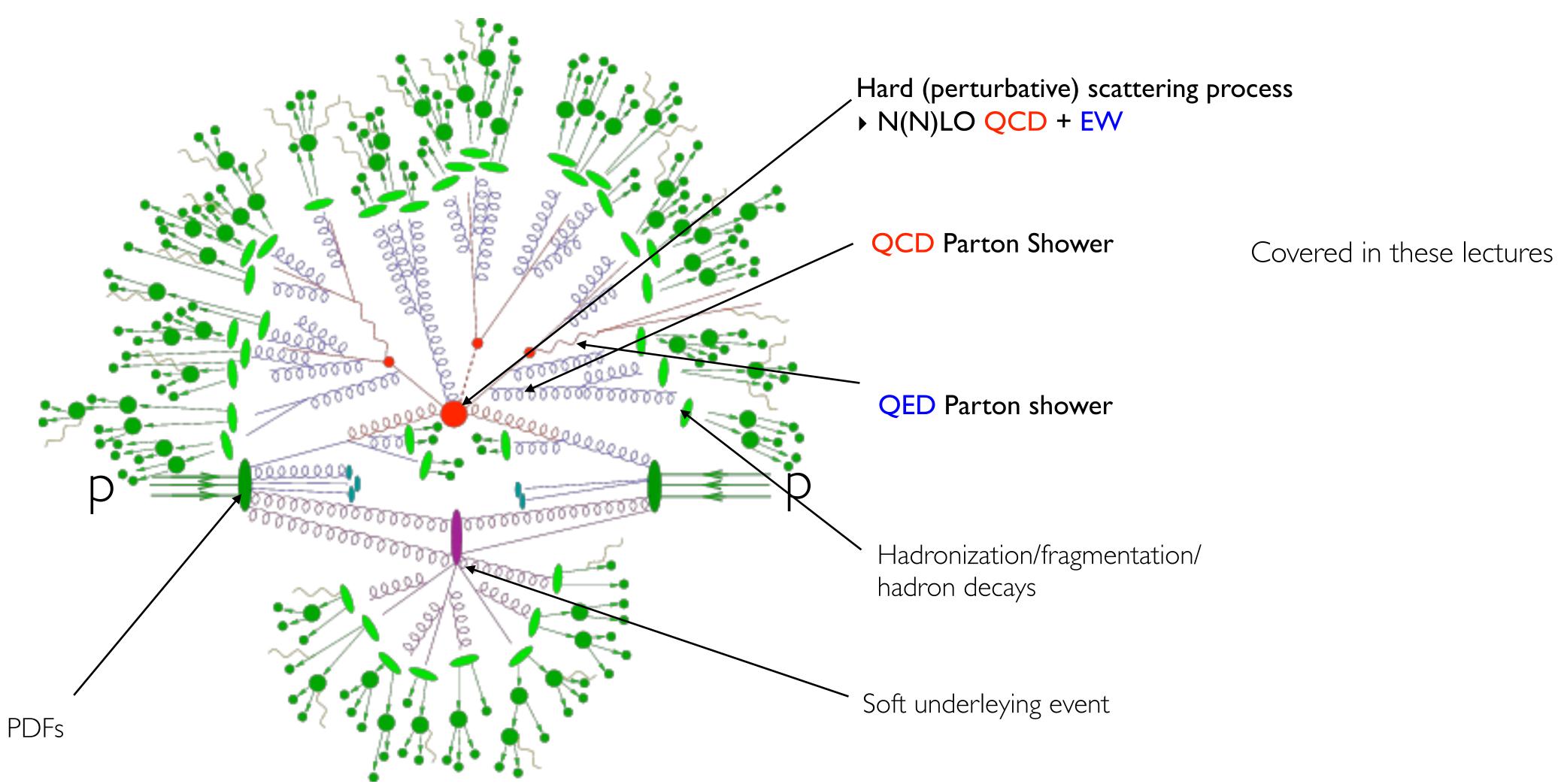
$$|\mathcal{M}|^2 - \sigma$$

$$\begin{split} & \mathcal{L}_{SM} = -\frac{1}{2} \partial_{S} g_{0}^{h} \partial_{S} g_{0}^{h} g_{0}^{h} g_{0}^{h} g_{0}^{h} g_{0}^{h} g_{0}^{h} \partial_{S} g_{0}^{h} \partial_{S}^{h} \partial_{S} W_{0}^{h} - W_{0}^{h} \partial_{S} W_{0}^{h} - W_{0}^{h} \partial_{S} W_{0}^{h} - \frac{1}{2} \partial_{A} A_{0} A_{0} - igc_{0} (\partial_{C} Z_{0}^{h} (W_{0}^{h} W_{0}^{h} - W_{0}^{h} - W_{0}^{h} \partial_{S} W_{0}^{h} - Z_{0}^{h} \partial_{S} W_{0}^{h} - W_{0}^{h} \partial_{S} W_{0}^{h} - W_{0}^{h} \partial_{S} W_{0}^{h} - Z_{0}^{h} \partial_{S} W_{0}^{h} \partial_{S} W_{0}^{h} - Z_{0}^{h} \partial_{S} W_{0}^{h} \partial_{S} W_{0}^{h} - Z_{0}^{h} \partial_{S} W_{0}^{h} \partial_{S} W_{0}^{h} \partial_{S} W_{0}^{h} \partial_{S} W$$

 $|\mathcal{M}|^2 - \sigma$

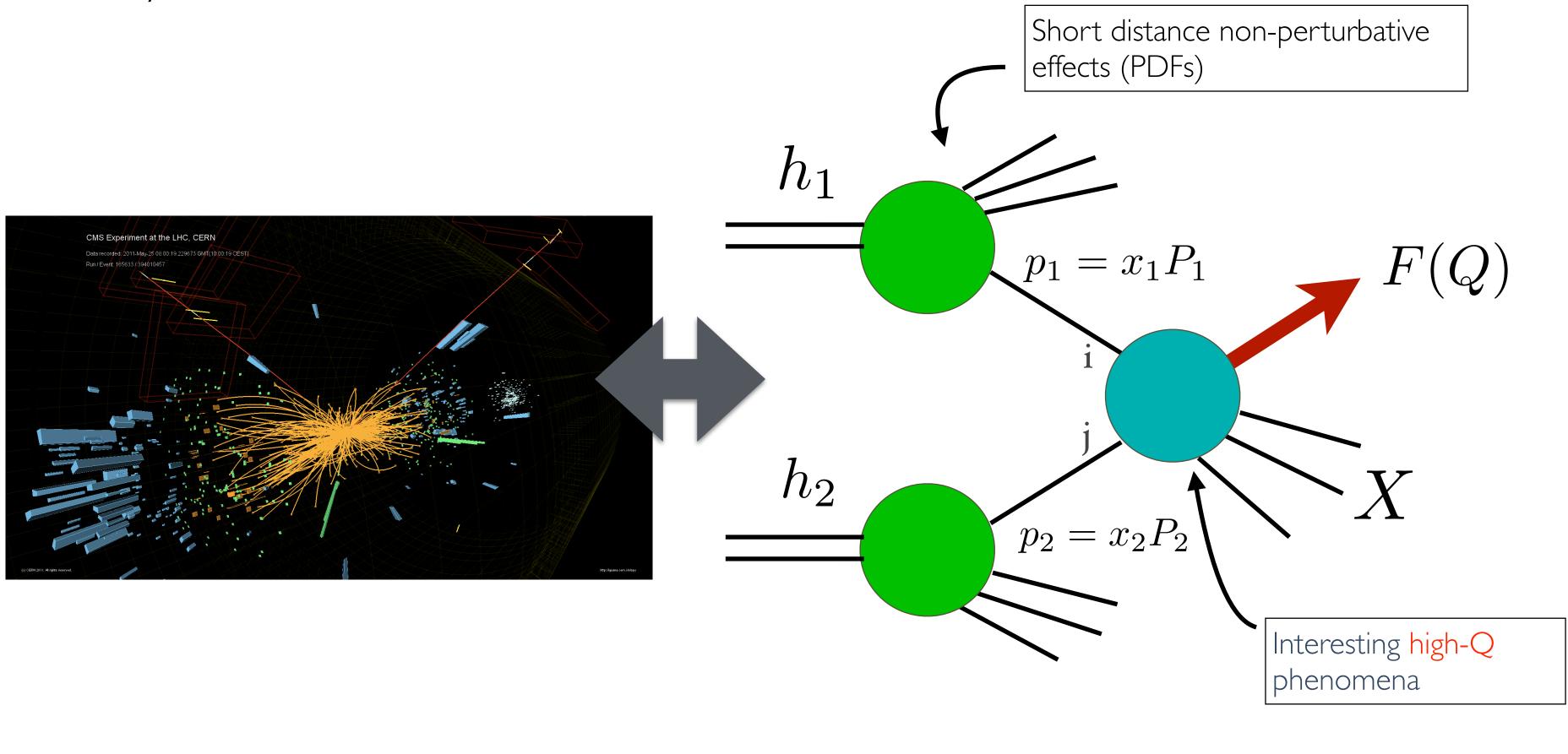


Theoretical Predictions for Hadron Colliders



Path to precision at the LHC

• Key: QCD factorization



 $d\sigma = \sum \int dx_1 dx_2 f_1^{(P_1)}(x_1) f_2^{(P_2)}(x_2) d\hat{\sigma}_{ij}(x_1 x_2 s)$ 🛪 ij Sum over all partons

 $d\sigma = \sum_{ij} \int dx_1 dx_2 f_1^{(P_1)}(x_1) f_2^{(P_2)}(x_2) d\hat{\sigma}_{ij}(x_1 x_2 s)$ Sum over all partons Hard partonic cross section: process dependent but computable in perturbation theory

Parton distributions:

- ► (At LO:) Probability for finding a quark or gluon with a certain momentum fraction in a hadron
- universal but not perturbatively computable
- → determine via fit against data

Path to precision

• Expansion in a small coupling α :

$$d\sigma = d\sigma(\alpha^n) + d\sigma(\alpha^{n+1})$$

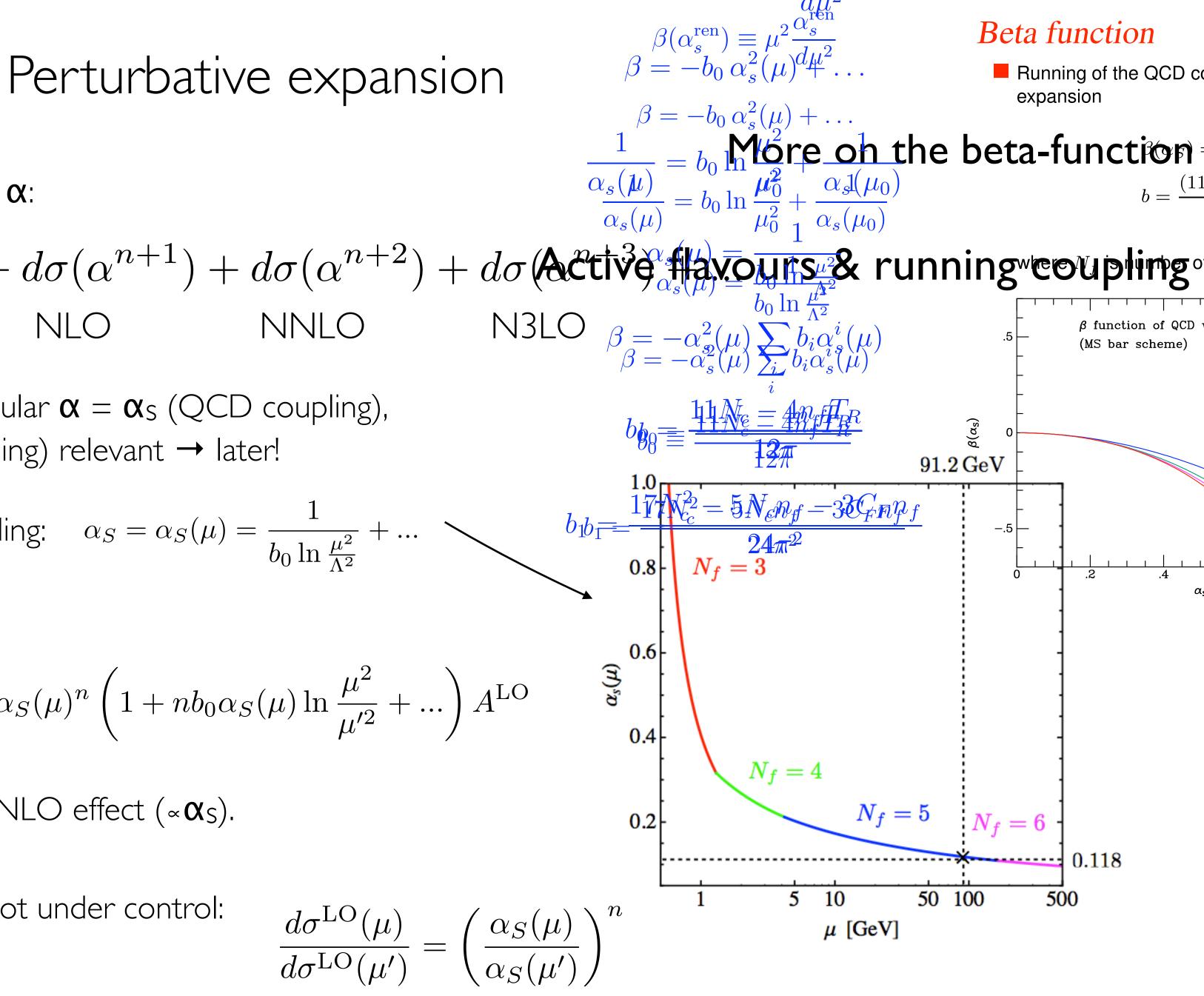
LO NLO

- at the LHC consider in particular $\alpha = \alpha_s$ (QCD coupling), but also $\alpha = \alpha_{EW}$ (EW coupling) relevant \rightarrow later!
- In QCD running strong coupling: $\alpha_S = \alpha_S(\mu) = \frac{1}{b_0 \ln \frac{\mu^2}{\Lambda^2}} + \dots$

$$d\sigma^{\rm LO}(\mu) = \alpha_S(\mu)^n A^{\rm LO}$$

$$\to d\sigma^{\rm LO}(\mu') = \alpha_S(\mu')^n A^{\rm LO} = \alpha_S(\mu)^n \left(1 + nb^2\right)$$

- So the change of scale is an NLO effect ($\propto \alpha_s$).
- At LO the normalisation is not under control:



Perturbative expansion

• At NLO we have: $d\sigma^{\rm NLO}(\mu) = \alpha_S(\mu)^n A^{\rm LO} + \alpha_S(\mu)^{n}$

• So the NLO result compensates the LO scale dependence and the residual dependence is NNLO!

Include higher-order corrections in order to reduce scale dependence!

- relevant! (in particular for large n)
- Note: a good scale choice automatically resums large logarithms to all orders, while a bad one spuriously introduces large logs and ruins the perturbative expansion
- Scale variation is conventionally used to estimate the **theory uncertainty**

$$^{+1}\left(A^{\rm NLO} - nb_0 \ln \frac{\mu^2}{Q_0^2}\right) + \dots$$

• That means scale dependence can be regarded as higher-order effect, but can be very

• Normalisation starts being under control at NLO: compensation mechanism

UNIVERSITAT WÜRZBURG

UNIVERSITÄT

WÜRZBURG

Julius-Maximilians-

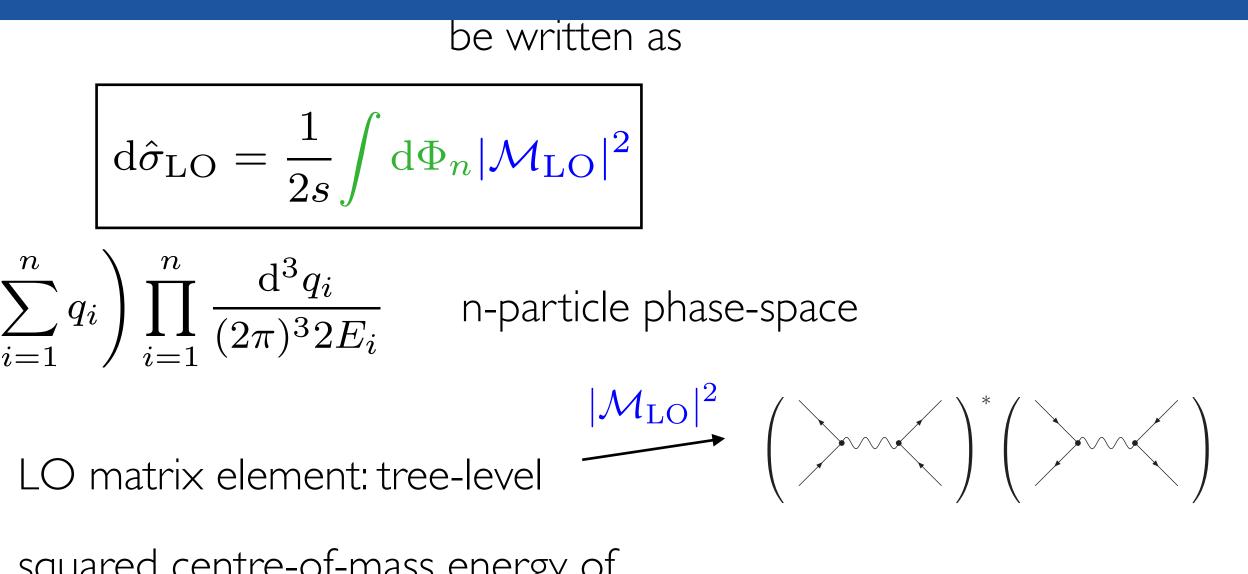
 $\int d\Phi_n = (2\pi)^4 \delta^{(4)} \left(P - \sum_{i=1}^n q_i \right) \prod_{i=1}^n \frac{d^3 q_i}{(2\pi)^3 2E_i} \qquad \text{n-particle phase-space}$

 $\mathcal{M}_{\mathrm{LO}}$

$$s = P^2 = (\hat{p}_1 + \hat{p}_2)^2$$

squared centre-of-mass energy of hard process

- Integration over phase space by Monte Carlo methods
- \rightarrow any distribution/histogram can be determined simultaneously
- ➡ Monte Carlo events can be unweighted
- Integration over phase space analytically
- → very fast evaluation
- → analytical structure of the result can be investigated



• NLO partonic cross section for a $2 \rightarrow n$ process can be written as

Note: real radiation might open up new partonic channels!

NLO Ingredients

NNLO Ingredients

• NNLO partonic cross section for a $2 \rightarrow n$ process can be written as

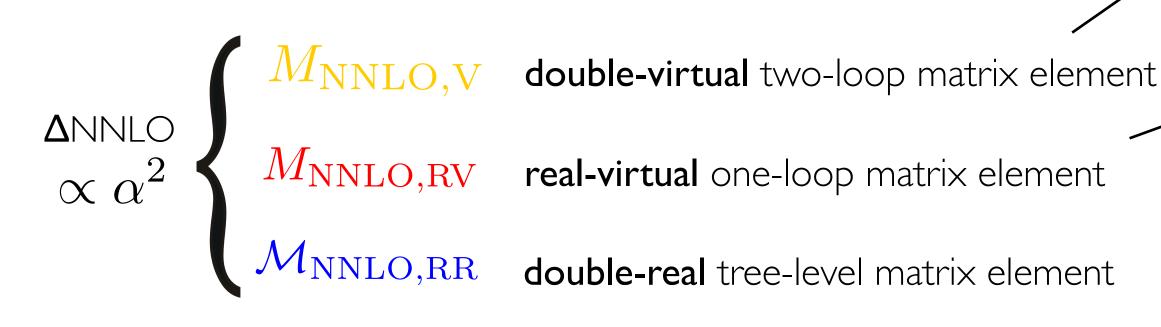
$$d\hat{\sigma}_{\text{NNLO}} = \frac{1}{2s} \int d\Phi_n \left[|\mathcal{M}_{\text{LO}}|^2 + 2\text{Re}\{\mathcal{M}_{\text{LO}}\mathcal{M}_{\text{NLO,V}}^*\} + 2\text{Re}\{\mathcal{M}_{\text{LO}}\mathcal{M}_{\text{NNLO,V}}^*\} \right]$$

+
$$\frac{1}{2s} \int d\Phi_{n+1} \left[|\mathcal{M}_{\text{NLO,R}}|^2 + 2\text{Re}|\mathcal{M}_{\text{NLO,R}}\mathcal{M}_{\text{NNLO,RV}}^*| \right] + \frac{1}{2s} \int d\Phi_{n+2}|\mathcal{M}_{\text{NNLO,RR}}|^2$$

+
$$R + RV + RR$$

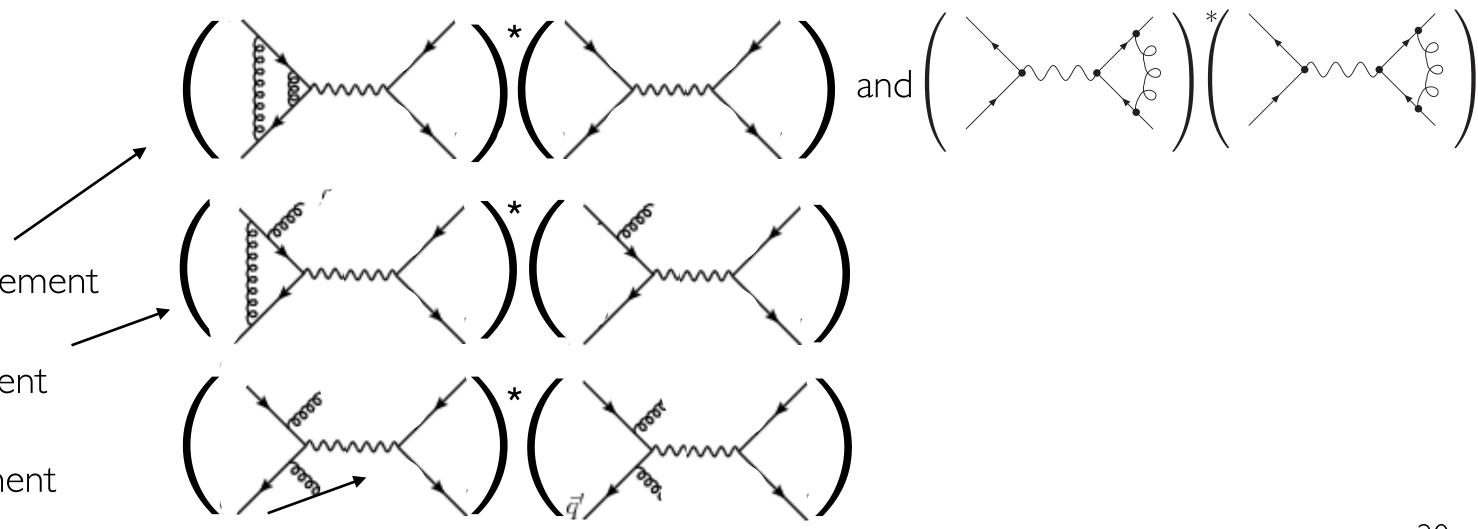
 $d\Phi_{n(+1)}$ n, n+1, n+2 particle phase space

 $\Delta NLO \\ \propto \alpha \qquad \begin{cases} \mathcal{M}_{NLO,V} & \text{virtual one-loop matrix element} \\ \mathcal{M}_{NLO,R} & \text{real tree-level matrix element} \end{cases}$

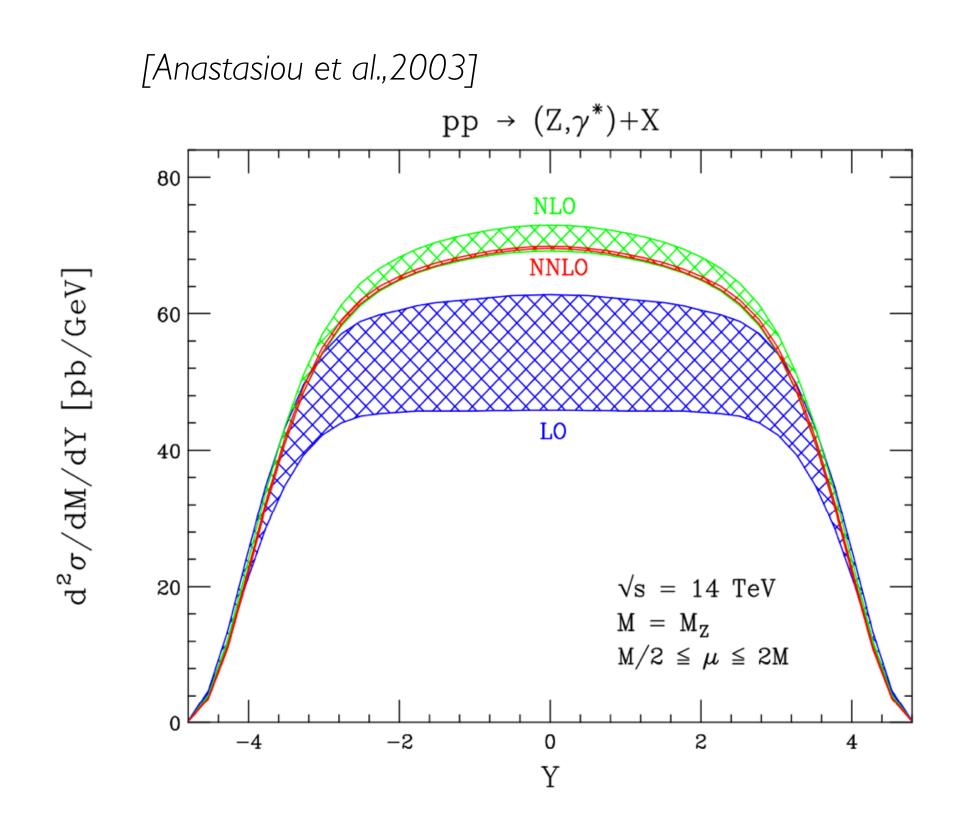


 $\mathcal{M}_{\mathrm{NLO,R}}$

 $M_{\rm NNLO,V}$ double-virtual two-loop matrix element

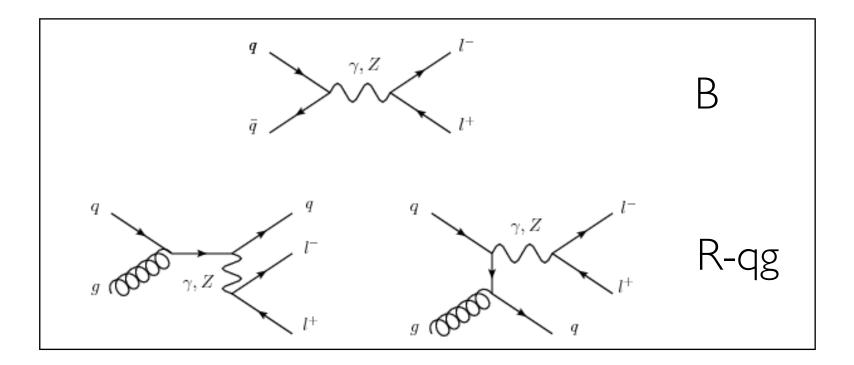


Convergence of the perturbative expansion: Drell-Yan

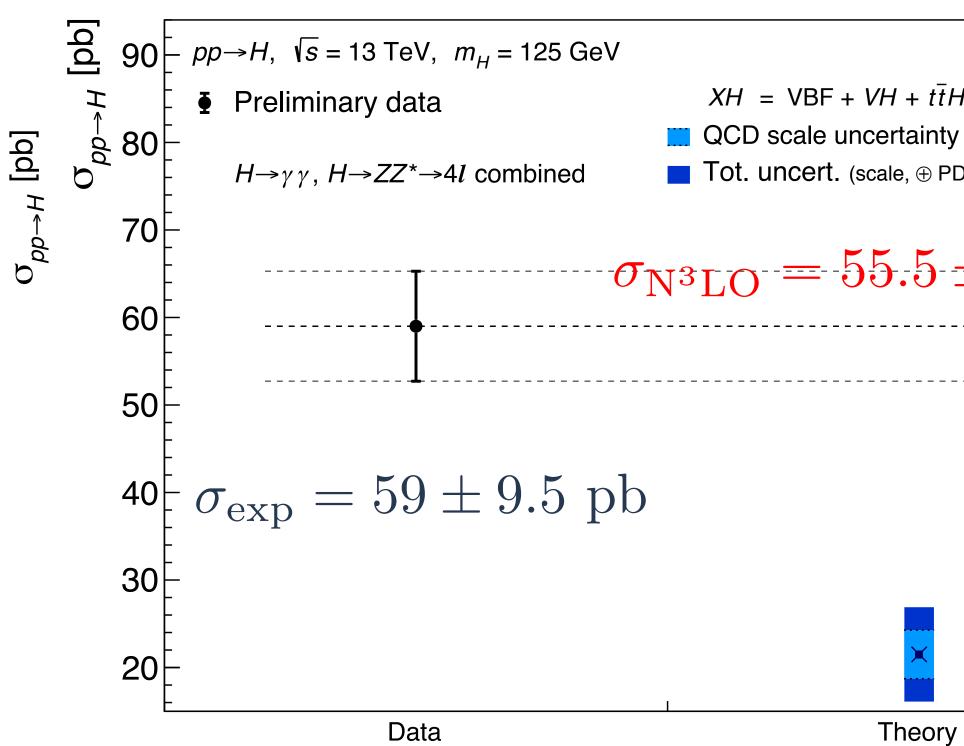


- → Higher-orders are crucial for reliable predictions
- →Use these precision predictions to
- ▶ stress-test the SM: QCD and EW
- determine parameters and PDFs!

- NNLO calculation first performed for the inclusive cross section [Van Neerven et al., 1990] \rightarrow NNLO/NLO at the few percent level
- Rapidity distribution: 13 years later!
- Bands obtained by studying scale variations varied in $\mu = [m_Z/2, 2m_Z]$
- LO and NLO bands do not overlap! ➡Error estimate at LO largely underestimated!
- large contribution coming from qg channel that opens up at NLO
- NLO and NNLO bands do overlap
- ➡Reliable error estimate only when all partonic channels contribute



COMPARE DATA TO PREDIC

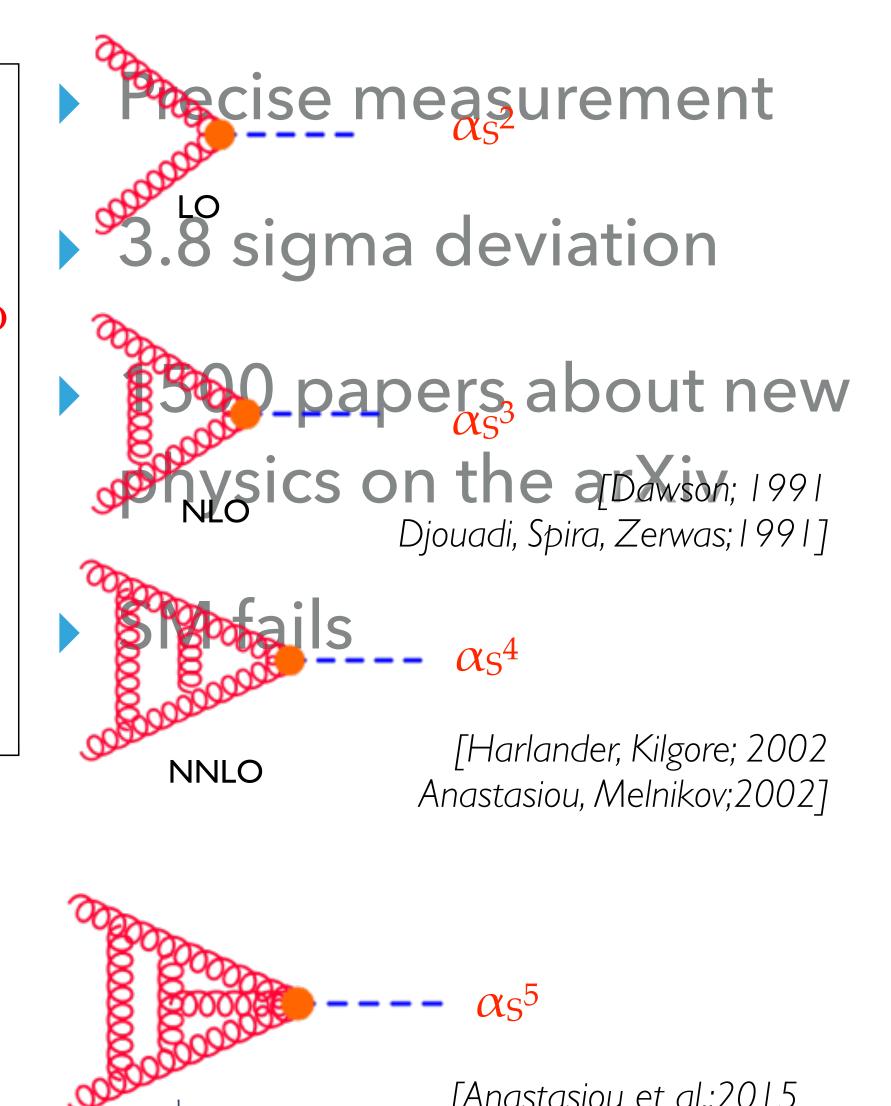


N³LO results needed to establish perturbative convergence / reduce residual theoretical uncertainty and precision tests of Higgs properties

 $XH = VBF + VH + t\bar{t}H + b\bar{b}H$ **Tot. uncert.** (scale, \oplus PDF+ α_{s})

 $\sigma_{N^3LO} = 55.5 \pm 2.9 \text{ pb}$

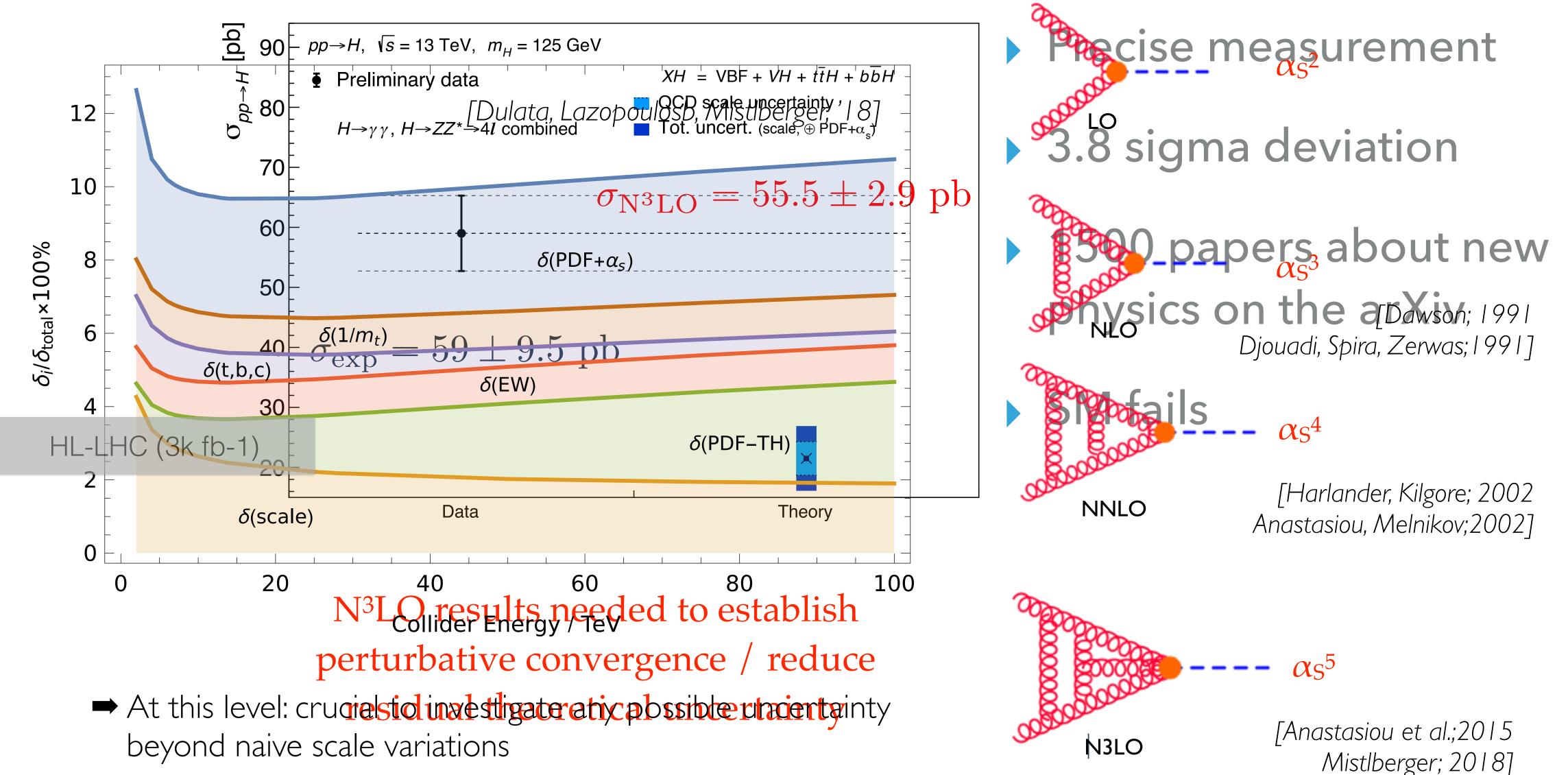
Theory



N3LO

[Anastasiou et al.;2015 Mistlberger; 2018]

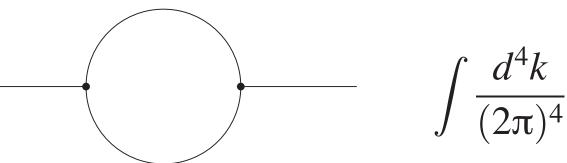
COMPARE DATA TO PREDIC



NLO computations

UV & IR divergences

- naively starting from NLO the predictions are divergent.
- Virtual loop diagrams are UV & IR divergent, e.g.:



This (ar **Regarantzation**eigna Qice Des at

- $k^2 \rightarrow \infty$ (UV-divergence)
- $k^2 \rightarrow 0$ (**IR-divergence**)

$$\int \frac{d^4 l}{(2\pi)^4} \to \mu^{2\epsilon} \int \frac{d^d l}{(2\pi)^d}, \ d = 4 - 2\epsilon < 4$$

- ightarrow Divergences are transformed into poles in ϵ , e.g.:
- regularisation procedures (photon/gluon mass, cut-offs, Pauli-Villard,...)

$$\frac{1}{4} \frac{1}{(k^2)^2} = \frac{1}{(4\pi)^2} \int_0^\infty dk^2 \frac{1}{k^2} = \frac{1}{(4\pi)^2} \int_0^\infty \frac{dx}{x}$$

\rightarrow Use dimensional regularisation to regulate these UV- and IR-divergences: D=4 \rightarrow D=4-2 ϵ

Note: in order to preserve the correct dimensions a mass scale μ is needed (regularisation scale)

This "dim-reg" procedure is gauge invariant & Lorentz invariant, in contrast to many other

UV Renormalisation

- Dim-reg: UV & IR divergences are transformed into poles in ϵ
- **Renormalisation:** Parameters appearing in the Lagrangian are not observed quantities, but "bare" quantities.
 - → absorb UV-divergences via redefinition ("renormalization") of all couplings and masses, e.g. $\alpha_s^{\rm ren} = Z_{\alpha_s} \alpha_s^{\rm bare}$
 - to different schemes. Note: all scheme have to absorb the same divergences.

On-shell scheme:

$$\Sigma(p^2 = m^2) = 0, \quad \frac{\partial \Sigma(p^2)}{\partial p^2}|_{p^2 = 2}$$

standard scheme for the renormlization of masses & wave-functions

MS-scheme ("modified minimal subtraction scheme"):

- standard scheme for the renormlization of α_s
- in dim-reg, poles always appear in the combination $\frac{1}{\epsilon} + \ln(4\pi) \gamma_E$
- MS: subtract this combination and replace bare coupling with renormalized one

$m^2 = 0$ The MS scheme

The Kinoshita-Lee-Nauenberg theorem

- After the renormalization procedure IR poles remain.
- However there is the very fundamental (based on the structure of the S-matrix) Kinoshita-Lee-Nauenberg (KLM) theorem [Kinoshita; '62, Lee, Nauenber; '64]:

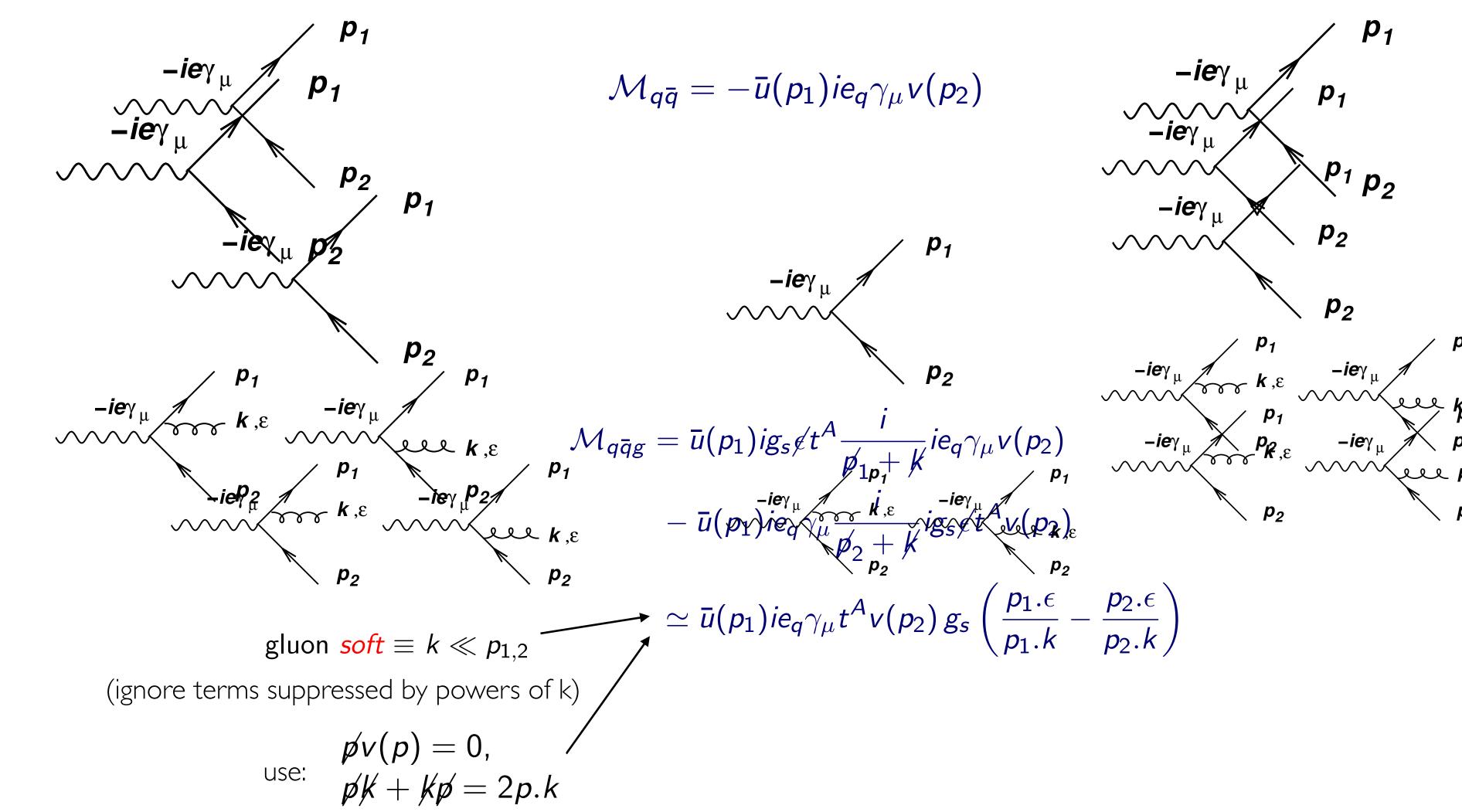
Measurable quantities, summed over indistinguishable states are free from IR divergences.

For IR-safe observables IR divergences in the virtual corrections cancel with corresponding divergences in the (indistinguishable) real radiation

 \sim

IR divergences

Consider as example $\gamma^* \rightarrow q\overline{q}$ (dijet production in e+e-):



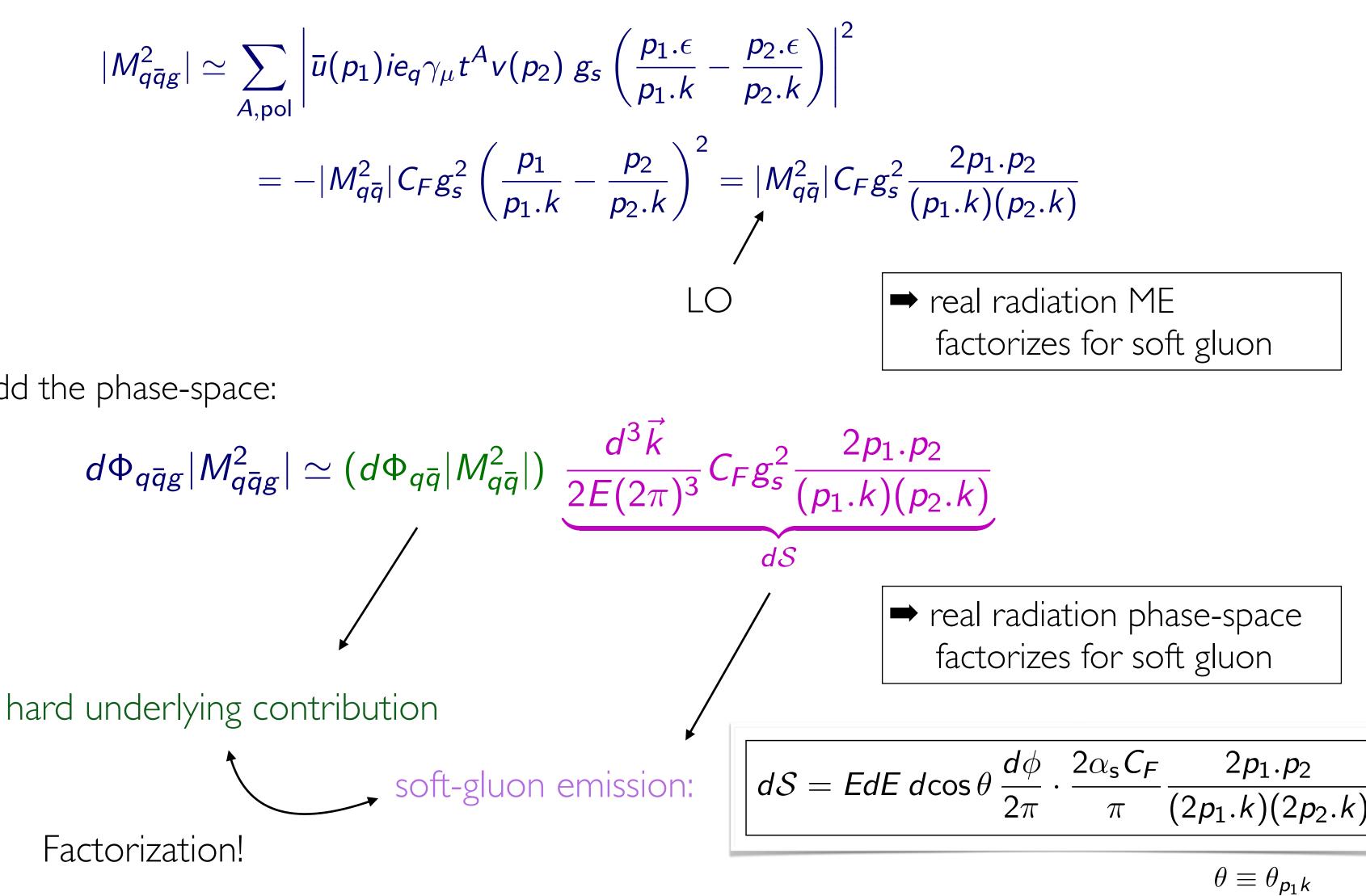
NLO-real

L()

Squared amplitude:

$$egin{aligned} |M_{qar{q}g}^2| &\simeq \sum_{A, ext{pol}} \left|ar{u}(p_1)ie_q\gamma_\mu t^A v(p_2)
ight. \ &= -|M_{qar{q}}^2|C_Fg_s^2\left(rac{p_1}{p_1.k}
ight. \end{aligned}$$

Add the phase-space:



IR divergences

 $\phi = \operatorname{azimuth}$

Rewrite "eikonal" in terms of E and θ :

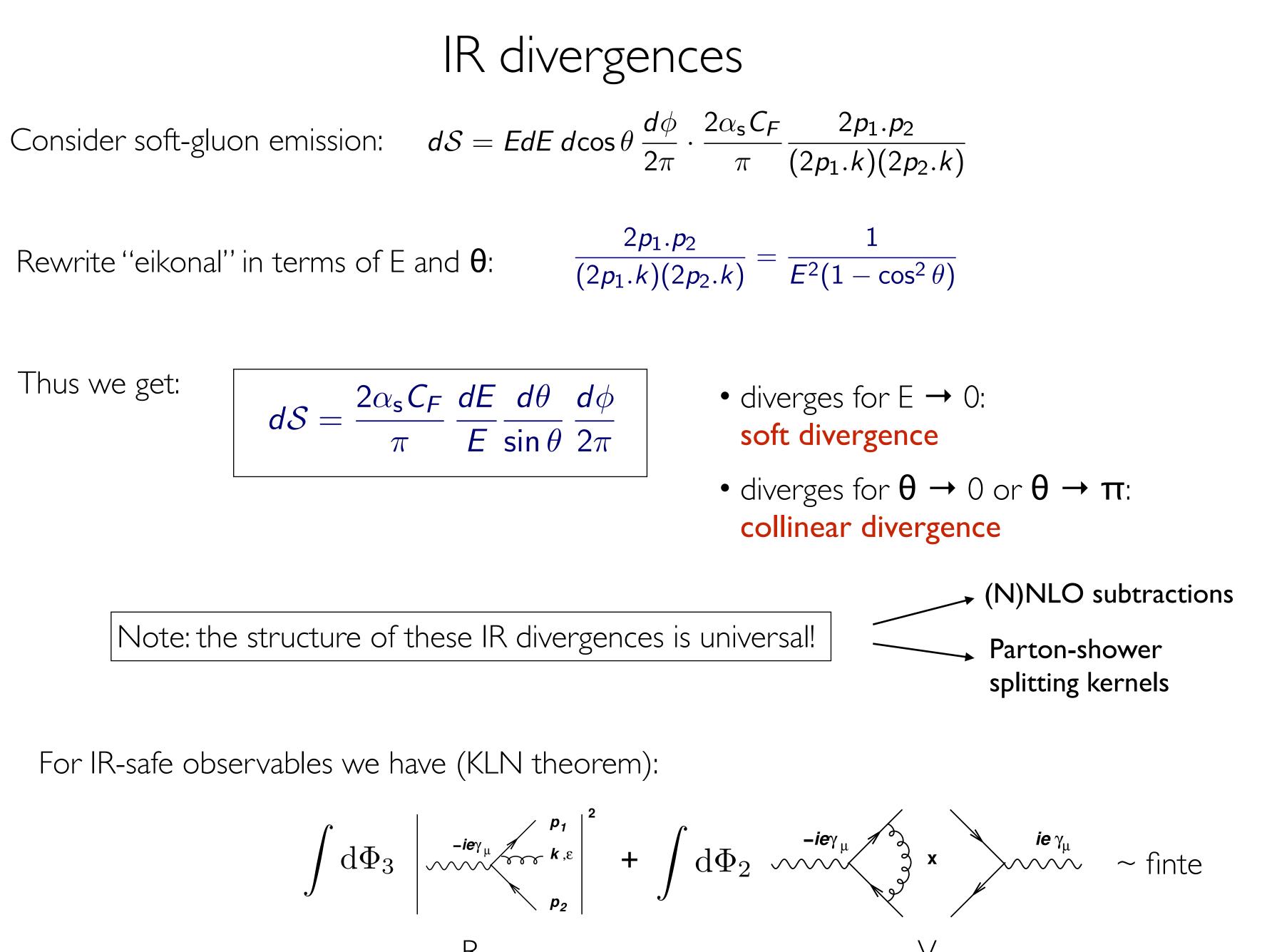
Thus we get:

$$d\mathcal{S} = \frac{2\alpha_{\rm s}C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin \theta}$$

Note: the structure of these IR divergences is universal!

For IR-safe observables we have (KLN theorem):

$$d\Phi_3$$
 $-ie\gamma_{\mu}$



- sum R+V.
- they can be added:

• Possible solutions:

phase space slicing: global subtraction subtraction methods: local subtraction

NLO Subtraction

• In an **analytical calculation** (of the phase-space) the IR divergences in the reals and the virtuals can be regularised in dim-reg \rightarrow Corresponding ϵ -poles cancel explicitly in the

• This is not possible when the phase-space integration is performed with **MC methods**. V and R live in different phase-spaces, thus the integration has to be performed before

Phase space slicing

$$d\hat{\sigma}_{\text{NLO}} = \frac{1}{2s} \int d\Phi_n \left[|\mathcal{M}_{\text{LO}}|^2 + 2\text{Re}\{\mathcal{M}_{\text{LO}}\mathcal{M}^*_{\text{NLO},\text{V}}\} \right] + \frac{1}{2s} \int d\Phi_{n+1} |\mathcal{M}_{\text{NLO},\text{R}}|^2$$

$$\sim -1/\epsilon$$

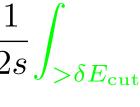
$$\frac{1}{2s} \int_{>\delta E_{\text{cut}},>\delta\theta_{\text{cut}}} d\Phi_{n+1} |\mathcal{M}_{\text{NLO},\text{R}}|^2 + \frac{1}{2s} \int_{<\delta E_{\text{cut}},<\delta\theta_{\text{cut}}} d\Phi_{n+1} |\mathcal{M}_{\text{NLO},\text{R}}|^2$$

$$\int \text{Integrate numerically}$$

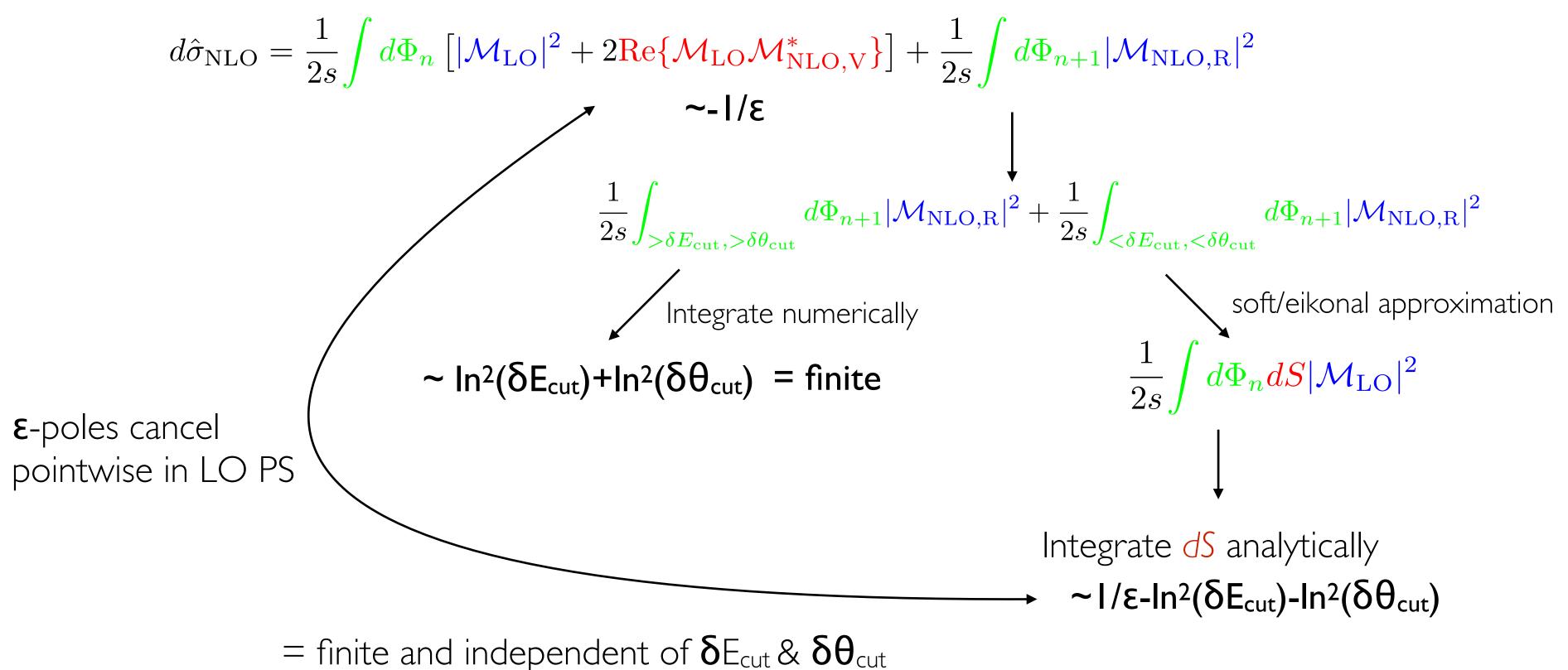
$$\sim \ln^2(\delta E_{\text{cut}}) + \ln^2(\delta \theta_{\text{cut}}) = \text{finite}$$

$$\frac{1}{2s} \int d\Phi_n dS |\mathcal{M}_{\text{LO}}|^2$$

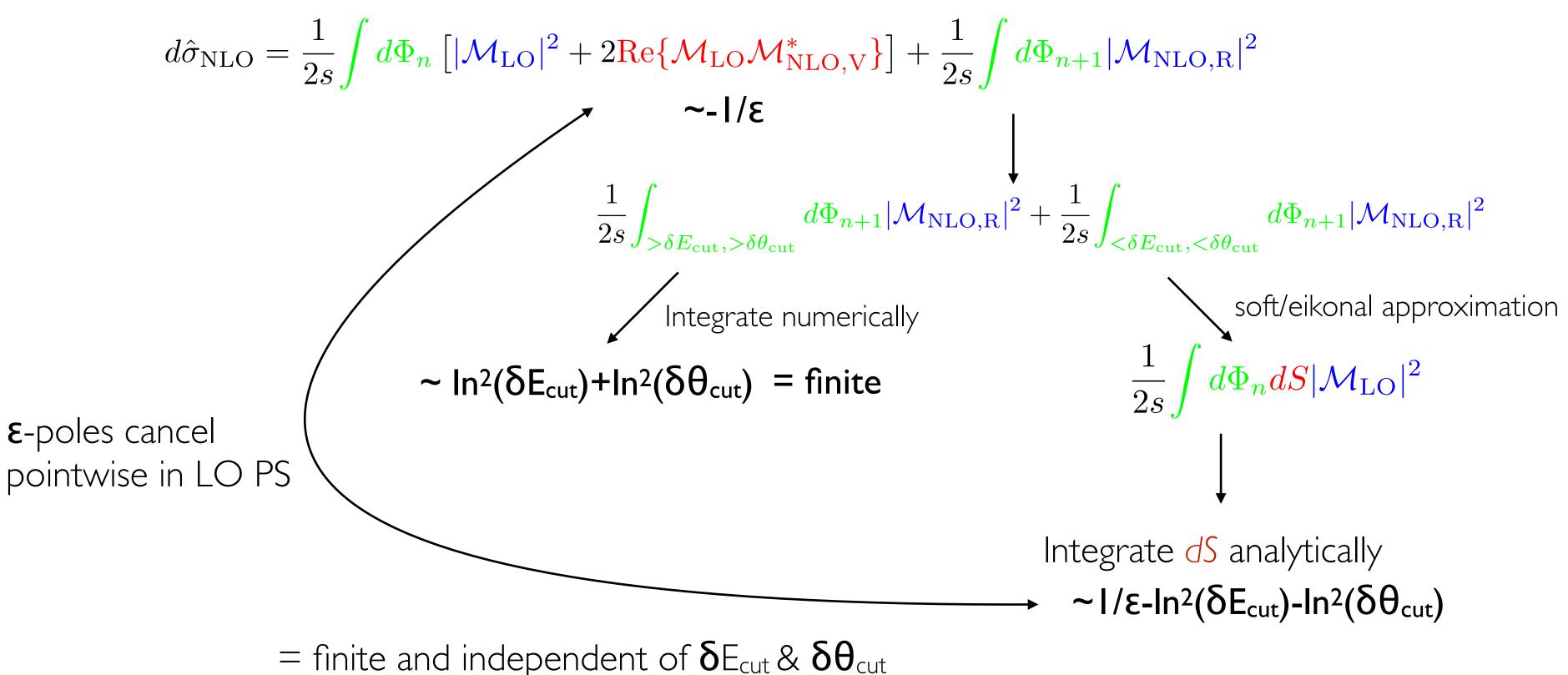
$$\downarrow$$
Integrate dS analytically
$$\sim 1/\epsilon - \ln^2(\delta E_{\text{cut}}) - \ln^2(\delta \theta_{\text{cut}})$$



Phase space slicing



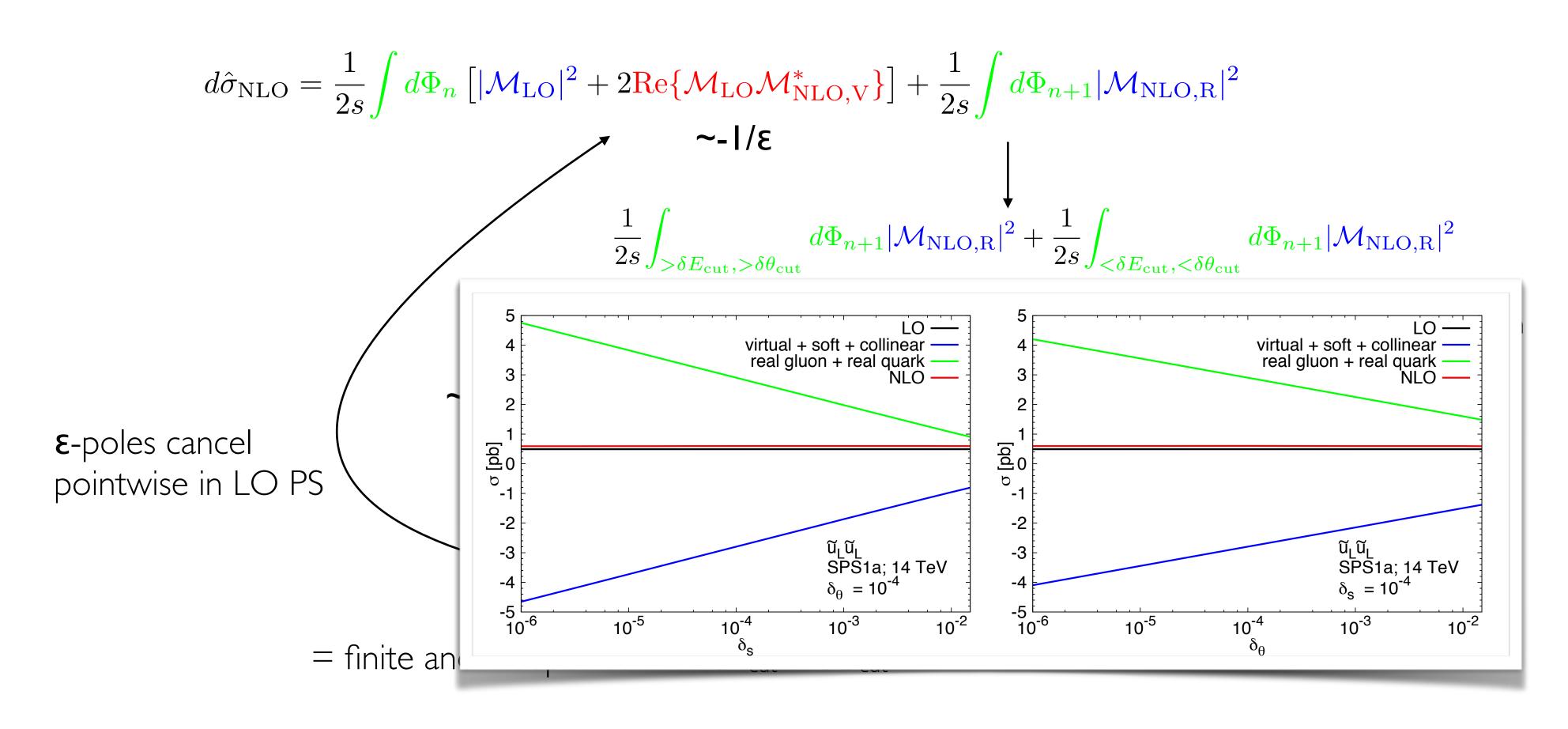
Phase space slicing



- → Very bad numerical convergence!
- ➡ At least at NLO not used anymore.

Phase space slicing

• However: cancellation (possibly several orders of magnitude) of $\delta E_{cut} \& \delta \theta_{cut}$ dependence happens only numerically!



- → Very bad numerical convergence!
- \rightarrow At least at NLO not used anymore.

Phase space slicing

• However: cancellation (possibly several orders of magnitude) of $\delta E_{cut} \& \delta \theta_{cut}$ dependence happens only numerically!

• Add and subtract a term S that cancels locally the divergences in the real radiation (e.g. based on the soft/eikonal approximation):

$$d\hat{\sigma}_{\rm NLO} = \frac{1}{2s} \int d\Phi_n \left[|\mathcal{M}_{\rm LO}|^2 + 2\operatorname{Re}\{\mathcal{M}_{\rm LO}\mathcal{M}_{\rm NLO,V}^*\} \right] + \frac{1}{2s} \int d\Phi_{n+1} |\mathcal{M}_{\rm NLO,R}|^2$$
$$= \frac{1}{2s} \int d\Phi_n \left[|\mathcal{M}_{\rm LO}|^2 + 2\operatorname{Re}\{\mathcal{M}_{\rm LO}\mathcal{M}_{\rm NLO,V}^*\} \right] + \frac{1}{2s} \int d\Phi_{n+1} |\mathcal{M}_{\rm NLO,R}|^2 - \underbrace{S+S}_{0}$$

Integrate

e this subtraction term analytically over the emission phase space:
$$I = \int d\Phi_1 S$$
$$= \frac{1}{2s} \int d\Phi_n \left[|\mathcal{M}_{\rm LO}|^2 + 2 \operatorname{Re} \{ \mathcal{M}_{\rm LO} \mathcal{M}^*_{\rm NLO,V} \} + I \right] + \frac{1}{2s} \int d\Phi_{n+1} |\mathcal{M}_{\rm NLO,R}|^2 - S$$
finite finite

NLO subtraction

The subtraction term S

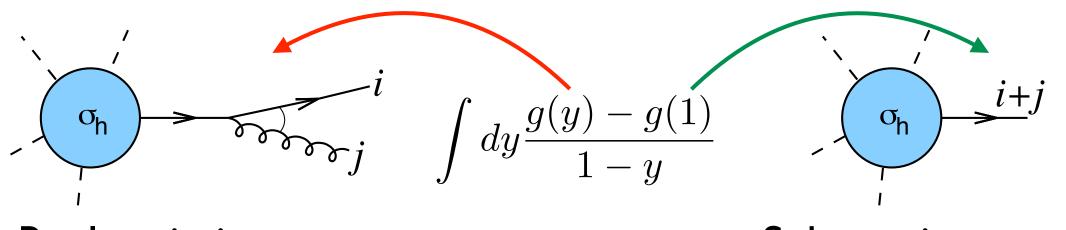
The subtraction term S should be chosen such that:

- it matches the singular behaviour of R ullet
- it can be integrated numerically in a convenient way ullet
- it can be integrated analytically over one-particle subspace. \bullet In d dimensions this yields to explicit poles in regulator.
- It is universal, i.e. process independent (overall factor times Born) •

Procedure systematized in the seminal papers of

- Catani-Seymour (dipole/CS subtraction, '96): Sherpa, Herwig7, HELAC-NLO, Munich
- Frixione-Kunszt-Signer (**FKS subtraction**, '96): POWHEG-BOX, MadGraph_aMC@NLO

Recoil and misbinning



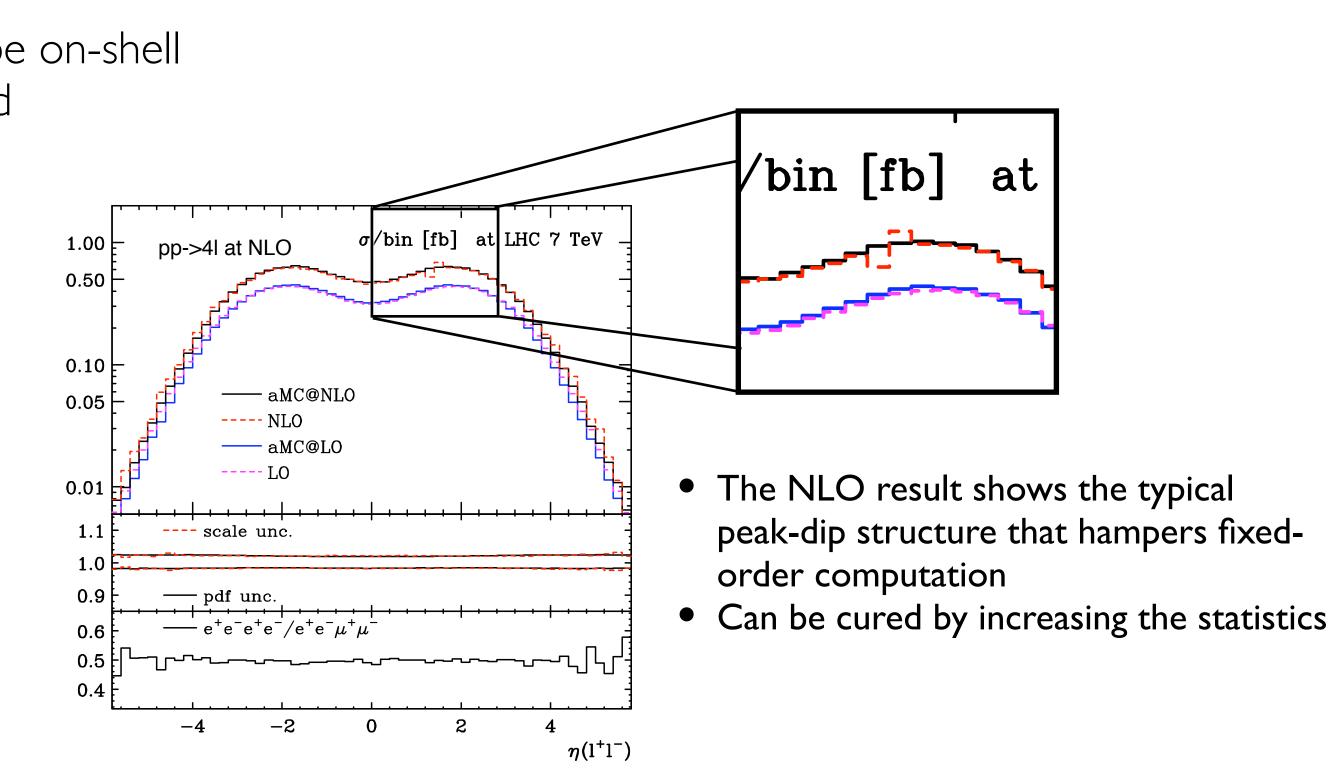
Real emission

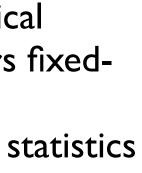
Subtraction term

- •Assuming *i* and *j* are on-shell in the real emission event, in the subtraction event the combined particle i+j has to be on-shell
- •i+j can only be on-shell when other particles are reshuffled

 \rightarrow It can happen that event and counter event end up in different histogram bins

→ Difficult to achieve arbitrary resolution with numerical integration.





Subtraction schemes

Dipole CS subtraction

- widely used
- automated in Sherpa, MadDipole, Helac-NLO
- Scaling of subtraction terms: N³
- Recoil (momentum shift) of an emitter taken by one specific spectator
- Proven to work efficiently for simple and complicated processes

FKS subtraction

- Somewhat less popular
- automated in MadGraph5_aMC@NLO, POWHEG-BOX
- Scaling of subtraction terms: N²
- Recoil (momentum shift) of an emitter taken by all particles
- Proven to work efficiently for simple and complicated processes

The Kinoshita-Lee-Nauenberg theorem

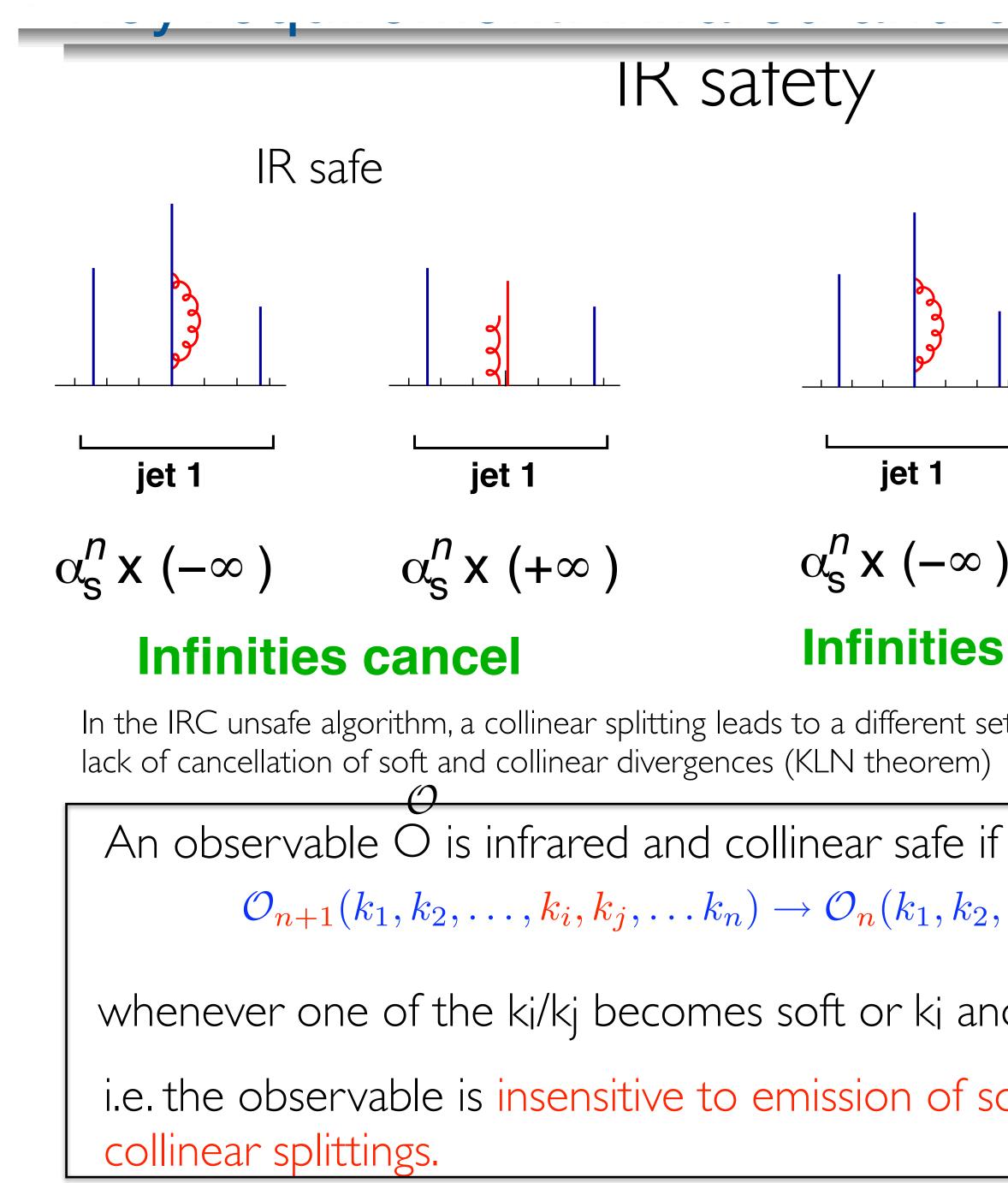
- After the renormalization procedure IR poles remain.
- However there is the very fundamental (based on the structure of the S-matrix) Kinoshita-Lee-Nauenberg (KLM) theorem [Kinoshita; '62, Lee, Nauenber; '64]:

Measurable quantities, summed over indistinguishable states are free from IR divergences.

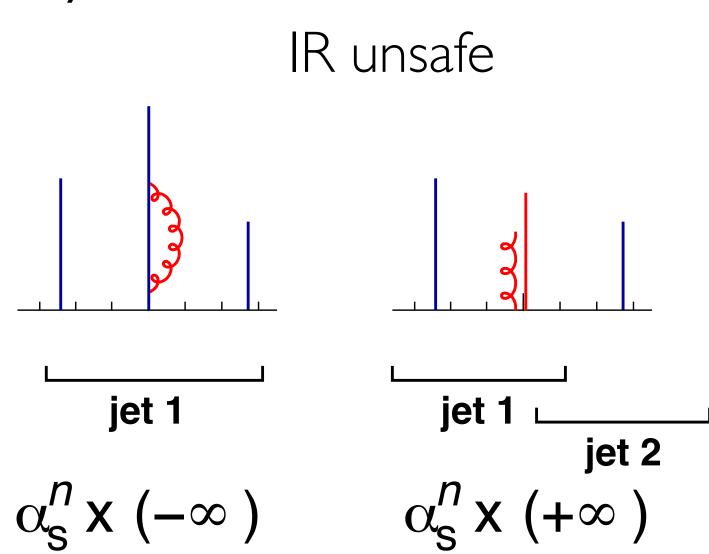
For IR-safe observables IR divergences in the virtual corrections cancel with corresponding divergences in the (indistinguishable) real radiation

 \sim

41



IK safety



Infinities do not cancel

In the IRC unsafe algorithm, a collinear splitting leads to a different set of final state jets and thus to the

$$k_n) \rightarrow \mathcal{O}_n(k_1, k_2, \dots, k_i + k_j, \dots, k_n)$$

whenever one of the ki/kj becomes soft or kj and kj are collinear

i.e. the observable is insensitive to emission of soft particles or to

- energy of the hardest parton in an event
- multiplicity of gluons
- momentum flow into a cone in rapidity and angle
- cross-section for producing one gluon with E > Emin and $\theta > \theta$ min
- ▶ jet cross-sections

IR safety: examples

- energy of the hardest parton in an event
- multiplicity of gluons
- momentum flow into a cone in rapidity and angle
- cross-section for producing one gluon with E > Emin and $\theta > \theta$ min
- ▶ jet cross-sections

IR safety: examples

- energy of the hardest parton in an event
- multiplicity of gluons
- momentum flow into a cone in rapidity and angle
- ▶ jet cross-sections

IR safety: examples

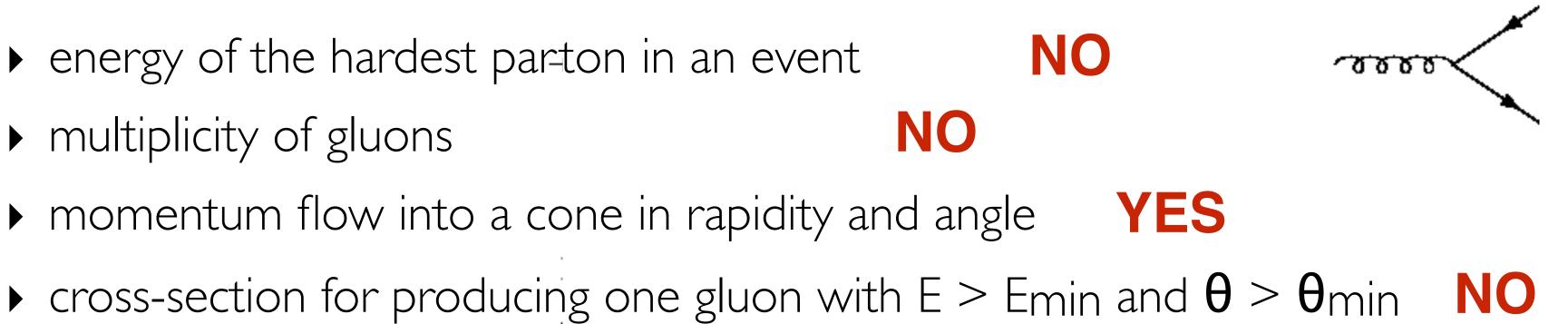
• cross-section for producing one gluon with E > Emin and $\theta > \theta$ min

- energy of the hardest parton in an event
- multiplicity of gluons
- momentum flow into a cone in rapidity and angle
- cross-section for producing one gluon with E > Emin and $\theta > \theta$ min
- ▶ jet cross-sections

IR safety: examples

- energy of the hardest parton in an event
- multiplicity of gluons
- momentum flow into a cone in rapidity and angle
- ▶ jet cross-sections

IR safety: examples



- energy of the hardest parton in an event
- multiplicity of gluons
- momentum flow into a cone in rapidity and angle
- ▶ jet cross-sections **DEPENDS**

IR safety: examples

• cross-section for producing one gluon with E > Emin and $\theta > \theta min$ NO

IR safety: examples

Are these observables IR safe?

- energy of the hardest parton in an event
- multiplicity of gluons
- momentum flow into a cone in rapidity and angle

(i.e. all jet definitions used nowadays)

YES

• cross-section for producing one gluon with E > Emin and $\theta > \theta$ min NO

jet cross-sections DEPENDS, YES for IR-safe jet definitions

IR safety: examples

Are these observables IR safe?

- energy of the hardest parton in an event
- multiplicity of gluons
- momentum flow into a cone in rapidity and angle

jet cross-sections DEPENDS, YES for IR-safe jet definitions

(i.e. all jet definitions used nowadays)

YES

• cross-section for producing one gluon with E > Emin and $\theta > \theta$ min NO

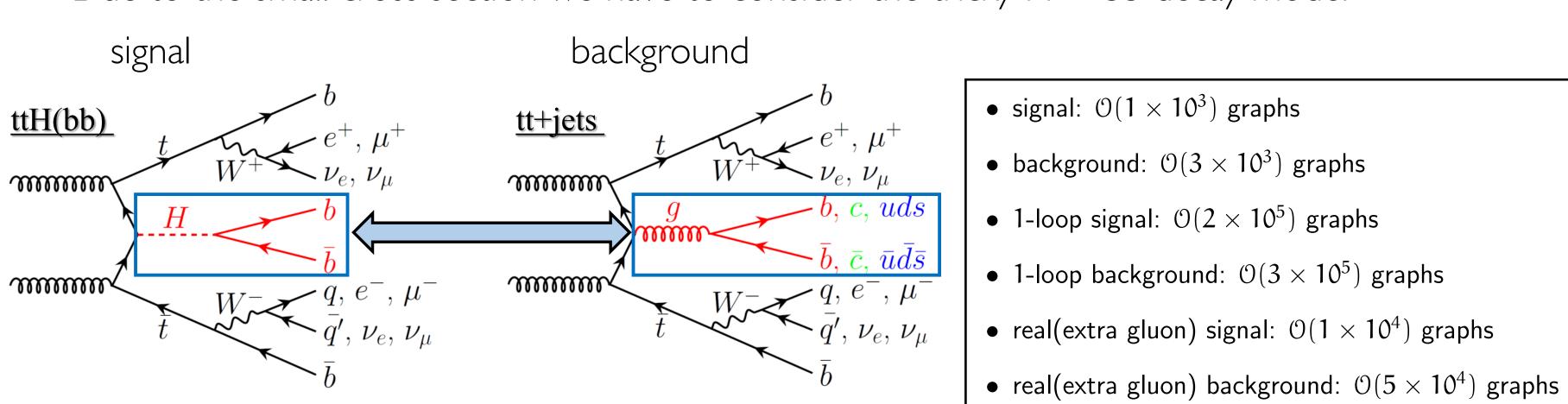
- Higher-order corrections mandatory for reliable predictions at the LHC
- NLO corrections often O(100%)
- $\Delta NLO = V + R$
- $\Delta NNLO = VV + RV + RR$
- ... for IR safe observables

• KLN theorem ensures IR finiteness of corrections at each perturbative order...

Questions?

Motivation: NLO multileg

- applications at the LHC.
- the top-Yukawa coupling.

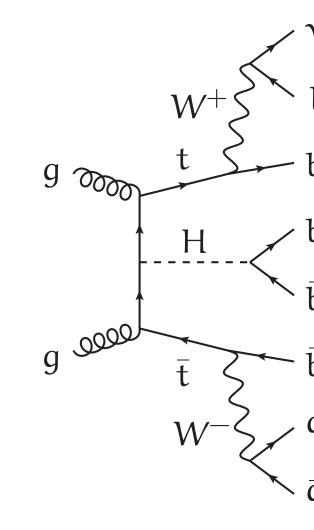


- need milions of evaluations in practical Monte Carlo calculations
- need many partonic processes
- similar for many other processes besides ttH production

• For a multitude of multileg processes NLO predictions are needed for current state-of-the-art

• Consider for example ttH production, which is very important for the direct determination of

• Due to the small cross section we have to consider the tricky $H \rightarrow$ bb decay mode:



 \rightarrow efficient automation needed!

Tree Matrix elements

(I) Textbook Feynman diagram construction:

- I. draw all Feynman diagrams
- 2. put in the explicit Feynman rules and get the amplitude
- 3. do some algebra, simplifications
- 4. square the amplitude
- 5. sum/average over outgoing/incoming states

Automated tools for (1-2): FeynArts/QGRAF (3-5): FormCalc/Form/CompHEP/CalcHEP

Bottlenecks

a) number of Feynman diagrams grows factorially! b) algebra becomes more cumbersome with more particles

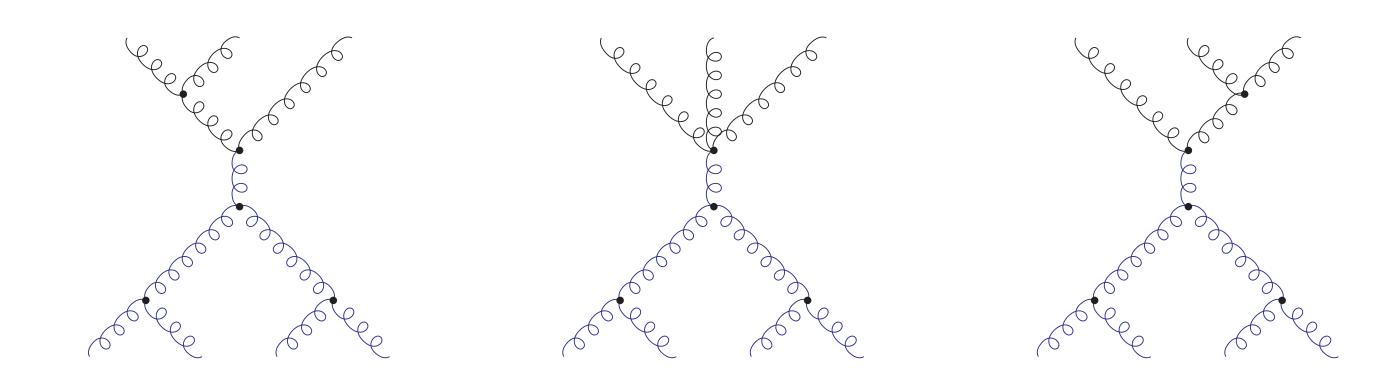
$$\mathcal{L} \to |\mathcal{M}_{\mathrm{tree}}|^2$$

Number Feynman of diagrams contributing to $gg \rightarrow ng$ at tree level:

2	4
3	25
4	220
5	2485
6	34300
7	559405
8	10525900

Helicity amplitudes

- The Monte Carlo integration has to be performed numerically
 Integration of the amplitudes required
- Idea: construct the amplitude purely numerical (as complex numbers) from numerical representation of external wave-functions and spinors combined with vertex routines.
 squaring the amplitude becomes very cheap (squaring complex numbers is numerically cheap)
- Build algorithms that constructs amplitudes automatically
- Try to recycle sub-expressions as much as possible, e.g.

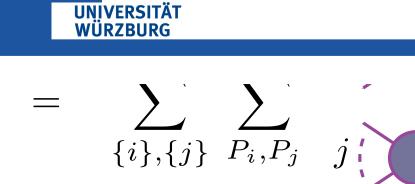


Recurrence relations

- that calculate SM tree-level helicity amplitudes with complexity $\mathcal{O}(n^4)$
- off-shell currents for external legs are wave functions

- Amplitude for process with N external particles: **UNIVERSITÄT WÜRZBURG**
- Recursion relation:

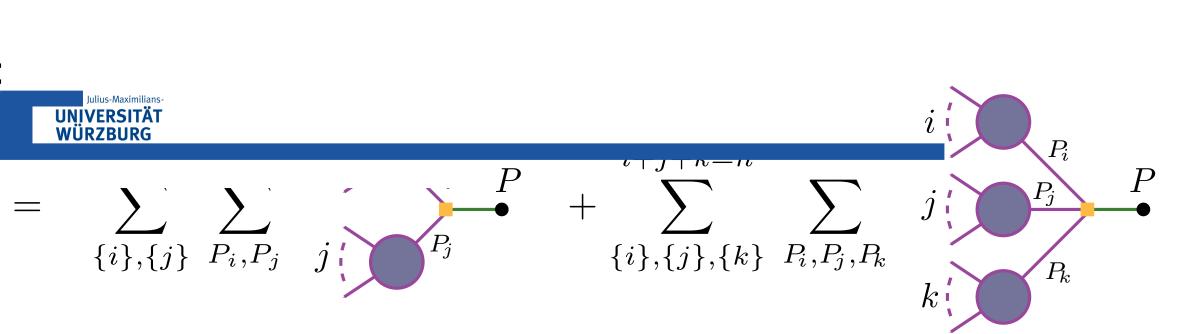
• In the SM we have:



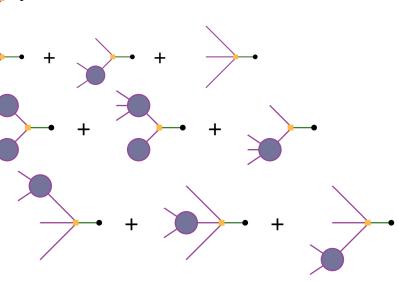
2-leg currents: 3-leg currents: $\rightarrow \rightarrow + \rightarrow + -$ 4-leg currents: \rightarrow = \rightarrow + \rightarrow +

• Pioneered by [Berends, Giele; '88] algorithms based on recurrence relations can be designed

 $\rightarrow \bullet = u_{\lambda}(p), \qquad \frown \bullet = \overline{u}_{\lambda}(p), \qquad \frown \bullet = \epsilon_{\lambda}(p), \qquad \frown \bullet = 1$



incoming currents × vertex × propagator



No Feynman diagrams are calculated in this approach!

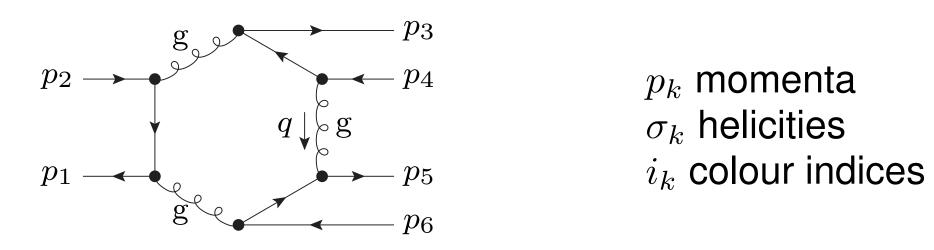
- Berends, Giele 1987: planar multi-gluon amplitudes
- Caravaglios, Moretti 1995: formulation for arbitrary lagrangians
- Draggiotis, Kleiss, Papadopoulos 1998: multi-gluon amplitudes
- Caravaglios, Mangano, Moretti, Pittau 1998: multi-jet processes
- Kanaki, Papadopoulos 1999: HELAC (standard model) → MadGraph
- Moretti, Ohl, Reuter 2001: O'Mega \rightarrow Whizard
- Mangano, Moretti, Piccinini, Pittau, Polosa 2003: ALPGEN
- Gleisberg, Hoeche 2008: Comix \rightarrow Sherpa

→ Used in all modern amplitude generators

Recurrence relations: history

Traditional NLO Matrix elements

ιγριζαι σ-ροιπι απιριιτυσε:



Feynr

 $\mathcal{M}_{i_1\dots i_6}^{\sigma_1\dots\sigma_6}(p_1,\dots,p_6) = g^6 (T^a T^b)_{i_1 i_2} (p_5) \times \int \mathrm{d}^D q \, \frac{\bar{u}(p_5)}{\bar{u}_1} d^D q \, \frac{\bar{u}(p_5)}{\bar{u}_1} d^D q \, \frac{\bar{u}(p_5)}{\bar{u}_2} d^D q \, \frac{\bar{u}(p_5)}{\bar{u}$

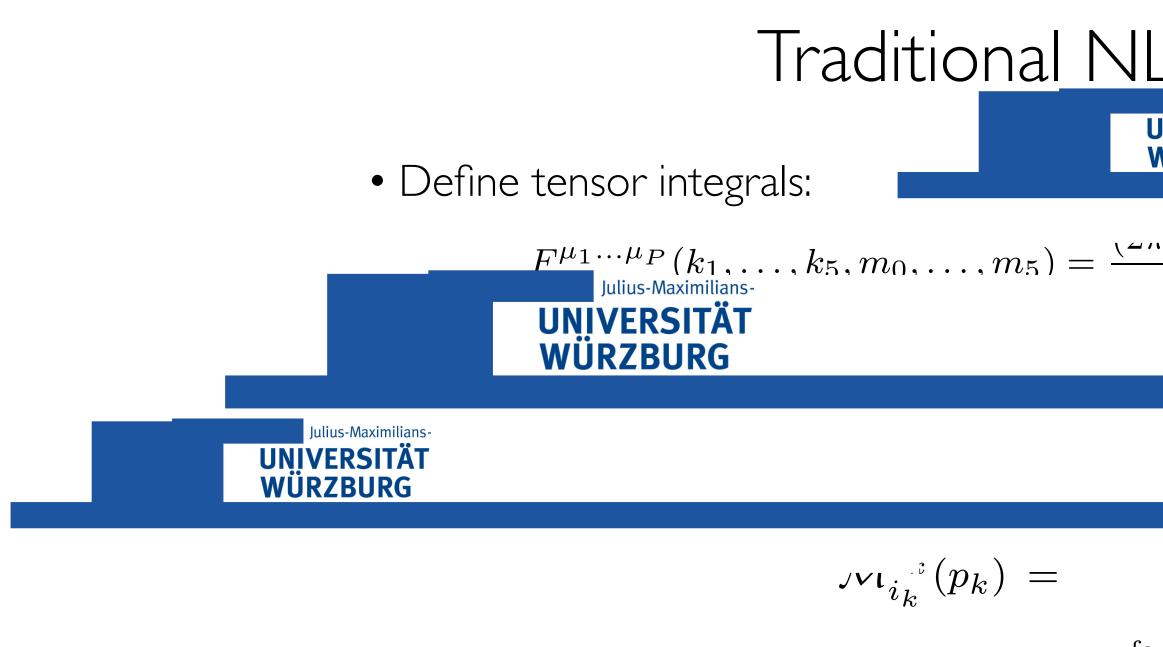
$${}^{a}T^{b})_{i_{1}i_{2}}(T^{b}T^{c})_{i_{3}i_{4}}(T^{c}T^{a})_{i_{5}i_{6}}$$

$$d^{D}q \frac{\bar{u}(p_{5},\sigma_{5})\gamma^{\mu}(\not{q}+\not{p}_{5}+m_{5})\gamma^{\nu}v(p_{6},\sigma_{6})}{(q^{2})[(q+p_{5})^{2}-m_{5}^{2}]}$$

$$\times \frac{\bar{v}(p_{1},\sigma_{1})\gamma^{\nu}(\not{q}+\not{p}_{5}+\not{p}_{6}-\not{p}_{1}+m_{1})\gamma^{\lambda}u(p_{2},\sigma_{2})}{[(q+p_{5}+p_{6})^{2}][(q+p_{5}+p_{6}-p_{1})^{2}-m_{1}^{2}]}$$

$$\times \frac{\bar{u}(p_{3},\sigma_{3})\gamma^{\lambda}(\not{q}-\not{p}_{4}+m_{3})\gamma^{\mu}v(p_{4},\sigma_{4})}{[(q-p_{3}-p_{4})^{2}][(q-p_{4})^{2}-m_{3}^{2}]}$$

Feynman rules



facolou

D0

• "standard matrix elements": purely kinemati

i was to scalar integrals: tensor loop co

$$\mathcal{F}_{m}(\{p_{a} \cdot p_{b}\}) = \sum_{j_{1} \dots j_{R}} \mathcal{K}_{m, j_{1} \dots j_{R}}(\{p_{a} \cdot p_{b}\}) \quad \overline{T_{j_{1} \dots j_{R}}}(\{p_{a} \cdot p_{b}\})$$
$$T_{j_{1} \dots j_{R}} = \sum_{i} a_{i}A_{0}(i) + \sum_{j} b_{j}B_{0}(j) + \sum_{k} c_{k}C_{0}(k) + \sum_{i} a_{i}A_{0}(i) + \sum_{j} b_{j} \ge 1 + \sum_{k} c_{k} \xrightarrow{i} A_{0}$$
$$A_{0} \qquad B_{0} \qquad C_{0}$$

LO Matrix elements		
$\int d^D q \frac{q}{q}$		
	$_{0} = 0$	
'' and	l''standard matrix elements''	
\mathcal{C}_{i_k} $\sum_m \mathcal{F}_m(\{p_a \cdot p_a \cdot p_a$	$p_b\}) \underbrace{\hat{\mathcal{M}}_m^{\{\lambda_k\}}(\{p_k\})}_{ ext{standard matrix}}$	
cical objects		
aic expression	ons! (e.g. FeynArts)	
oefficients $p_a \cdot p_b\})$		
$+\sum_{l} d_{l} D_{0}(l)$ $+\sum_{l} d_{l} \qquad \qquad$	\Rightarrow Every one-loop amplitude can be reduced to A0, B0, C0 and D0.	

NLO Matrix elements: Solutions

- unitarity-cut techniques (e.g. BlackHat, CutTools) ullet
- extension of recursion-relation technique to NLO (e.g. Recola) \bullet
- combination of Feynman diagrams and recursion relations (e.g. OpenLoops)

. . .

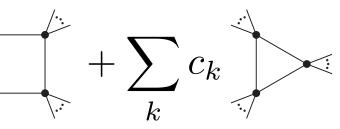
All methods: **numerical** \Rightarrow problem of numerical stability

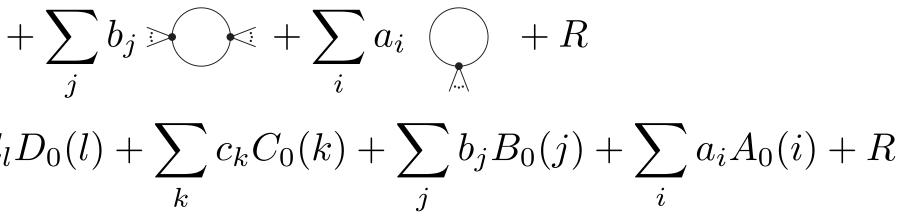
, one-loop amplitude can be represented by a linear combination of scalar one-loop integrals

$$\mathcal{M}^{1\text{-loop}} = \underbrace{\sum_{l} d_{l}}_{l} \underbrace{\sum_{j} d_{l}}_{l} \underbrace{\sum_{j} d_{l}}_{l} \underbrace{\sum_{j} d_{j}}_{l} \underbrace{\sum_{j} d_{l} D_{0}(l)}_{l} + \underbrace{\sum_{k} c}_{k} \underbrace{\sum_{j} d_{l} D_{0}(l)}_{k} \underbrace{\sum_{j} d_{l} D_{0}(l)}_{k}$$

- calculation of amplitude \Leftrightarrow determination of coefficients a_i, b_i, c_k, d_l and R
- one-loop diagram ("unitarity methods")

Unitarity methods: Ideas

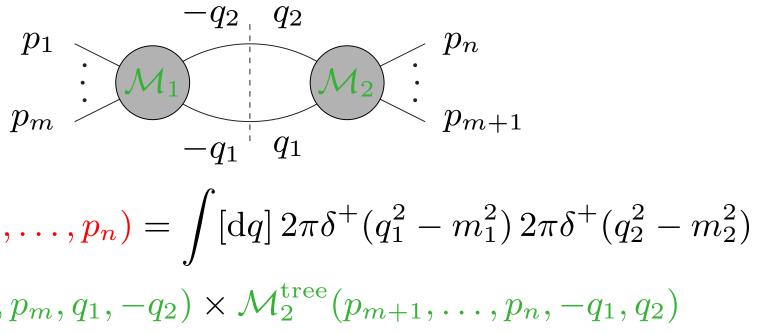




these coefficients can be determined from cuts (=on-shell propagators) of the

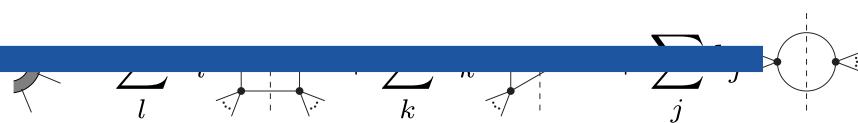
Cut: one-loop diagram \rightarrow two tree diagrams ullet

$$\frac{\mathrm{i}}{q_1^2 - m_1^2} \to 2\pi \delta^+ (q_1^2 - m_1^2), \qquad \frac{\mathrm{i}}{q_2^2 - m_2^2} \to 2\pi \delta^+ (q_2^2 - m_2^2)$$



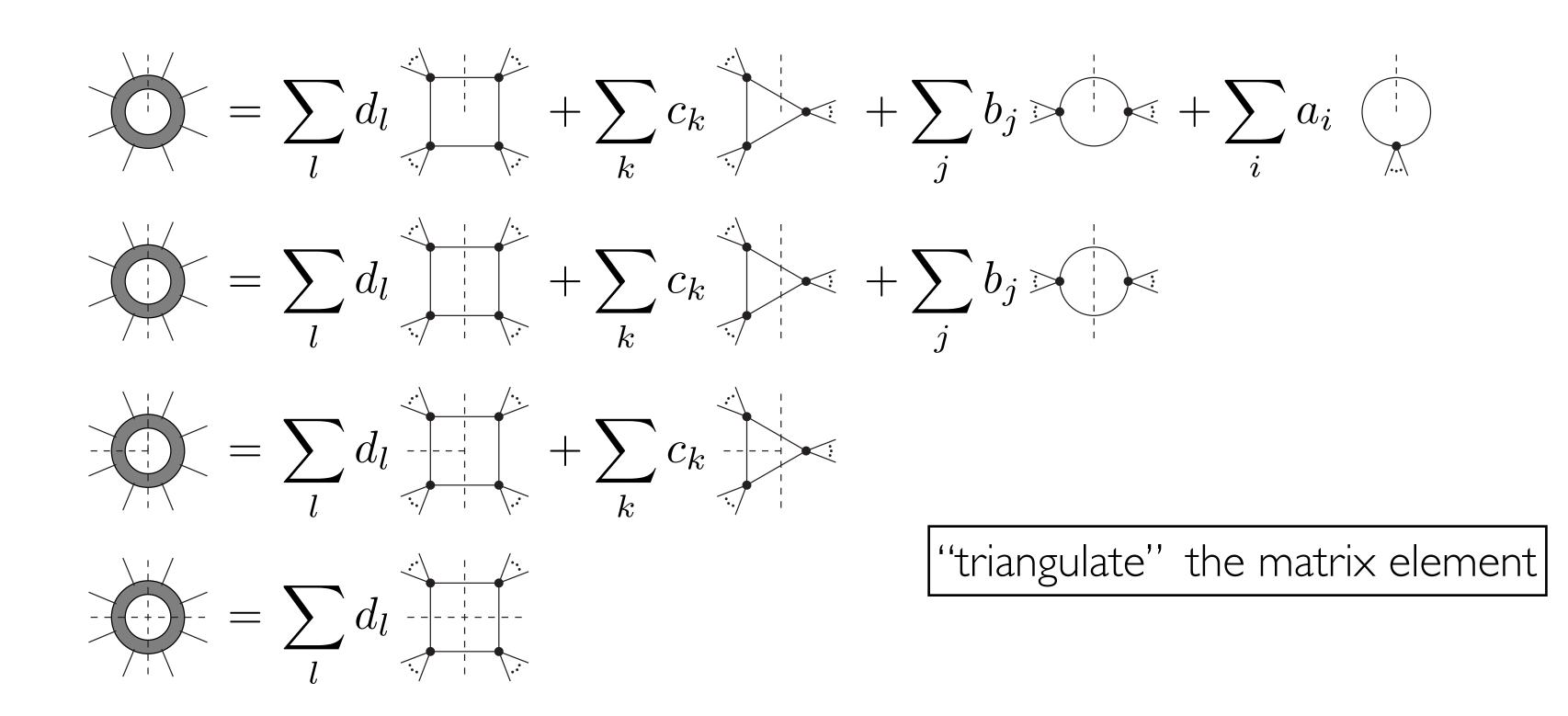
$$-\mathrm{i}\operatorname{Disc}\mathcal{M}^{1\operatorname{-loop}}(p_1,\ldots,p_n)$$
$$\times \mathcal{M}_1^{\operatorname{tree}}(p_1,\ldots,p_m,q_1,-$$

- relates one-loop amplitudes to products of tree amplitudes \bullet
- reconstruct the coefficients from the cuts on both sides of the equation \bullet



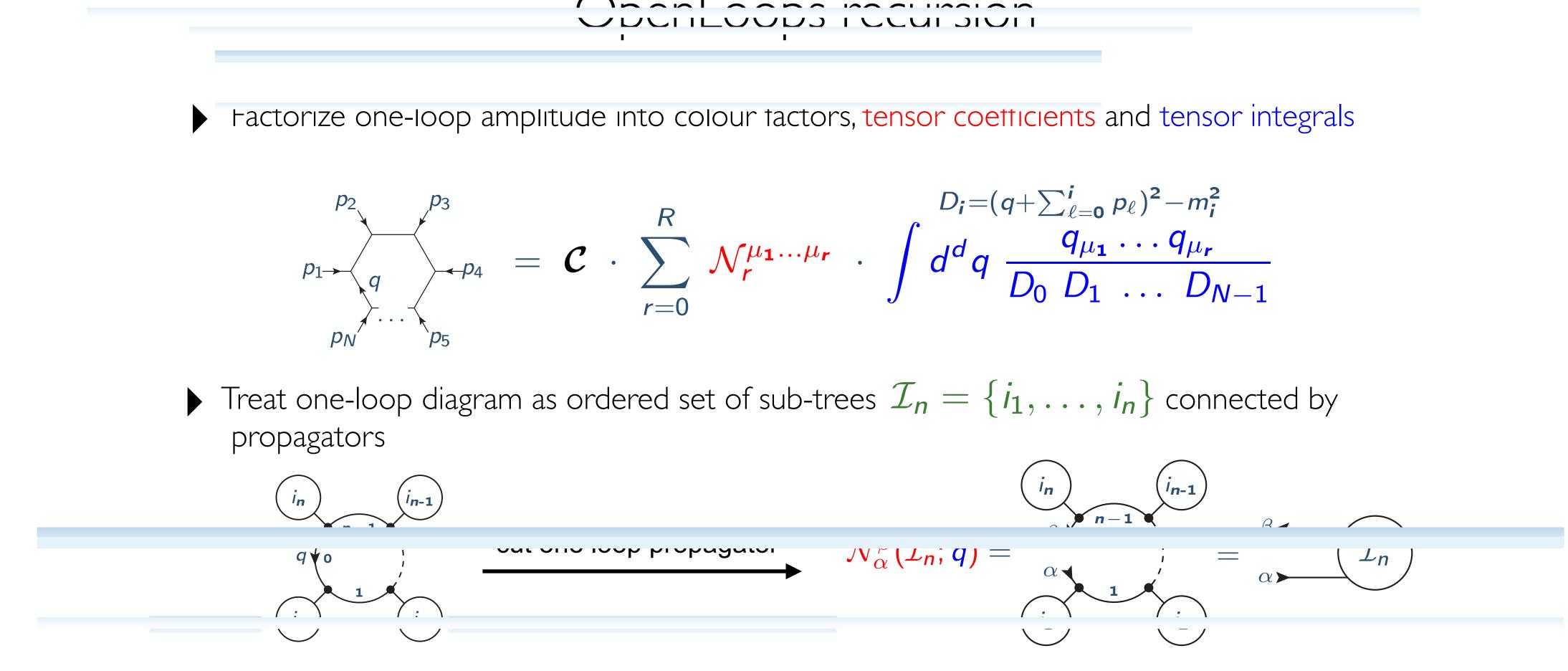
Generalized unitary

• Consider all kinds of cuts:

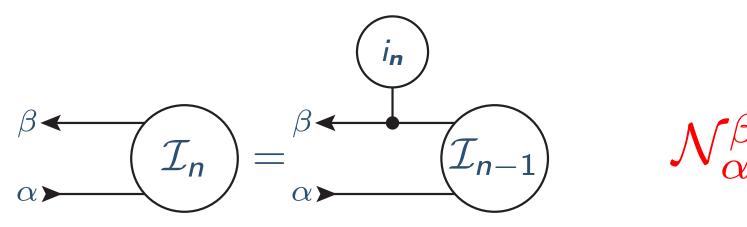


 OPP = Generalized Unitarity at the ir numerator function N(q)

OPP = Generalized Unitarity at the integrand-level: requires multiple evaluation of the



Build numerator connecting subtrees along the loop



$$D_{i} = (q + \sum_{\ell=0}^{i} p_{\ell})^{2} - m_{i}^{2}$$

$$\int d^{d}q \frac{q_{\mu_{1}} \cdots q_{\mu_{r}}}{D_{0} D_{1} \cdots D_{N-1}}$$

$$\mathcal{N}^{\beta}_{\alpha}(\mathcal{I}_{n}; \boldsymbol{q}) = X^{\beta}_{\gamma\delta}(\boldsymbol{q}) \ \mathcal{N}^{\gamma}_{\alpha}(\mathcal{I}_{n-1}; \boldsymbol{q}) \ w^{\delta}(i_{n})$$

Ononl a

Recursively build "open loops" polynomials $\mathcal{N}^{\beta}_{\mu_{1}...\mu_{r};\alpha}$

• disentangle loop momentum q from the coefficients

$$\mathcal{N}^{\beta}_{\alpha}(\mathcal{I}_{n};\boldsymbol{q}) = \sum_{r=0}^{n} \mathcal{N}^{\beta}_{\mu_{1}\dots\mu_{r};\alpha}(\mathcal{I}_{n}) \boldsymbol{q}^{\mu_{1}}\dots\boldsymbol{q}^{\mu_{r}} \qquad X^{\beta}_{\gamma\delta} = Y^{\beta}_{\gamma\delta} + \boldsymbol{q}^{\nu} Z^{\beta}_{\nu;\gamma\delta}$$

• recursion in d=4:

$$\mathcal{N}_{\mu_{1}...\mu_{r};\alpha}^{\beta}(\mathcal{I}_{n}) = \left[Y_{\gamma\delta}^{\beta}\mathcal{N}_{\mu_{1}...\mu_{r};\alpha}^{\gamma}(\mathcal{I}_{n-1}) + Z_{\mu_{1};\gamma\delta}^{\beta}\mathcal{N}_{\mu_{2}...\mu_{r};\alpha}^{\gamma}(\mathcal{I}_{n-1})\right]w^{\delta}(i_{n})$$

- model and process independent algorithm
- ϵ -dimensional part of the numerator x poles of the tensor integrals yield R₂ rational terms

$$R_2 = ([\mathcal{N}]_{d=4-2\epsilon})$$

• numerical recursion in D=4 \rightarrow restore R₂ via process independent counter terms [Draggiotis, Garzelli, Malamos, Papadopoulos, Pittau '09, '10; Shao, Zhang, Chao '11]

• numerical implementation requires only universal building blocks, derived from the Feynma rules of the theory

$$(\mathcal{N}]_{d=4}) \cdot [TI]_{UV}$$

OpenLoops recursion: recycle loop structures

OpenLoops recycling:

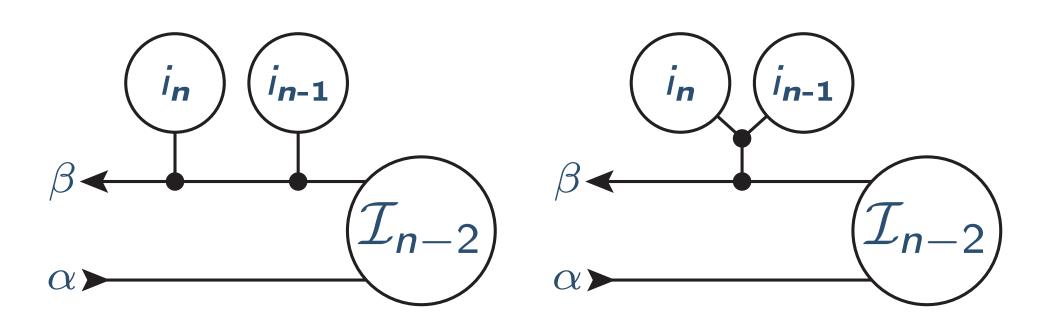
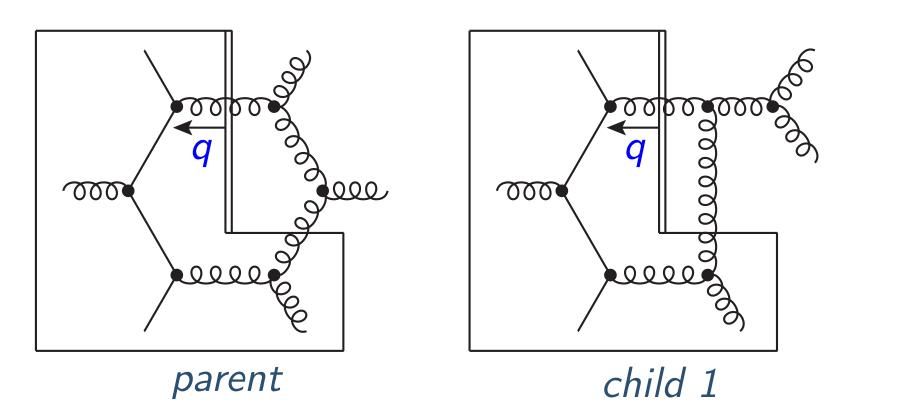
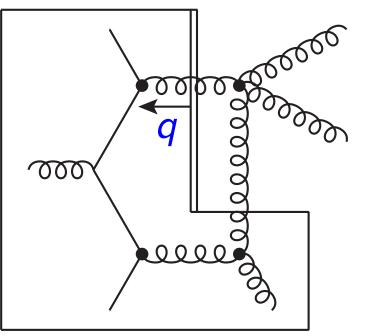


Illustration:



Lower-point open-loops can be shared between diagrams if

- cut is put appropriately
- direction chosen to maximise recyclability

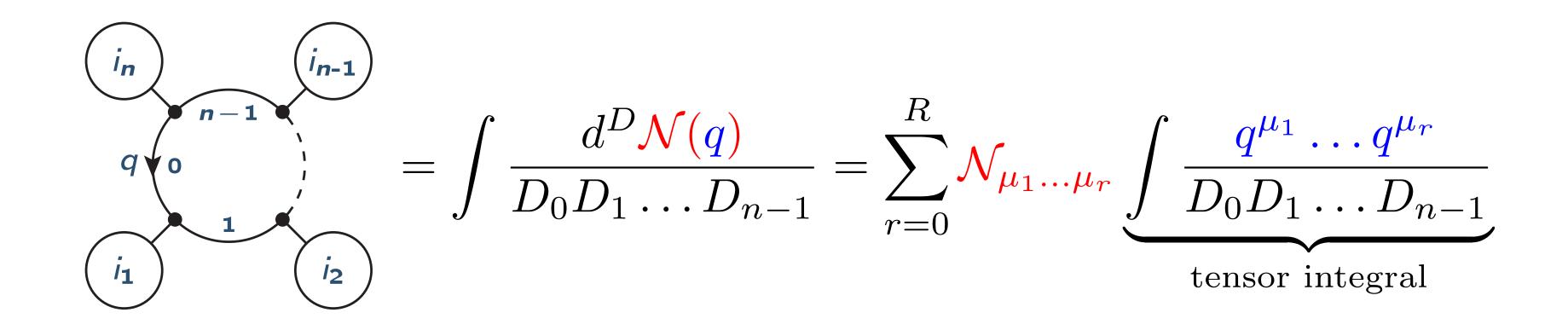


child 2

Complicated diagrams require only "last missing piece"

66

OpenLoops recursion



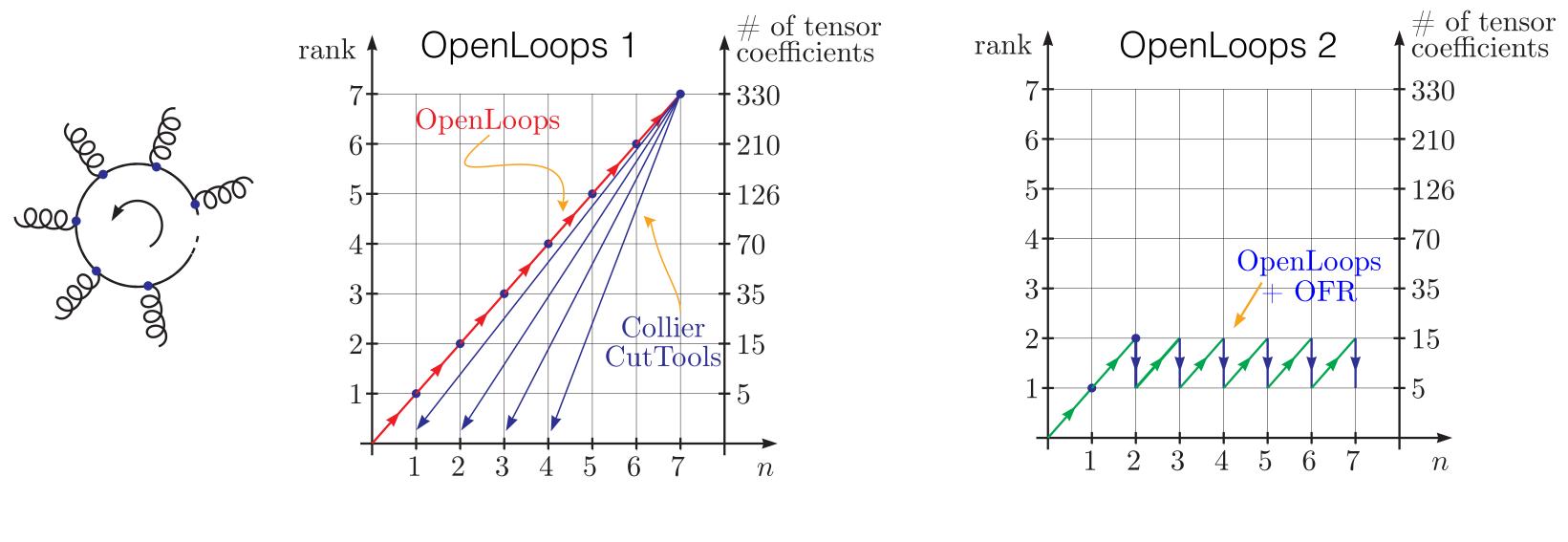
- Tensorial coefficients $\mathcal{N}^{\alpha}_{\mu_1...\mu_r;\alpha}$ can directly be used with tensor integral libraries (COLLIER). [Denner, Dittmaier, Hofer; '16]

[Ossola, Papadopolous, Pittau; '07]

Fast evaluation of $\mathcal{N}(q) = \sum \mathcal{N}_{\mu_1 \dots \mu_r} q^{\mu_1} \dots q^{\mu_r}$ at multiple q-values, required in OPP reduction methods (CutTools).

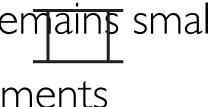
On-the-fly OpenLoops reduction

- At each Open Loops step perform "on-the-fly" rank=2 \Rightarrow rank=1 reduction:



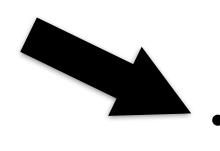
- complexity associated with tensor rank remains small
- allows for very targeted stability improvements

• Interleaved amplitude construction and integrand reduction \Rightarrow "on-the-fly" (OFR) reduction



- NLO Monte-Carlo integrators (+subtraction):
 - MadGraph_aMC@NLO (FKS)
 - Sherpa (CS)
- POWHEG-BOX (FKS)
- Herwig7 (CS)
- Whizard (FKS)
- HelacNLO (CS)
- MUNICH (CS)

• ...



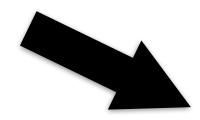
- one-loop (& tree) amplitude provider:
- BlackHat (Unitarity)
- MadLoop (OpenLoops)
- GoSam (Unitarity & OPP)
- OpenLoops (OpenLoops)
- Recola (NLO Recursion)
- HelacNLO (OPP)

• ...

- tree amplitude provider:
- MadGraph
- Comix
- Amegic
- Omega

• ...

NLO Tools



- integral reduction libraries:
- CutTools
- Golem95
- PJFry
- COLLIER
- Ninja

• scaler one-loop libraries

• ...

- QCDLoop
- OneLoop
- COLLIER

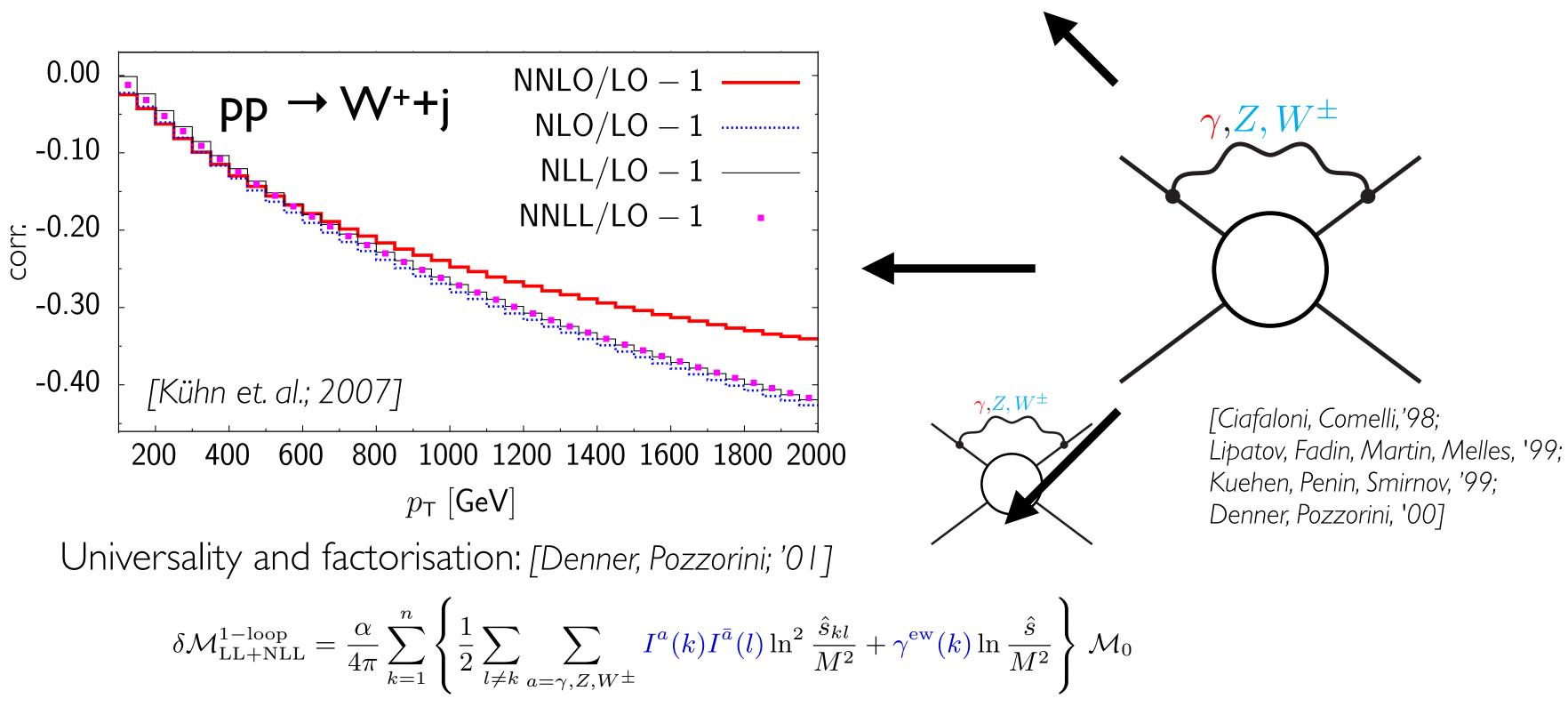
$d\sigma = d\sigma_{\rm LO} + \alpha_{\rm S} \, d\sigma_{\rm NLO} + \alpha_{\rm EW} \, d\sigma_{\rm NLO \, EW}$ NLO QCD NLO EW

Perturbative expansion: revised

Relevance of EW higher-order corrections I

Numerically
$$\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2) \Rightarrow$$
 NLO

Possible large (negative) enhancement due to soft/collinear logs from virtual EW gauge bosons:



$$\delta \mathcal{M}_{\text{LL+NLL}}^{1-\text{loop}} = \frac{\alpha}{4\pi} \sum_{k=1}^{n} \left\{ \frac{1}{2} \sum_{l \neq k} \sum_{a=\gamma, Z, W^{\pm}} I^{a} (k) \right\}$$

 \rightarrow overall large effect in the tails of distributions: p_T, m_{inv}, H_T,...

EW ~ NNLO QCD

71

Relevance of EW higher-order corrections II

Real photon radiation

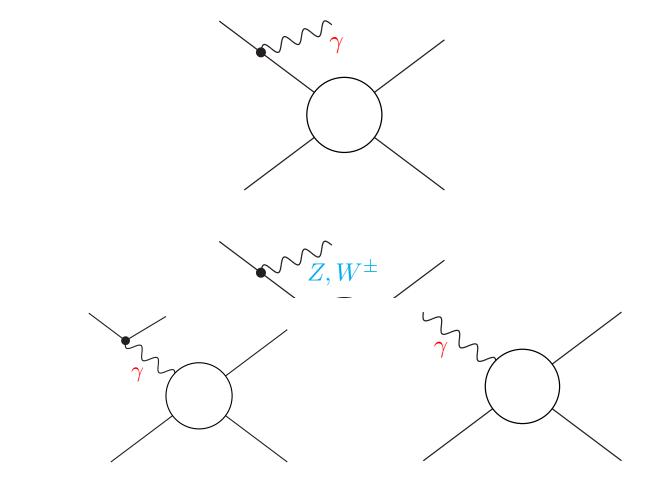
- soft/coll. photon unresolved
- needed to cancel QED singularities

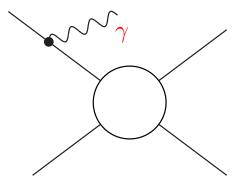
Photon initial states

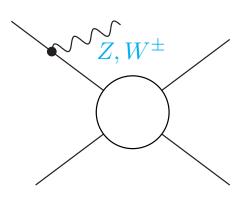
- QED factorisation needed to absorb IS photon singularities
- possible strong enhancement, e.g. for VV

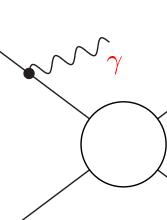
Real W,Z,h radiation (HBR)

- partial cancellation with virtual Sudakov logs (KLN theorem not applicable) (strongly dependent on experimental selection)
- free from singularities \implies separate processes
- themselves receive large virtual EW corrections & inclusion requires care (double-counting issues)









Decays of heavy particles

- Naively processes with a massive s-channel propagator diverge when $p^2 = M^2$
- Experimentally we now resonances follow Breit-Wigner (BW) shape
- Origin: all-order summation of IPI corrections to propagator of massive particles

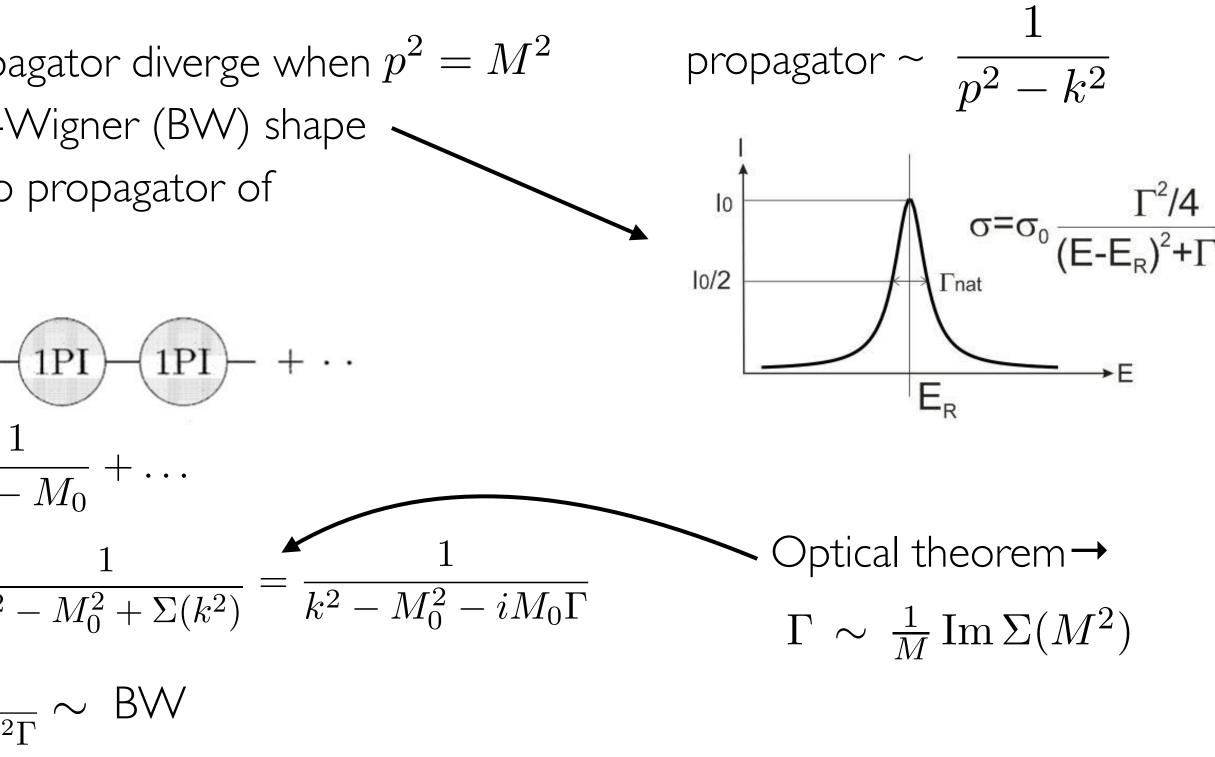
propagator ~ = - + - 1PI + -

$$= \frac{1}{p^2 - M_0} + \frac{1}{p^2 - M_0} (-i\Sigma) \frac{1}{p^2 - 4}$$

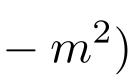
$$= \frac{1}{k^2 - M_0^2} \sum_{n=0}^{\infty} \left(\frac{-\Sigma(k^2)}{k^2 - M_0^2} \right)^n = \frac{1}{k^2 - 4}$$

$$\int dk^2 |M|^2 \sim \int_{-\infty}^{\infty} \frac{dk^2}{(k^2 - m^2)^2 + m^2}$$

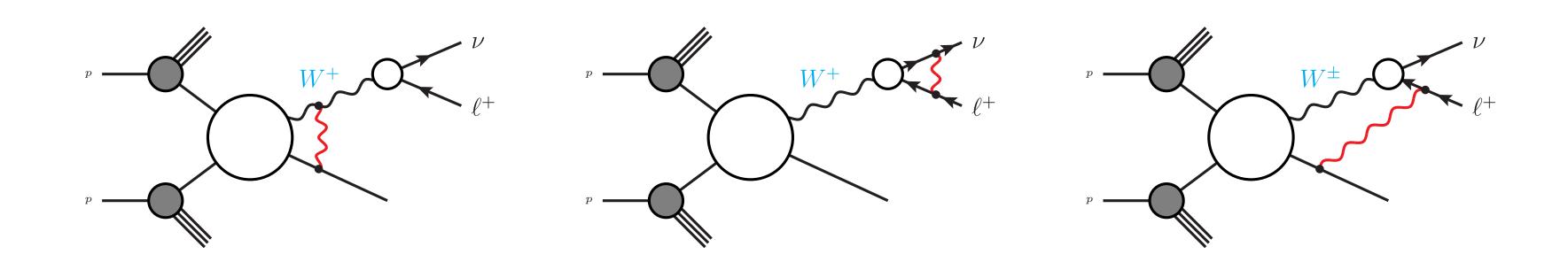
- However: this summation mixes different order of perturbation theory. Thus, in general it might (and will) break gauge invariance when applied naively.
- (Usually) not a problem at LO, i.e. also for not for vector bosons decays into leptons at NLO QCD
- Alternative: narrow-width approximation (NWA) Advantage: reduces complexity in NLO com However: unable to capture off-shell effects



nputation
$$\Gamma/M \to 0$$
: $\int_{-\infty}^{\infty} \frac{dk^2}{(k^2 - m^2)^2 + m^2\Gamma} = \frac{\pi}{m\Gamma} \delta(k^2)$



Decays of heavy particles



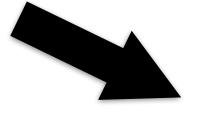
- Scheme of choice: complex-mass-scheme [Denner, Dittmaier, et. al.]
 - gauge invariant and exact NLO
 - **computationally very expensive**: one extra leg per two-body decay •
- Analytical continuation at the level of the Lagrangian: $M \rightarrow M i\Gamma M$ ➡ effects propagators, incl. numerators ⇒all derived couplings, incl. weak mixing angle: \rightarrow position of the pole in the renormalisation

Leptonic decays of gauge bosons are trivial at NLO QCD. At NLO EW corrections in production, decay and non-factorizable contributions have to be considered.

 $\sin\theta_{\rm W}^2 = 1 - \frac{M_W^2}{M_Z^2}$

74

- NLO Monte-Carlo integrators (+subtraction):
- MadGraph_aMC@NLO (FKS)
- Sherpa (CS)
- POWHEG-BOX (FKS)
- Herwig7 (CS)
- Whizard (FKS)
- HelacNLO (CS)
- MUNICH (CS)
- ...



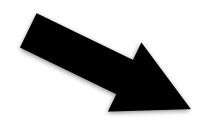
• ...

- BlackHat (Unitarity)
- MadLoop (OpenLoops)
- GoSam (Unitarity & OPP)
- OpenLoops (OpenLoops)
- **Recola** (NLO Recursion)
- HelacNLO (OPP)
- tree amplitude provider:
- MadGraph
- Comix
- Amegic
- Omega

• ...

NLO Tools

• one-loop (& tree) amplitude provider:



- integral reduction libraries:
- CutTools
- Golem95
- PJFry
- COLLIER
- Ninja

• scaler one-loop libraries

• ...

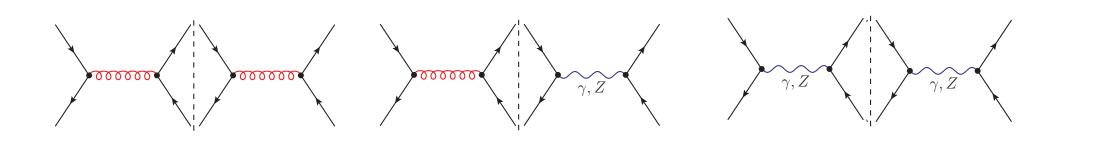
- QCDLoop
- OneLoop
- COLLIER

• ...

• In general combined expansion in α_s and α necessary:

LO

$$d\sigma = d\sigma(\alpha_s^n \alpha^m) + d\sigma(\alpha_s^{n-1} \alpha^{m+1})$$



- $) + \sigma(\alpha_s^{n-2}\alpha^{m+2}) + \dots$
- "subleading Born contributions": LO2, LO3

Example: $q\overline{q} \rightarrow q\overline{q}$

• In general combined expansion in α_s and α necessary:

$$d\sigma = d\sigma(\alpha_s^n \alpha^m) + d\sigma(\alpha_s^{n-1} \alpha^{m+1})$$

$$(LO) \quad \text{``subleading Bo} \quad \bigcirc \mathcal{O}(\alpha)$$

$$\cdots + \sigma(\alpha_s^{n+1} \alpha^m) + d\sigma(\alpha_s^n \alpha^{m+1}) + (\mathcal{O}(\alpha_s^n \alpha^{m+1}) + \mathcal{O}(\alpha_s^n \alpha^{m+1})) + \mathcal{O}(\alpha_s^n \alpha^{m+1}) + \mathcal{O}(\alpha_s^n \alpha^{m+1})$$

- $(1) + \sigma(\alpha_s^{n-2}\alpha^{m+2}) + \dots$
- orn contributions'': LO2, LO3

 $+ \sigma(\alpha_s^{n-1}\alpha^{m+2}) + \sigma(\alpha_s^{n-2}\alpha^{m+3}) + \dots$

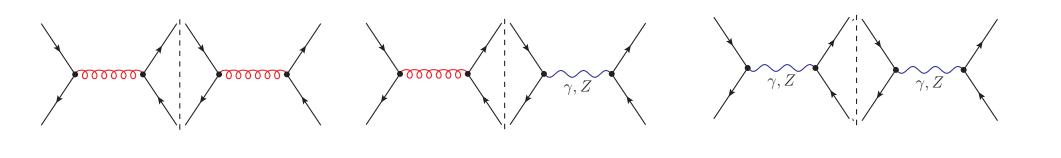
"subleading one-loop contributions": NLO3, NLO4

• In general combined expansion in α_s and α necessary:

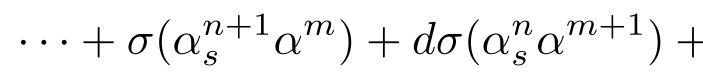
LO

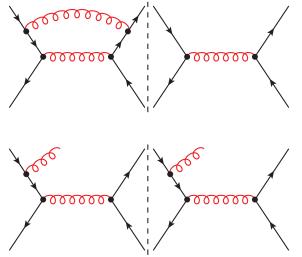
$$d\sigma = d\sigma(\alpha_s^n \alpha^m) + d\sigma(\alpha_s^{n-1} \alpha^{m+1})$$

"NLO EW"



• also at NLO:





- $(\alpha_s^{n-2}\alpha^{m+2}) + \dots$
- "subleading Born contributions": LO2, LO3

- $\cdots + \sigma(\alpha_s^{n+1}\alpha^m) + d\sigma(\alpha_s^n\alpha^{m+1}) + \sigma(\alpha_s^{n-1}\alpha^{m+2}) + \sigma(\alpha_s^{n-2}\alpha^{m+3}) + \dots$
 - "subleading one-loop contributions": NLO3, NLO4

• In general combined expansion in α_s and α necessary:

$$d\sigma = d\sigma(\alpha_s^n \alpha^m) + d\sigma(\alpha_s^{n-1} \alpha^{m+1})$$

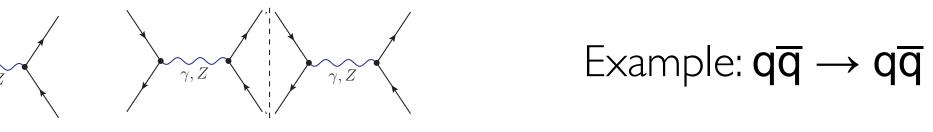
$$LO \quad \text{``subleading Bor}$$
• also at NLO:

$$\cdots + \sigma(\alpha_s^{n+1} \alpha^m) + d\sigma(\alpha_s^n \alpha^{m+1}) +$$

$$\text{``NLO QCD'' ``NLO EV''}$$

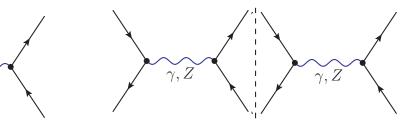
$$\downarrow^{\sigma \sigma \sigma \sigma \sigma} \downarrow^{\sigma \sigma} \downarrow$$

- $+ \sigma(\alpha_s^{n-2}\alpha^{m+2}) + \dots$
- rn contributions'': LO2, LO3



- $\sigma(\alpha_s^{n-1}\alpha^{m+2}) + \sigma(\alpha_s^{n-2}\alpha^{m+3}) + \dots$
 - "subleading one-loop contributions": NLO3, NLO4

• In general combined expansion in α_s and α necessary:

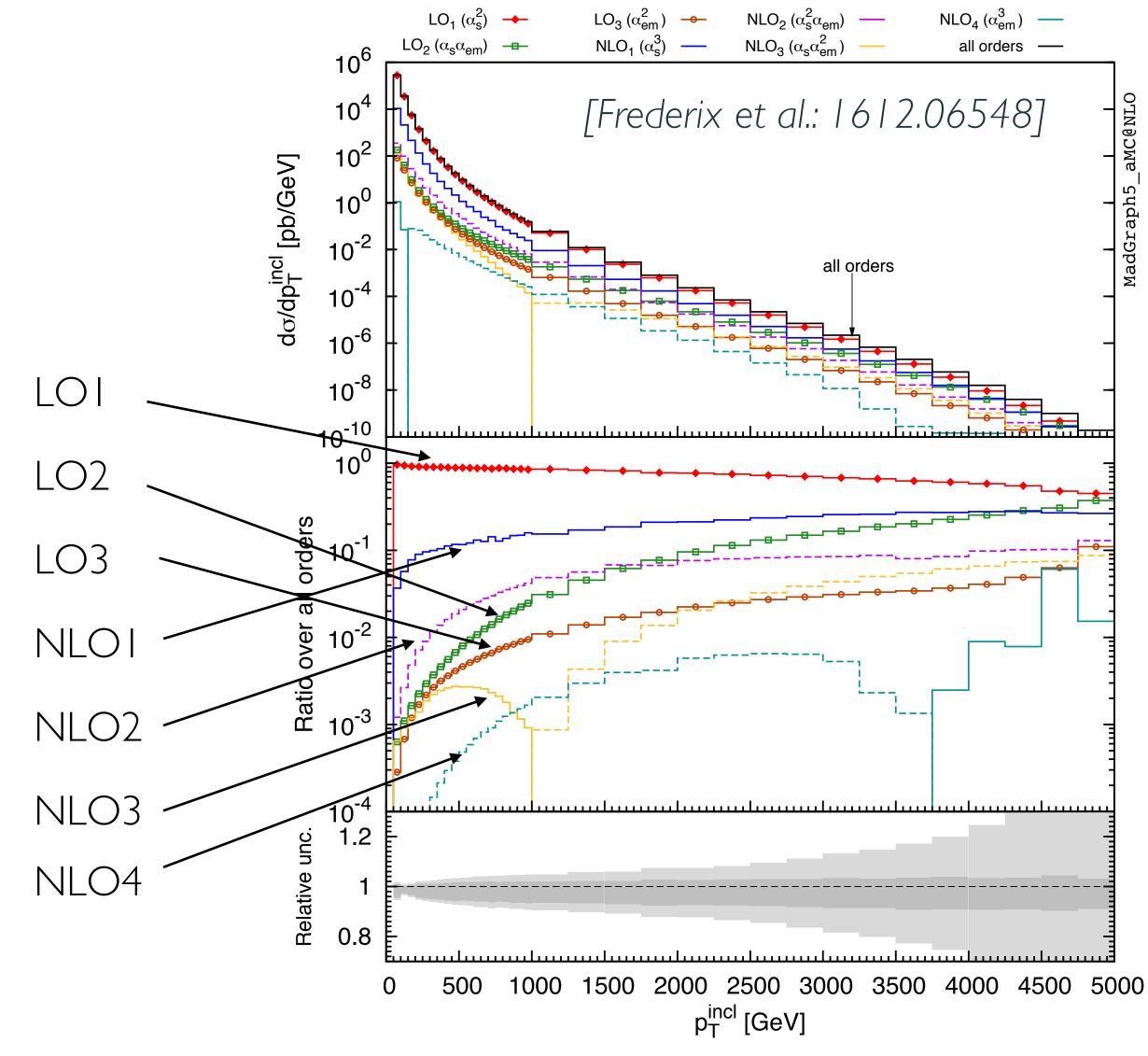




LO3, NLO4

- D and EW
- obtained of a given

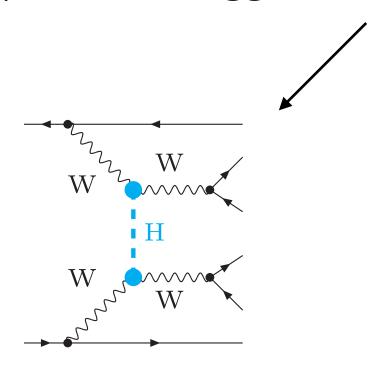
Example: dijet production at the LHC

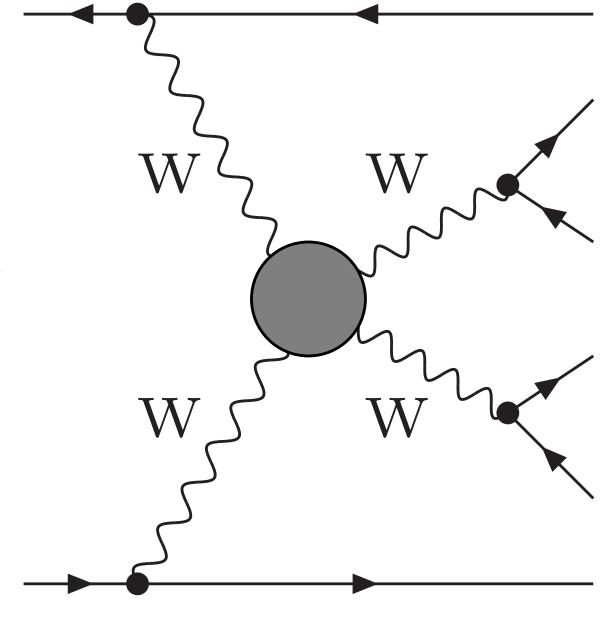


Be aware of double counting: LO3 = DY with hadronic decays

Interpretation of multi-particle processes: case study VBS

- direct access to quartic EW gauge couplings
- •VBS: longitudinal gauge bosons at high energies
- •VBS key process to investigate electroweak symmetry breaking (off-shell Higgs exchange ensures unitarity)

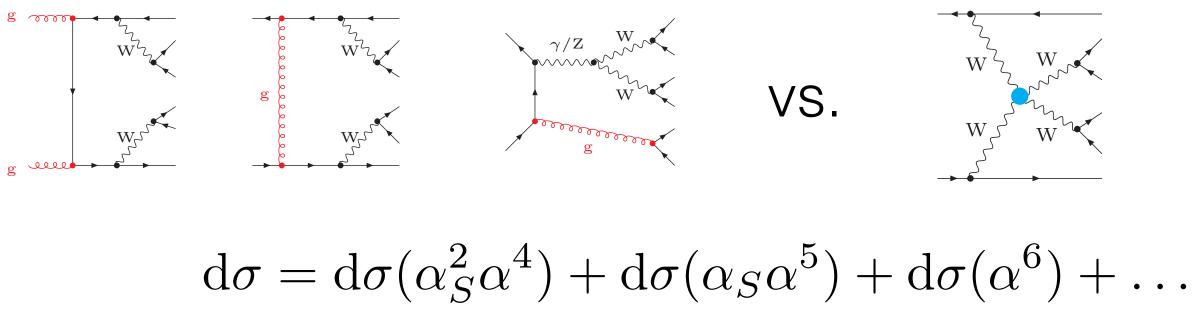




Signature: 2I + 2n + 2 jets

82

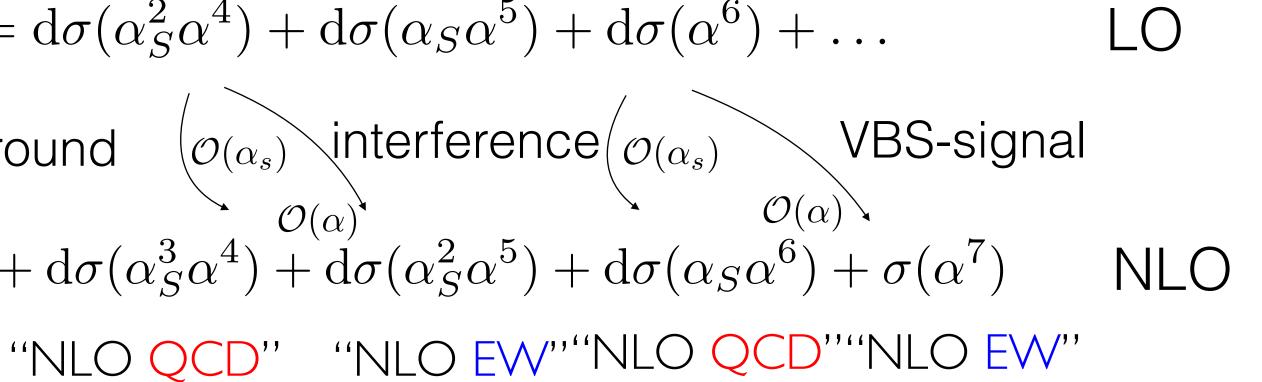
Note: severe QCD background to VBS signatures + interference:



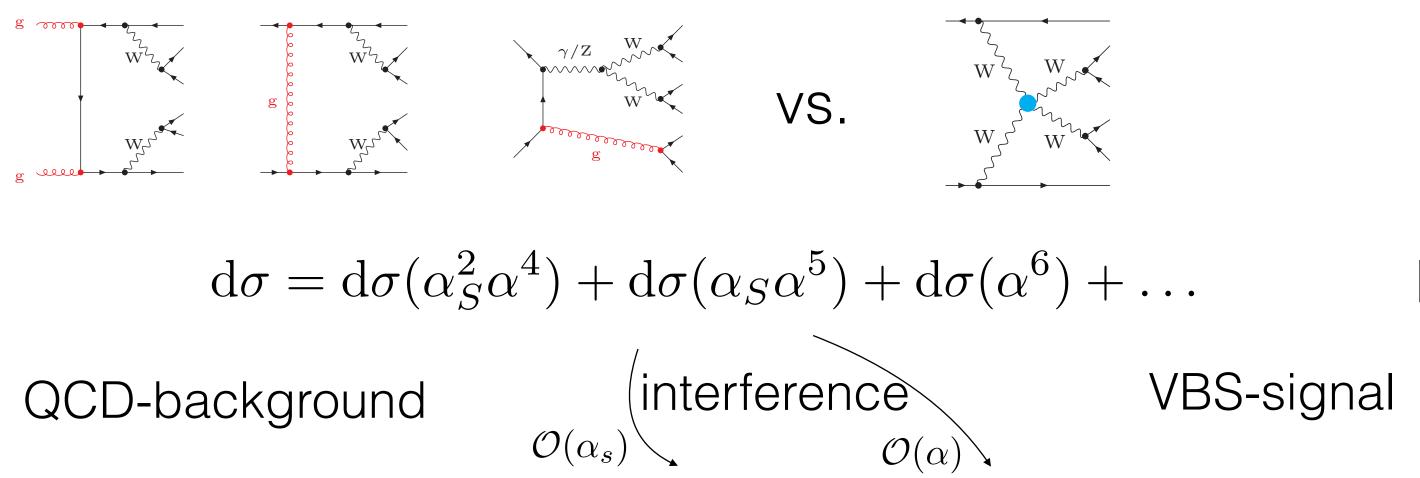
QCD-background
$$O(\alpha_s)$$

$$\cdots + \mathrm{d}\sigma(\alpha_S^3\alpha^4) + \mathrm{d}\sigma($$

VV+2jets production



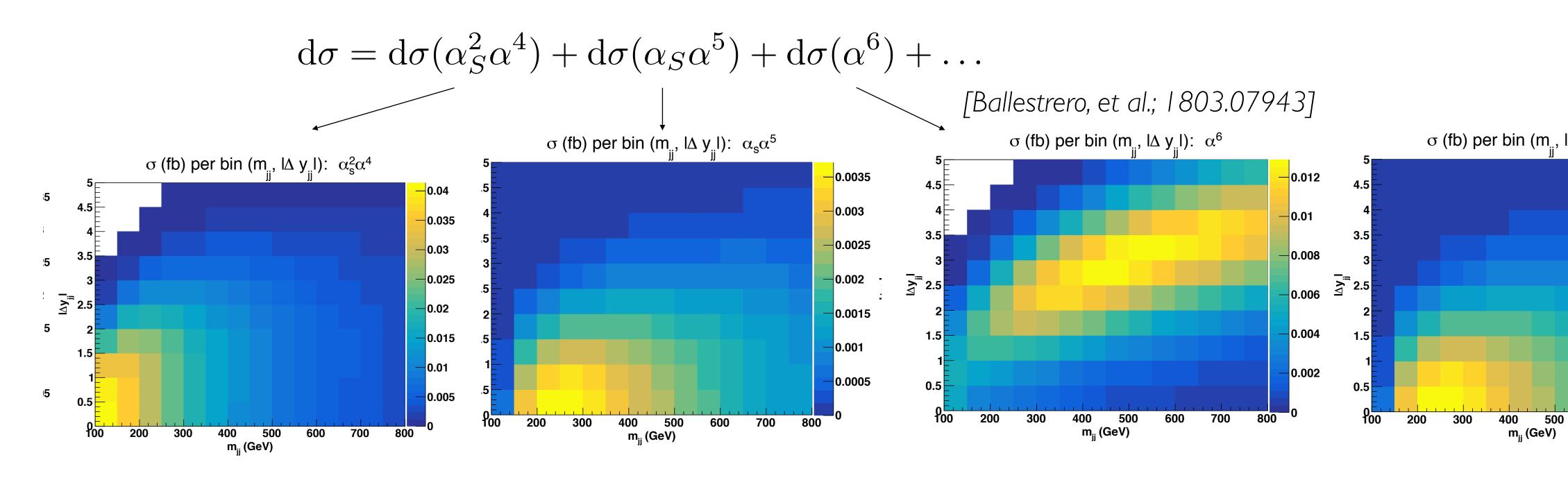
Note: severe QCD background to VBS signatures + interference:



- separation meaningless at NLO only well defined measurements: fiducial cross sections

VV+2jets production

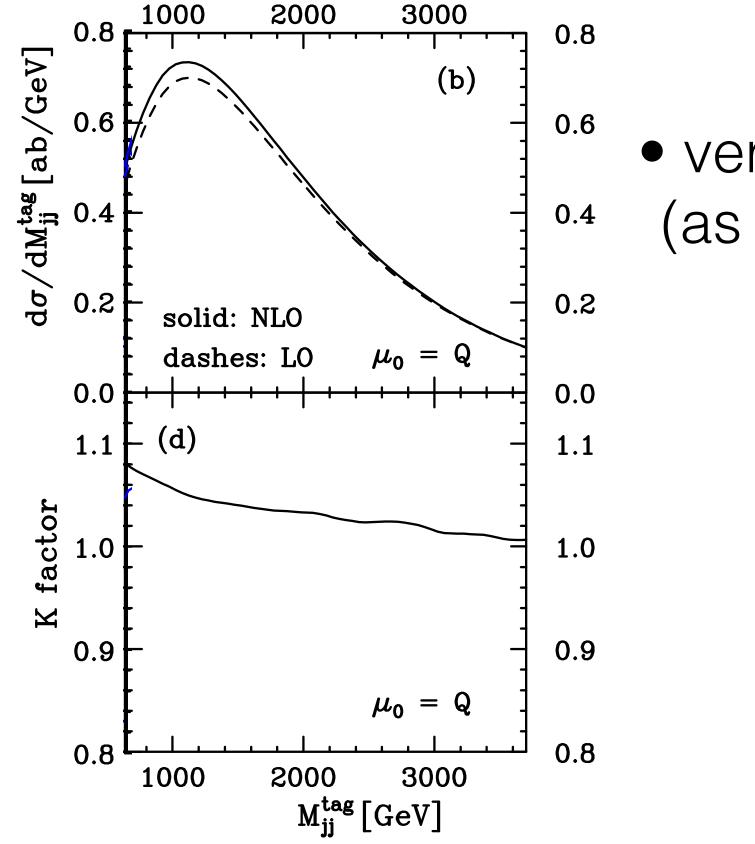
LO $\cdots + d\sigma(\alpha_S^3 \alpha^4) + d\sigma(\alpha_S^2 \alpha^5) + d\sigma(\alpha_S \alpha^6) + \sigma(\alpha^7)$ NLO "'NLO QCD" "NLO EW" "NLO QCD" "NLO EW"



VBS

•The three contributions have very different kinematics • typical ''VBF'' cuts to enhance EW mode: Δ yjj > 2.5 and mjj ~> 500 GeV

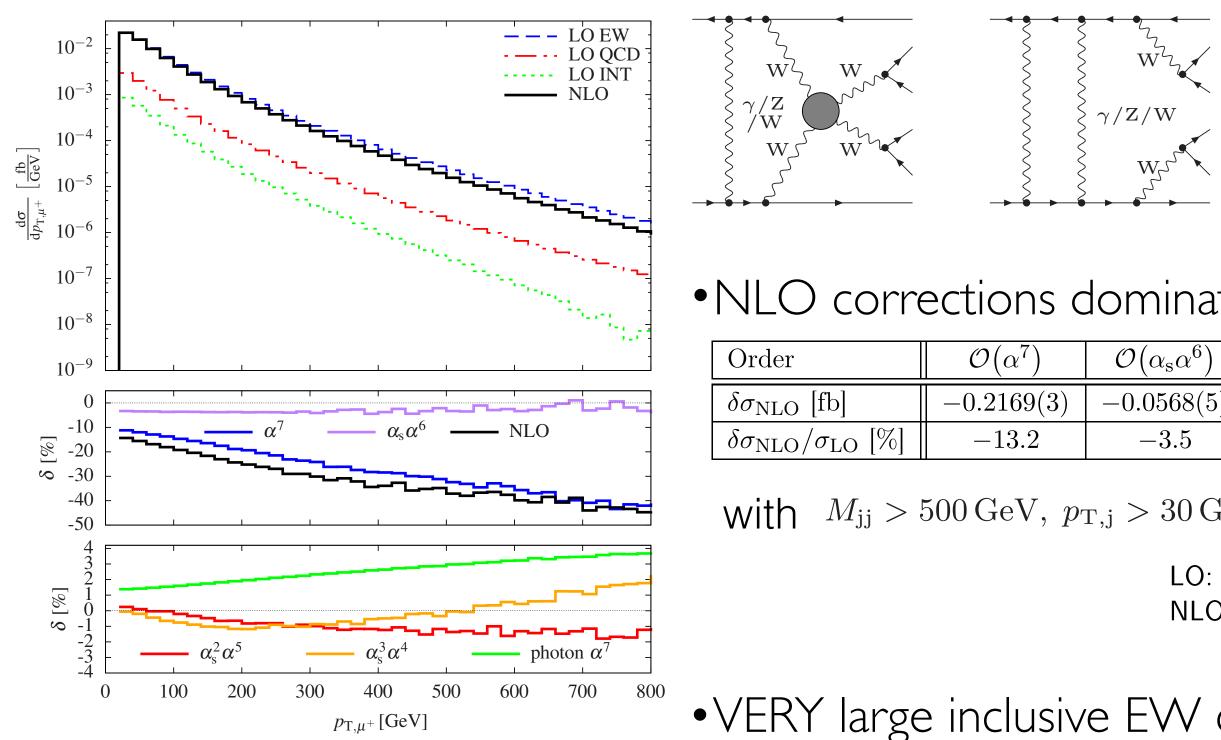
VBS production @ NLO QCD (in VBF-approx)



[Jäger, Oleari, Zeppenfeld, '09]

 very small QCD corrections (as for all VBF-type processes)

[Biedermann, Denner, Pellen '16+'17]



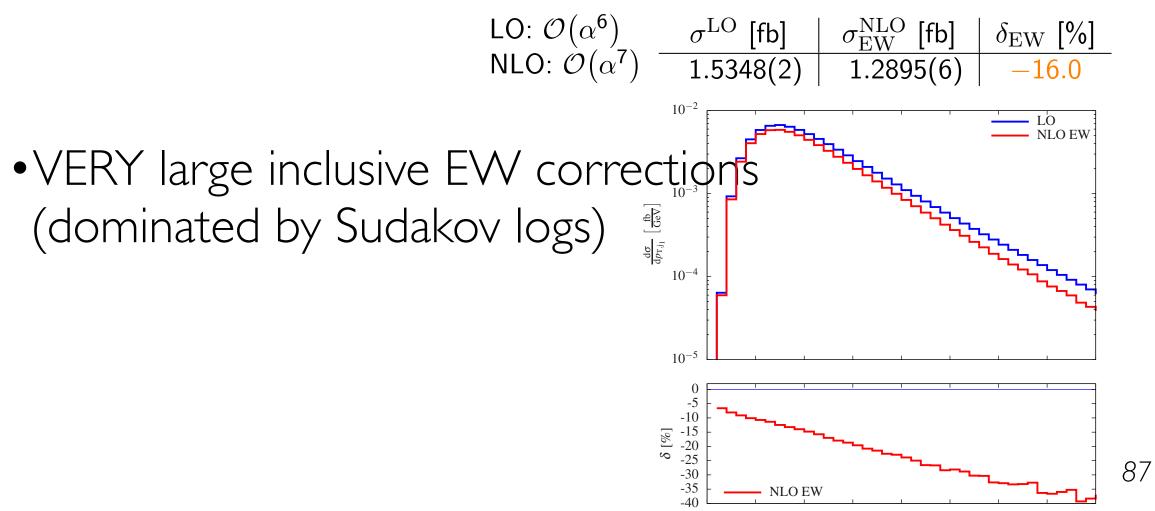
VBS-W+W+ @ full NLO

- •2 \rightarrow 6 particles at NLO EW !
- highly challenging computation!

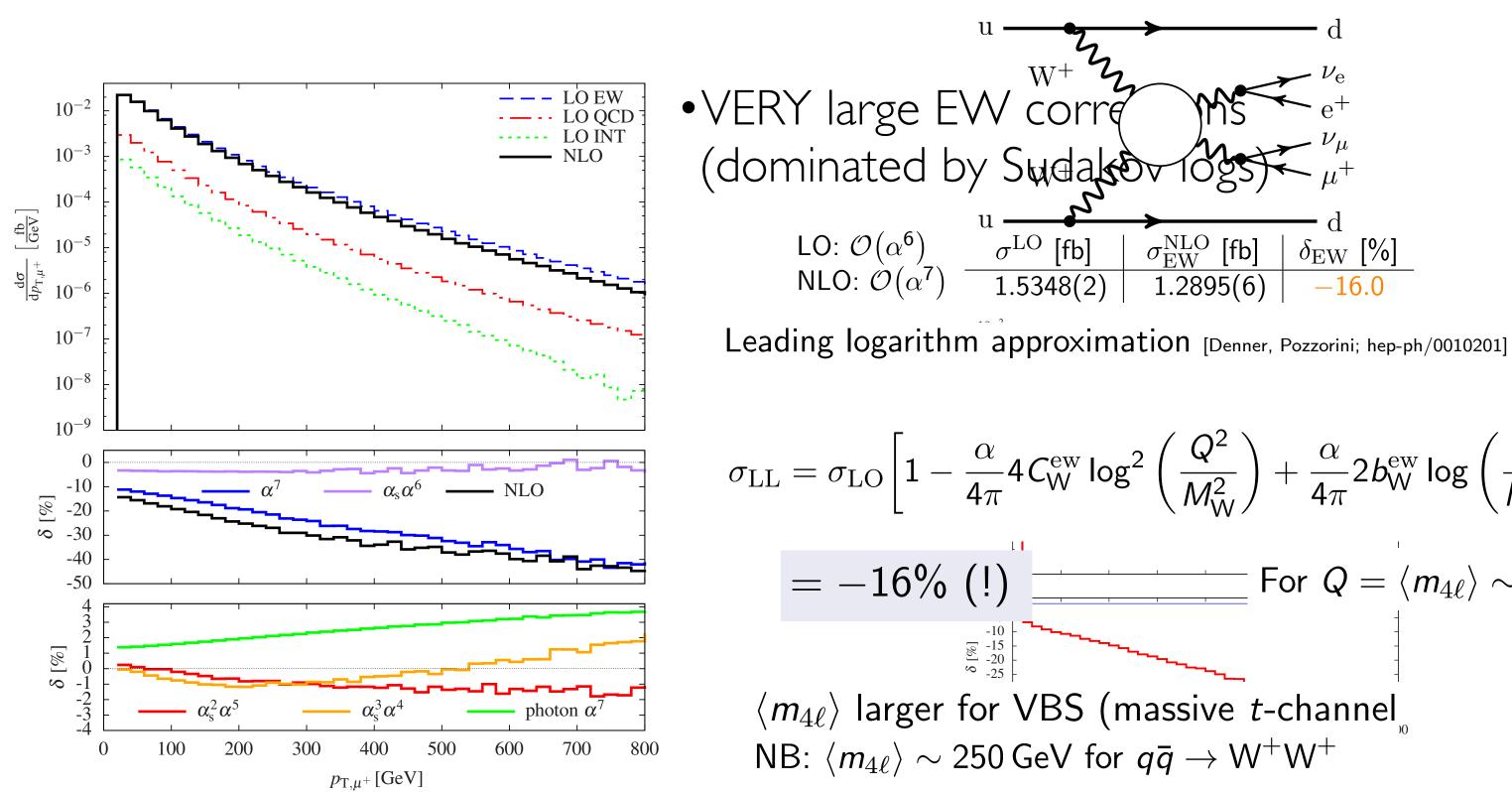
•NLO corrections dominated by α^7 :

	$\mathcal{O}(lpha^7)$	$\mathcal{O}(lpha_{ m s}lpha^6)$	$\mathcal{O}(lpha_{ m s}^2 lpha^5)$	$\mathcal{O}(lpha_{ m s}^3 lpha^4)$	Sum
fb]	-0.2169(3)	-0.0568(5)	-0.00032(13)	-0.0063(4)	-0.2804(7)
$\sigma_{ m LO}$ [%]	-13.2	-3.5	0.0	-0.4	-17.1

with $M_{jj} > 500 \,\text{GeV}, \ p_{T,j} > 30 \,\text{GeV}, \ p_{T,\ell} > 20 \,\text{GeV},$



[Biedermann, Denner, Pellen '16+'17]



VBS-W+W+ @ full NLO

$$\sigma_{\rm LO} \left[1 - \frac{\alpha}{4\pi} 4 C_{\rm W}^{\rm ew} \log^2 \left(\frac{Q^2}{M_{\rm W}^2} \right) + \frac{\alpha}{4\pi} 2 b_{\rm W}^{\rm ew} \log \left(\frac{Q^2}{M_{\rm W}^2} \right) \right]$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

$$= -16\% (!)$$

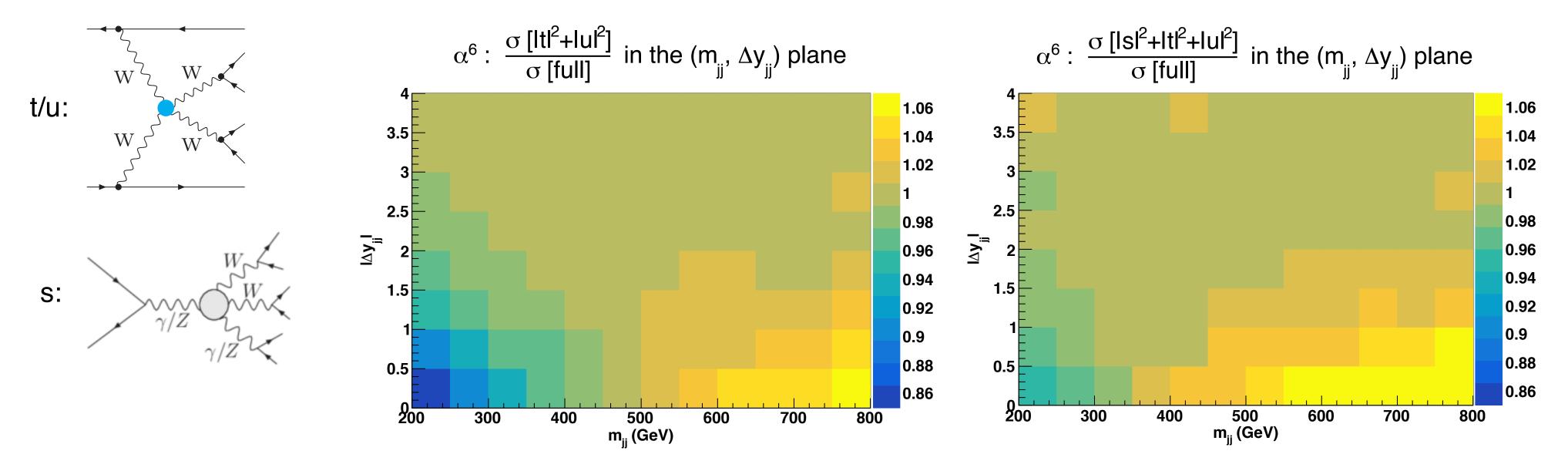
$$= -16\% (!)$$

$$= -1$$

→Large NLO EW corrections: intrinsic feature of VBS at the LHC

88

Quality of VBF approximation @ LO



[Ballestrero, MP et al.; 1803.07943]

- For low m_{ij} and low Δy_{ij} , significant *s*-channel contributions
- Good approximation in fiducial region for W⁺W⁺ \rightarrow confirmed for $W^{\pm}Z$ [Andersen, MP et al.; 1803.07977]

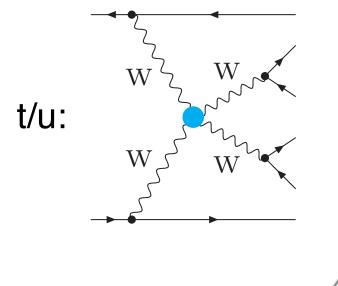
 \rightarrow <u>tri-boson contributions</u> with resonant W-boson of all

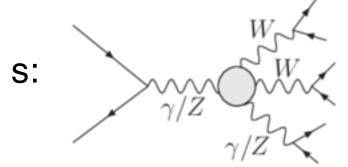
Common feature VBS signatures

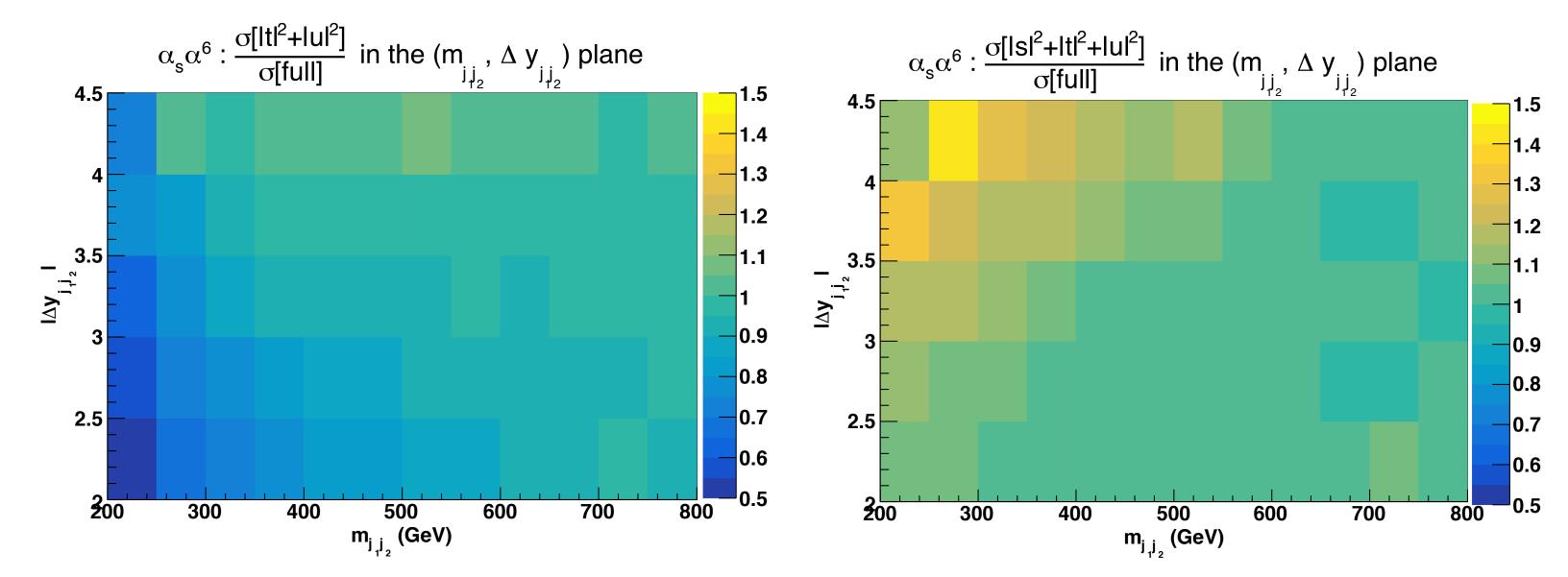
89

[Slide: M. Pellen]

Quality of VBF approximation @ NLO







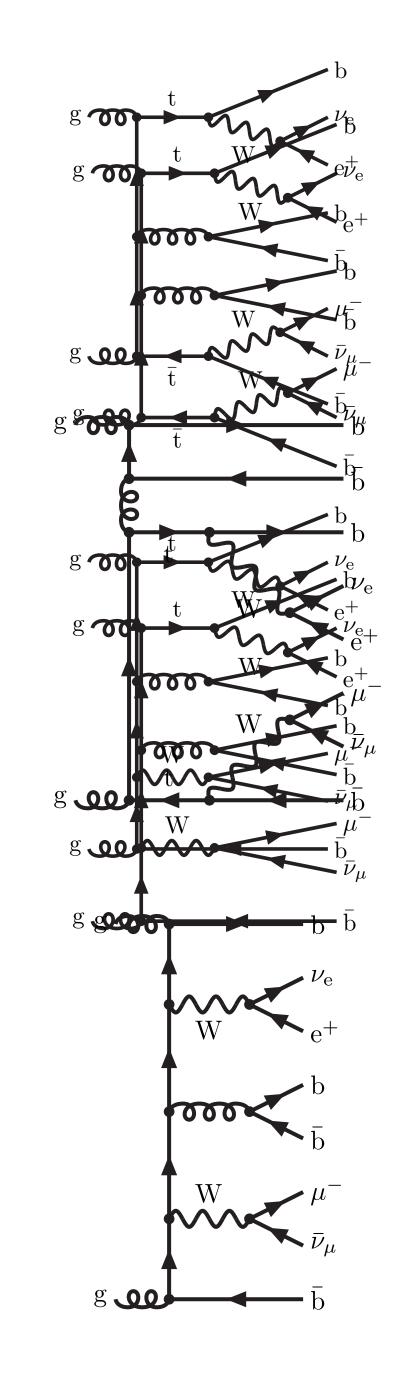
[Ballestrero, MP et al.; 1803.07943]

- The approximations are in general worse at NLO
- important in the future

• Approximation can fail by up to 20% even in fiducial region \rightarrow OK now for current experimental precision but might be

90

[Slide: M. Pellen]



- b

- $\bar{\rm b}$

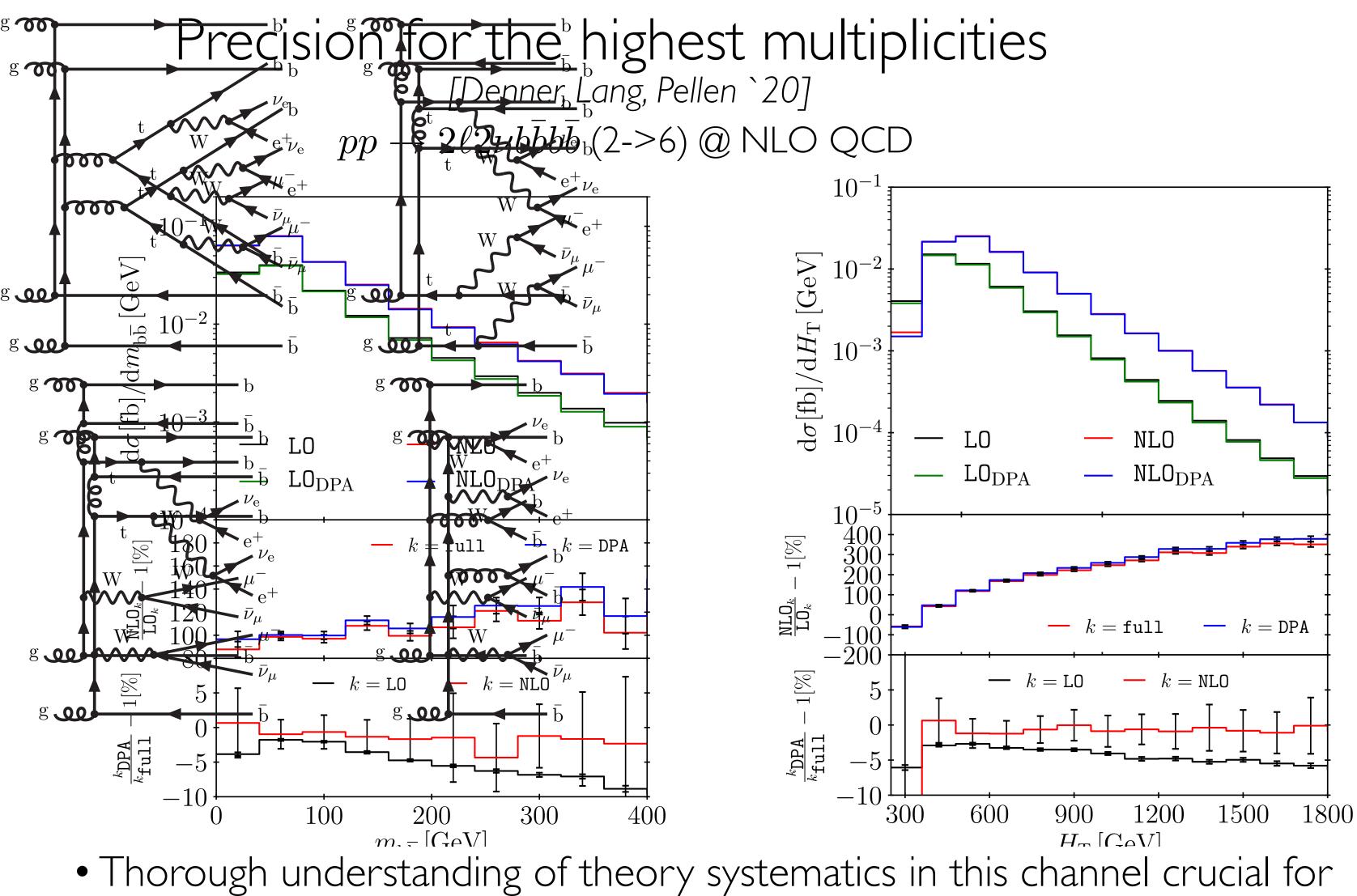
- b

 $\nu_{\rm e}$

• e⁺

– $\overline{
u}_{\mu}$

- $\bar{\rm b}$



- Thorough understanding of theory ttH measurements where H->bb
- ttbb receives sizeable QCD corrections
- Very important confirmation of (ttbb) double pole approximation

$d\sigma = d\sigma_{\rm LO} + \alpha_{\rm S} \, d\sigma_{\rm NLO} + \alpha_{\rm EW} \, d\sigma_{\rm NLO \, EW}$ NLO QCD NLO EW

 $+\alpha_{S}^{2} d\sigma_{\text{NNLO}} + \alpha_{EW}^{2} d\sigma_{\text{NNLO} EW} + \alpha_{S} \alpha_{EW} d\sigma_{\text{NNLO} QCD \times EW}$

In order to match experimental precision NNLO QCD is becoming mandatory for many processes

Back to the perturbative expansion...

NNLO QCDNNLO EWNNLO QCD-EW

NNLO techniques

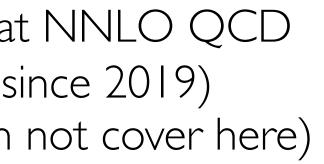
"Slicing"

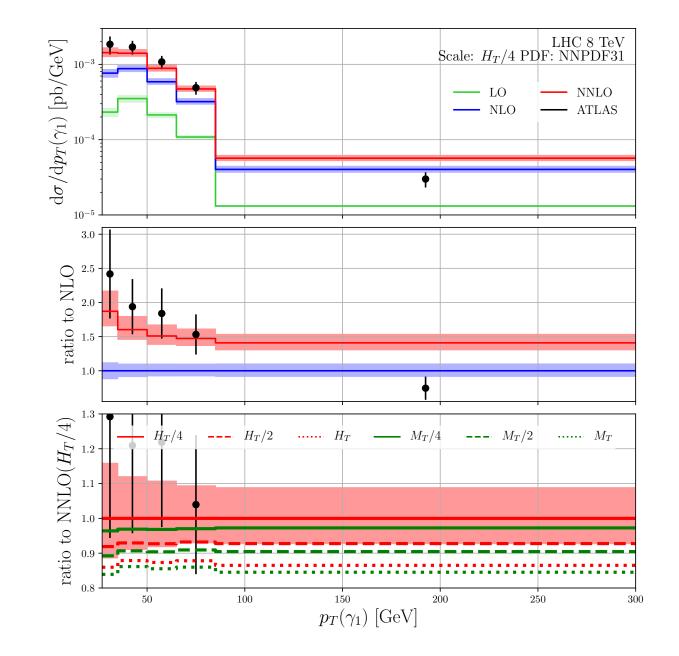
- •qT-subtraction: $pp \rightarrow V$, $pp \rightarrow H$, $pp \rightarrow VV/4I$, $pp \rightarrow HH$
- •N-jettiness subtraction: $pp \rightarrow V+jet$
- Projection to Born: $pp \rightarrow H+2jet$ (VBF)

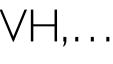
- \rightarrow Pretty much all 2 \rightarrow 2 processes are known at NNLO QCD
- First steps towards $2 \rightarrow 3$ (pp \rightarrow AAA down since 2019)
- Bottleneck: two-loop virtual amplitudes (can not cover here)

Subtraction

- •Antenna subtraction: $pp \rightarrow V+jet$, $pp \rightarrow 2jets$, ...
- Sector decomposition: $pp \rightarrow tt$, $pp \rightarrow AAA$
- "colourful" subtraction: $e + e \rightarrow 3jets$
- join subtraction and sector decomposition: $pp \rightarrow VH$,...



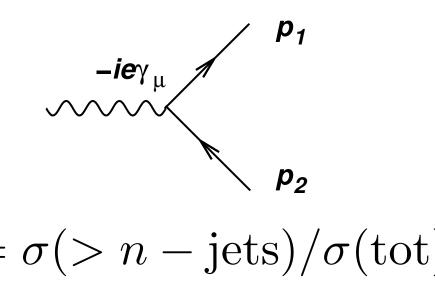




Consider again $\gamma^* \rightarrow qq$ (dijet production in e+e-)

For this process we can define n-jet rates: $R_{n-jets} = \sigma(>n-jets)/\sigma(tot)$

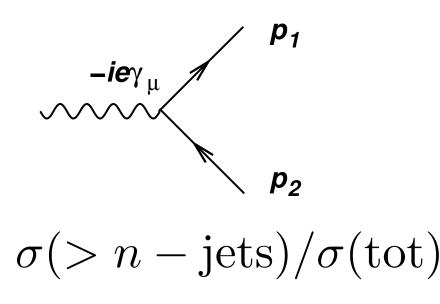
$$R_{2jets}^{LO} = ?$$



Consider again $\gamma^* \rightarrow qq$ (dijet production in e+e-)

For this process we can define n-jet rates: $R_{n-jets} = \sigma(>n-jets)/\sigma(tot)$

$$R_{2
m jets}^{LO} = 1$$
 All LO a



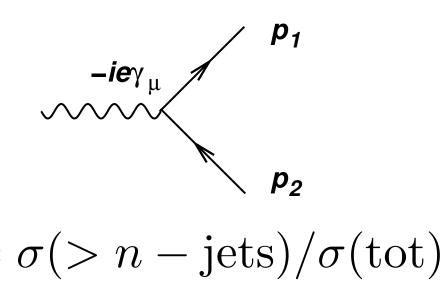
all events are two-jet like

Consider again $\gamma^* \rightarrow qq$ (dijet production in e+e-)

For this process we can define n-jet rates: $R_{n-jets} = \sigma(>n-jets)/\sigma(tot)$

$$R_{2 ext{jets}}^{LO} = 1$$
 All LO a

$$R_{2jets}^{NLO} = ?$$



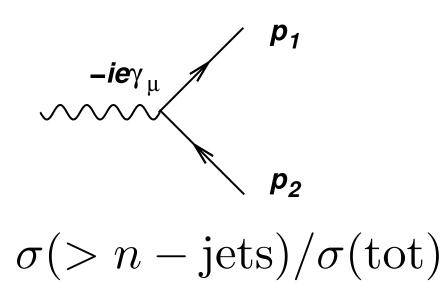
all events are two-jet like

Consider again $\gamma^* \rightarrow qq$ (dijet production in e+e-)

For this process we can define n-jet rates: $R_{n-jets} = \sigma(>n-jets)/\sigma(tot)$

$$R_{2
m jets}^{LO} = 1$$
 All LO a

$$R_{2jets}^{NLO} = 1 - R_{3jets}^{LO}$$
 At NLC those th



all events are two-jet like

D all events are two-jet like except hat contribute to the LO three-jet rate

Consider again $\gamma^* \rightarrow qq$ (dijet production in e+e-)

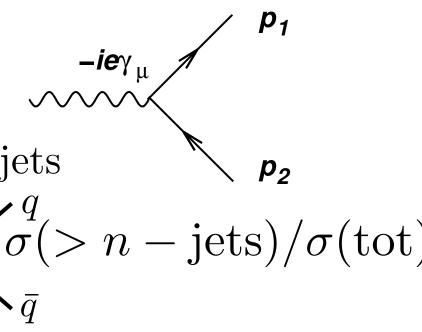
For this process we can define n-jet rates: $R_{n-jets} = \frac{q}{q} (2 - ie\gamma_{\mu}) + \frac{p_{1}}{2}$ $e^{+}e^{-} \rightarrow 2 \text{ jets} \qquad p_{2}$ $p_{2} = \frac{q}{q} (2 - ie\gamma_{\mu}) + \frac{p_{1}}{2}$ $p_{2} = \frac{q}{q} (2 - ie\gamma_{\mu}) + \frac{p_{1}}{2}$ $p_{2} = \frac{p_{2}}{2}$

$$R_{2jets}^{NLO} = 1 - R_{3jets}^{LO}$$

 $\begin{array}{l} R_{2jots}^{LO} = 1 \\ R_{2jots} = 1 \end{array}$

$$R_{2jets}^{NNLO} = 1 - R_{3jets}^{NLO} - R_{4jets}^{LO}$$

 \rightarrow Use NLO (LO) information to construct NNLO objects In general: R_{2jet}^{NnLO} can be obtained from an $N^{n-1}LO$ computation

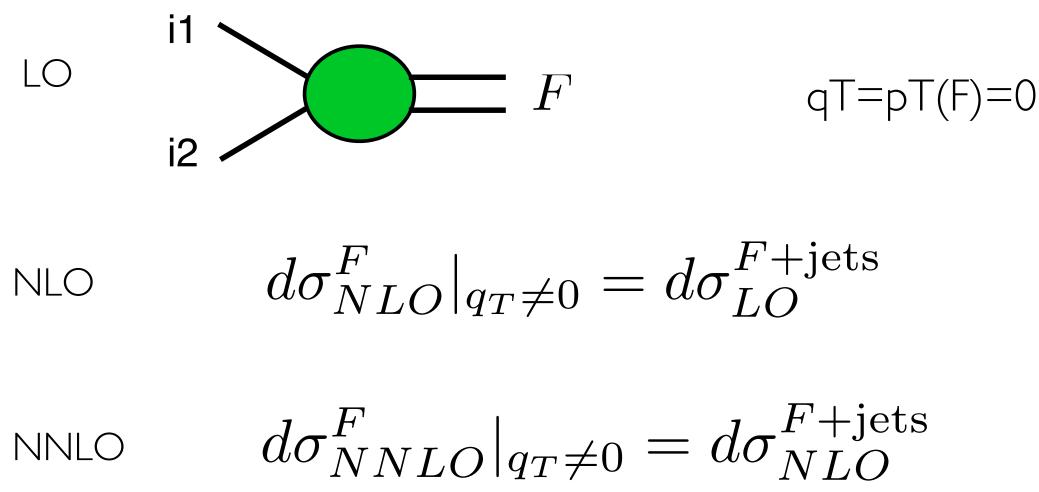


All LO all events are two-jet like

```
At NLO all events are two-jet like except
those that contribute to the LO three-jet rate
those that contribute to the LO three-jet rate
              At NNLO all events are two-jet
             like At NNLO all events are two-jet like except
              rate contribute to the NLO three-jet
                  rate and to the LO four jet rate
```

qT subtraction

•This method can be applied to compute NNLO QCD corrections to any $pp \rightarrow F$ processes, where F is a colourless system (F may consist of lepton-pairs, vector bosons, Higgs Bosons,...)



• For which standard NLO techniques can be used • However, $d\sigma^F_{NLO}|_{q_T \to 0} \to \infty$ (IR singular)

qT subtraction

Solution: construct, construct, which subtracts the singularity for
$$qT \rightarrow 0$$
 bas

$$d\sigma^{CT} \sim d\sigma^{(HD)} \otimes \Sigma^{F}(qT/Q) \otimes \Sigma^{F}(qT/Q)$$

$$d\sigma^{CT} \sim d\sigma^{(HD)} \otimes \Sigma^{F}(qT/Q) \otimes \Sigma^{F}(qT/Q)$$

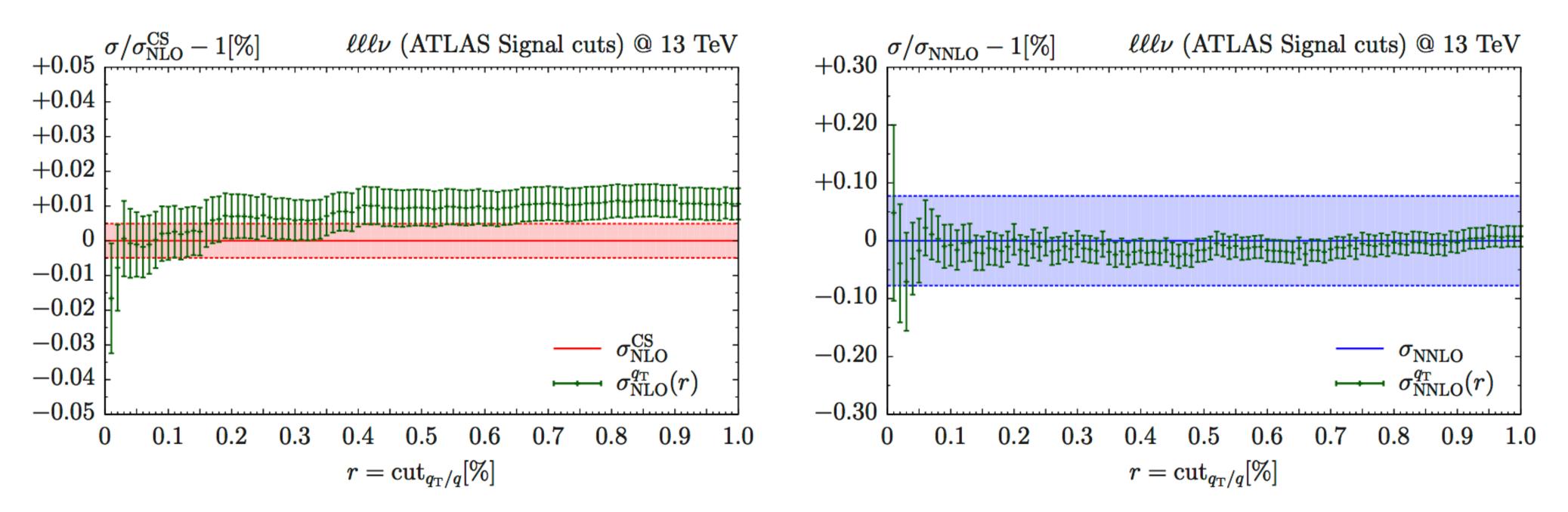
$$\Sigma^{F}(qT/Q) \sim \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\alpha}\right)^{n} \sum_{r=1}^{2n} \Sigma^{F(n;k)} \frac{Q^{2}}{Q^{2}n} \ln^{k-1} \frac{Q^{2}}{2n} + \frac{Q^{2}}{\alpha} \ln^{k-1} \frac{Q^{2}}{q^{2}} + \frac{Q^{2}}{\alpha} + \frac{Q^{2$$

sed on eikonal

$$\bigcap^{2} n^{k-1} \frac{Q^{2}}{q_{T}^{2}} \frac{Q^{2}}{q_{T}^{2}} \frac{Q^{2}}{q_{T}^{2}}$$

op virtual contributions.

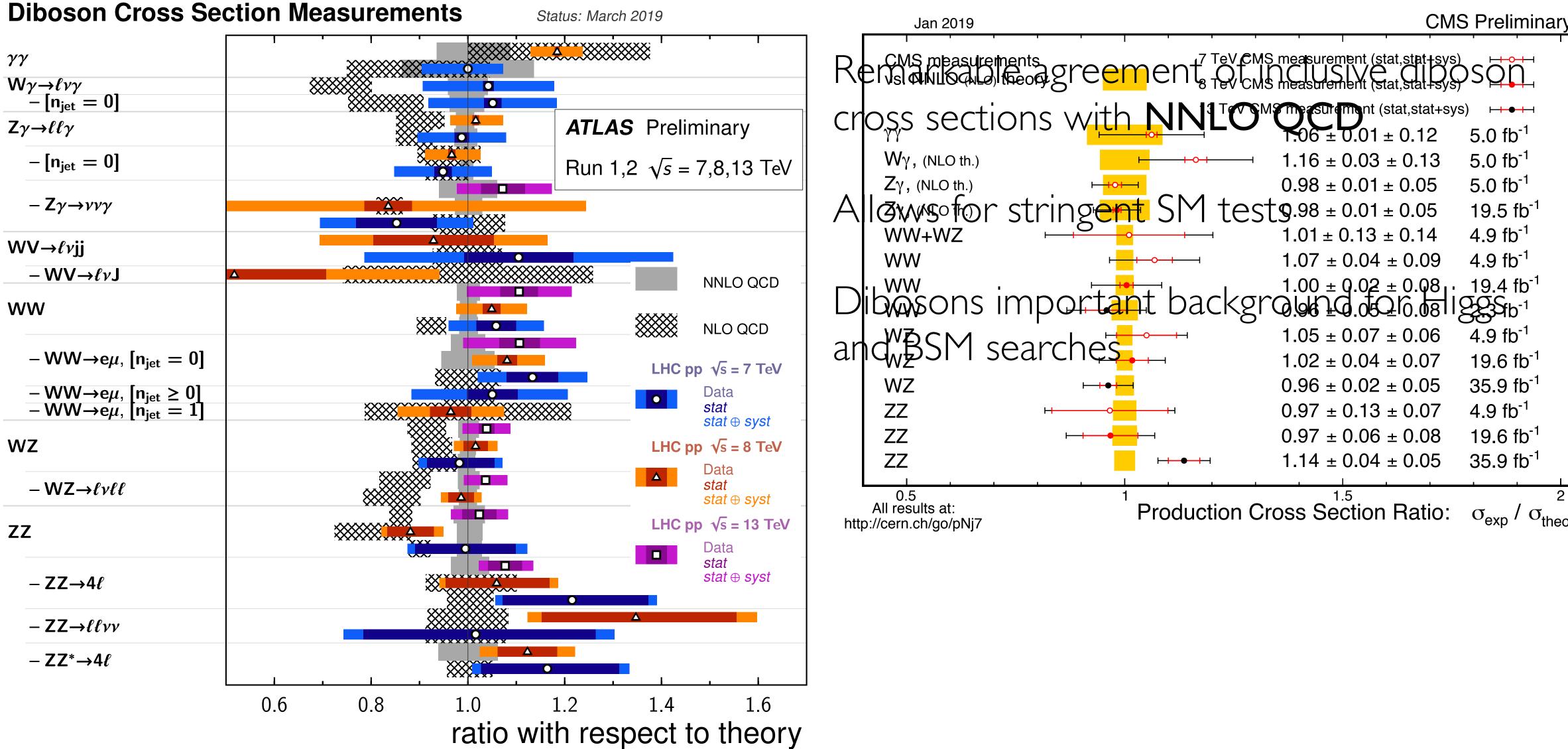
qT subtraction: independence of qTcut



NNLO

101

NNLO for diboson processes



102

Back to the perturbative expansion...

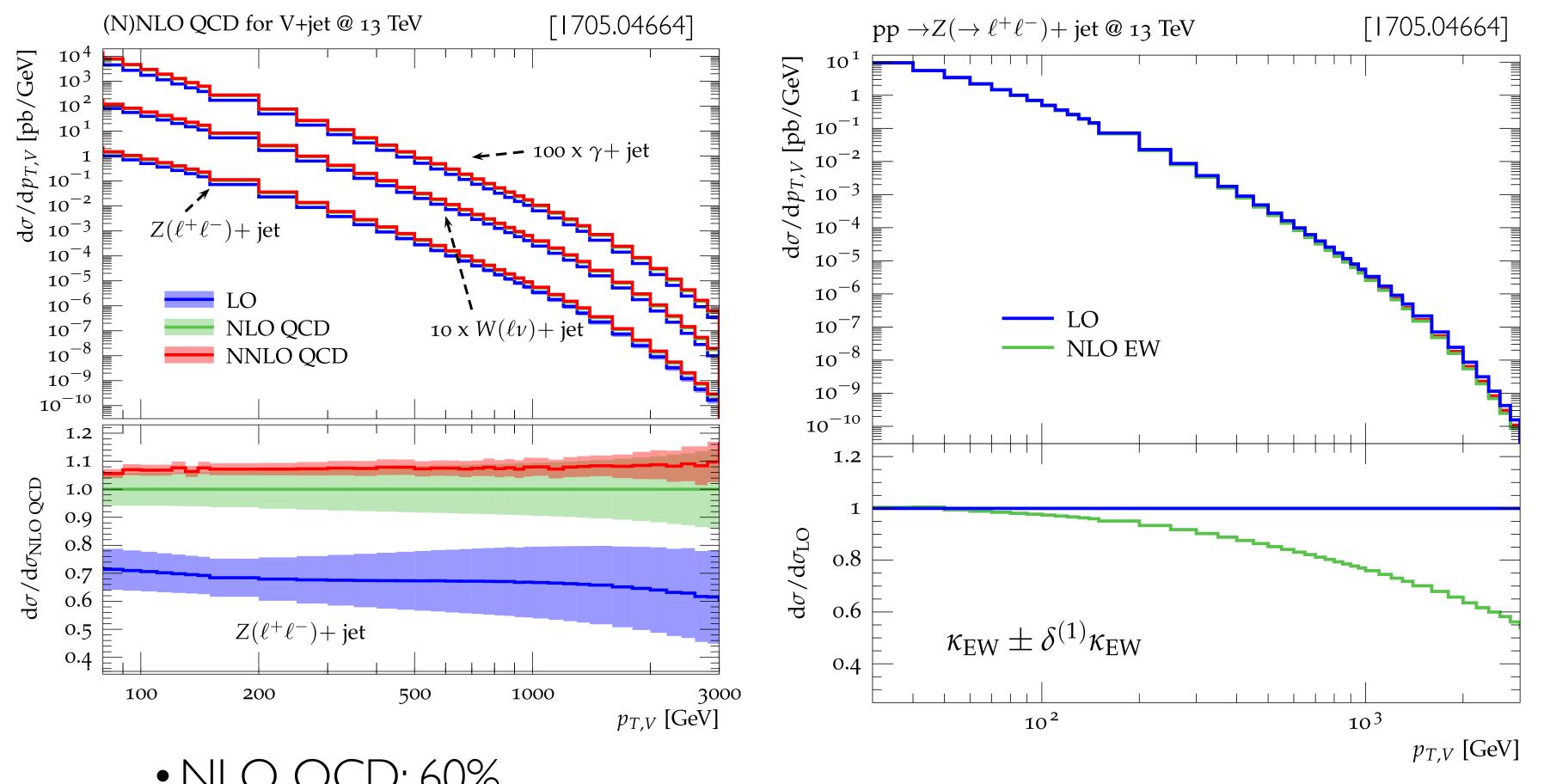
 $d\sigma = d\sigma_{LO} + \alpha_{S} d\sigma_{NLO} + \alpha_{EW} d\sigma_{NLO EW}$ $NLO QCD \qquad NLO EW$

 $+ \alpha_{S}^{2} d\sigma_{\text{NNLO}} + \alpha_{EW}^{2} d\sigma_{\text{NNLO} EW} + \alpha_{S} \alpha_{EW} d\sigma_{\text{NNLO} QCDxEW}$ NNLO QCD NNLO EW NNLO QCD-EW

For cases where QCD and EW corrections are sizeable, also mixed QCD-EW corrections of relative $O(\alpha \alpha_s)$ have to be considered.

Combination of QCD and EW corrections Example:V+jets NLO EW

(N)NLO QCD

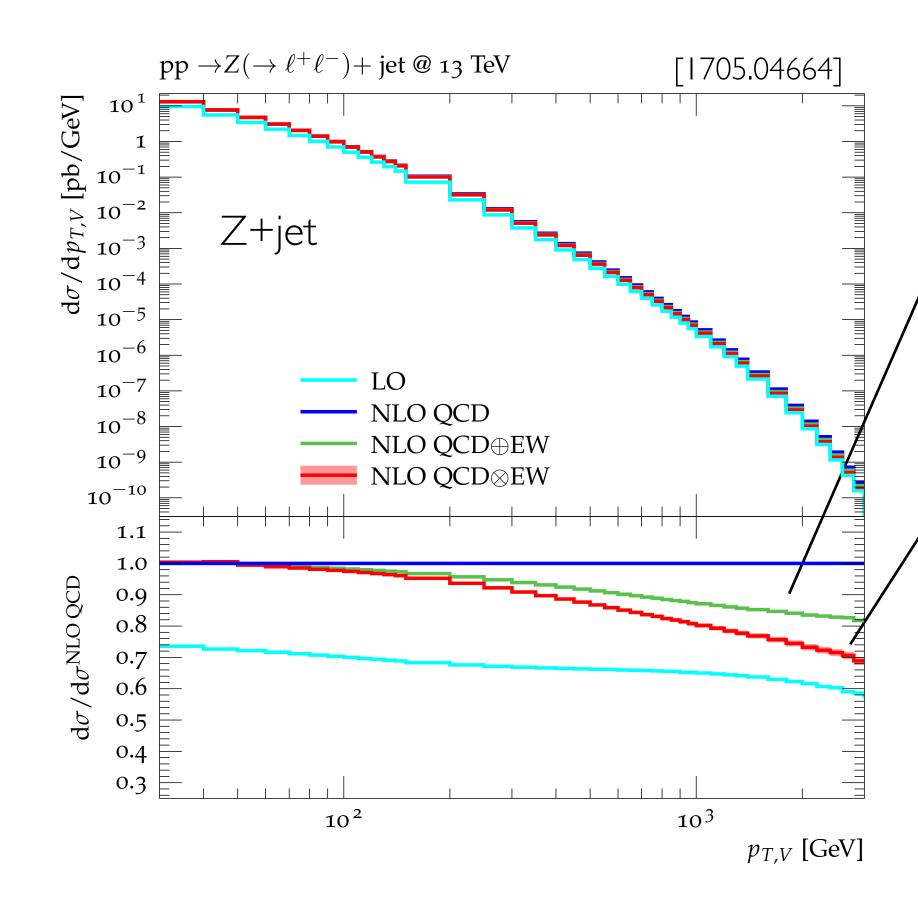


• NLO QCD: 60% • NNLO QCD: 10%

➡Very naive estimate: NNLO QCD-EV/6 NLO QCD × NLO EV/=15% at 1 TeV

• NLO EW: up to -25(40)% at 1(2) TeV

Combination of QCD and EW corrections



Additive combination

 $\sigma_{\rm QCD+EW}^{\rm NLO} = \sigma^{\rm LO} + \delta \sigma_{\rm QCD}^{\rm NLO} + \delta \sigma_{\rm EW}^{\rm NLO}$

Multiplicative combination

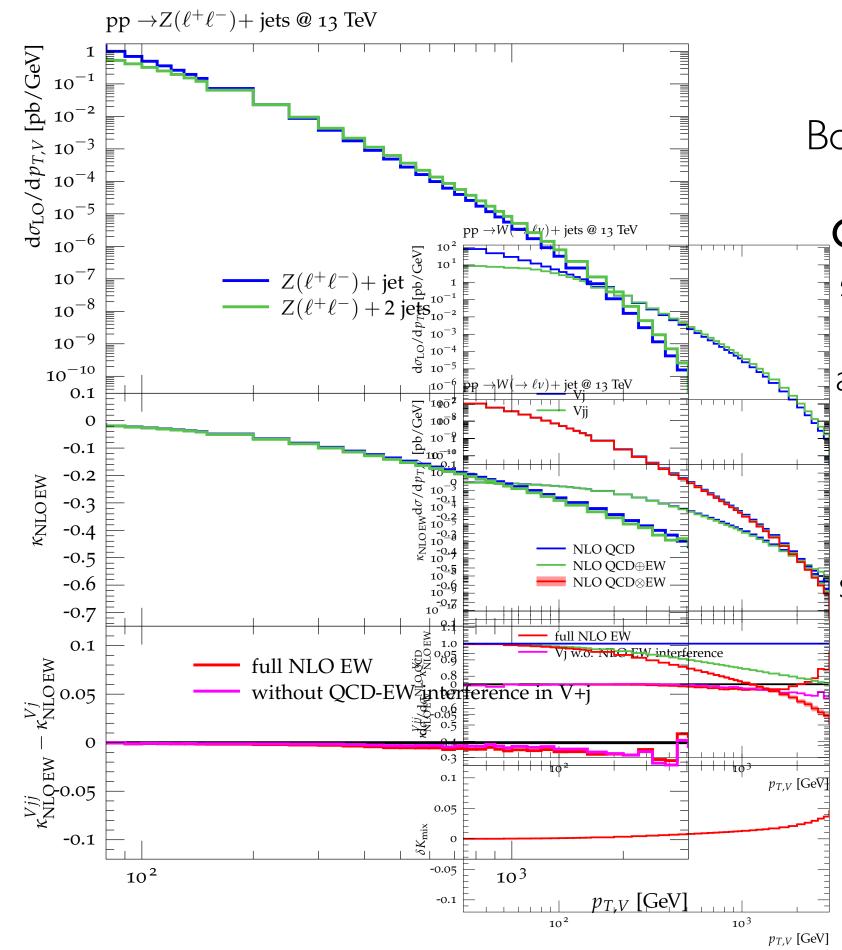
 $\sigma_{\rm QCD\times EW}^{\rm NLO} = \sigma_{\rm QCD}^{\rm NLO} \left(1 + \frac{\delta \sigma_{\rm EW}^{\rm NLO}}{\sigma^{\rm LO}} \right)$

(try to capture some $\mathcal{O}(\alpha \alpha_s)$ contributions, e.g. EW Sudakov logs × soft QCD)

Difference between these two approaches indicates size of missing mixed EW-QCD corrections.

 $K_{\rm QCD\otimes EW} - K_{\rm QCD\oplus EW} \sim 10\%$ at 1 TeV

Mixed QCD-EW uncertainties



 $pT_{j,2} > 30 \text{ GeV}$

Bold estimate:

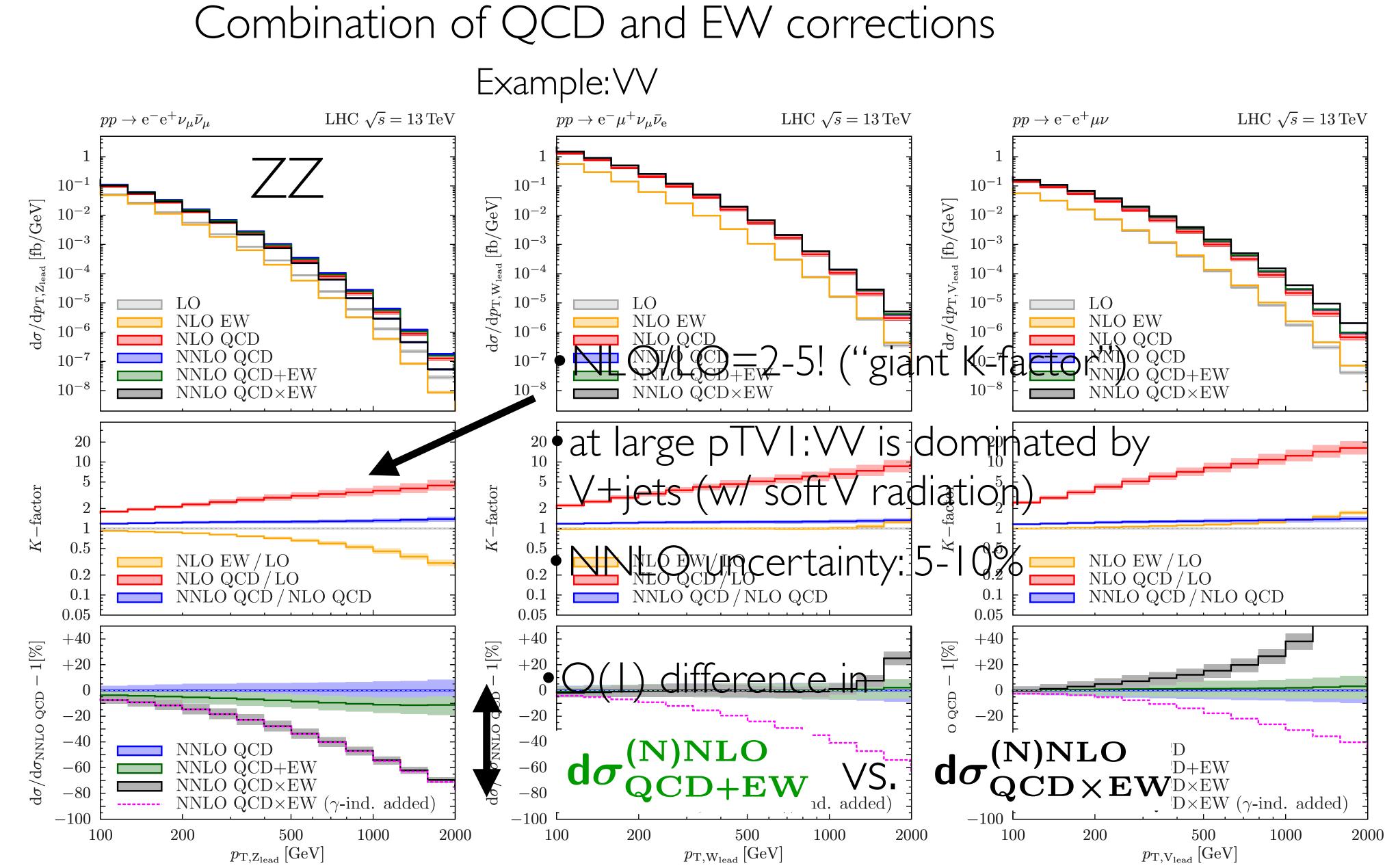
Consider real $\mathcal{O}(\alpha \alpha_s)$ correction to V+jet \simeq NLO EW to V+2jets

and we observe

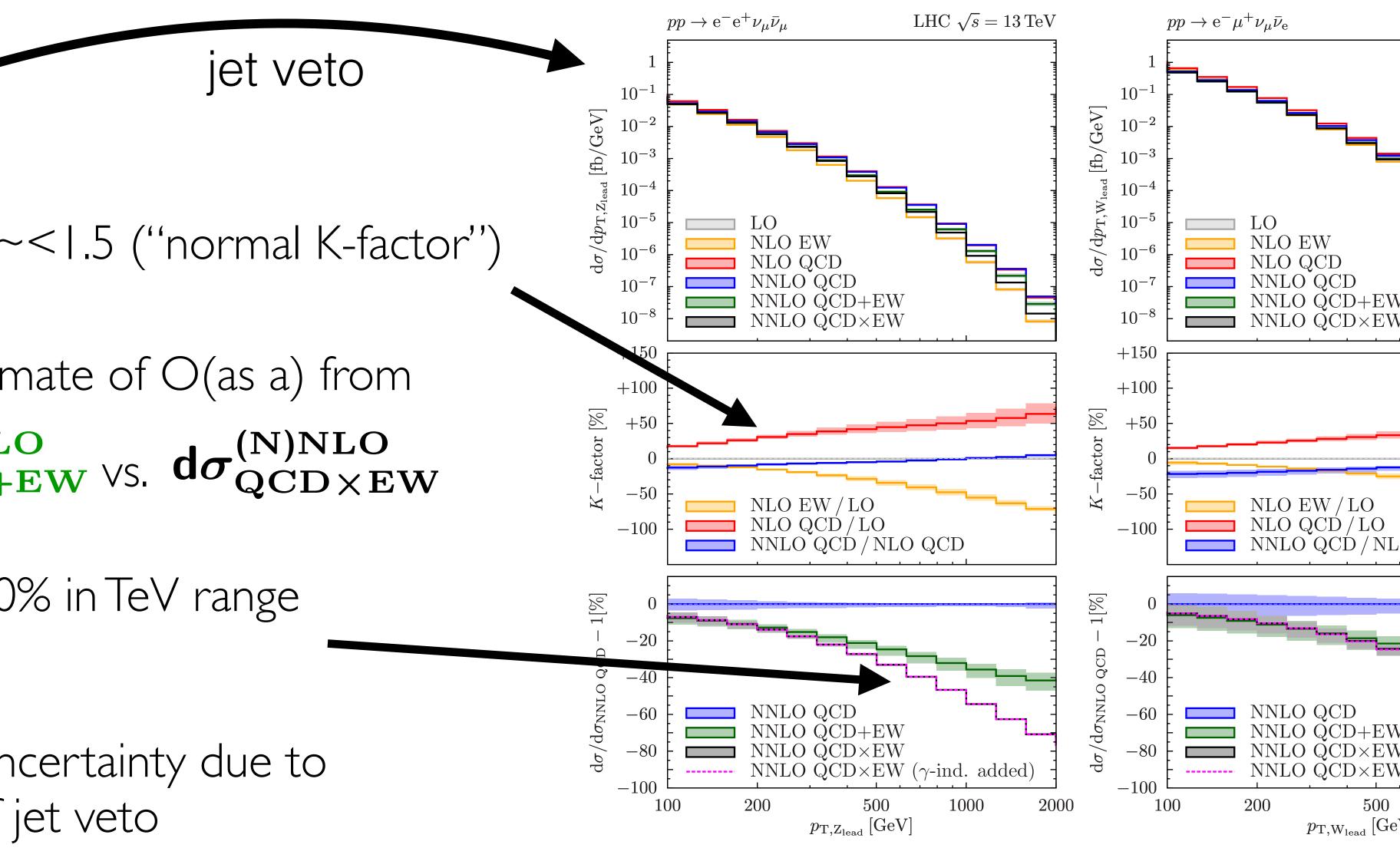
 $\frac{\mathrm{d}\sigma_{\mathrm{NLO}\,\mathrm{EW}}}{\mathrm{d}\sigma_{\mathrm{LO}}}\Big|_{V+2\mathrm{jet}} - \frac{\mathrm{d}\sigma_{\mathrm{NLO}\,\mathrm{EW}}}{\mathrm{d}\sigma_{\mathrm{LO}}}\Big|_{V+1\mathrm{jet}} \lesssim 1\%$

strong support for

- factorization
- multiplicative QCD x EW combination



Combination of QCD and EW corrections Example:VV



- NLO/LO= \sim <1.5 (''normal K-factor'')
- Reliable estimate of O(as a) from $d\sigma_{QCD+EW}^{(N)NLO}$ VS. $d\sigma_{QCD\times EW}^{(N)NLO}$

Here: 10-20% in TeV range

• However: additional uncertainty due to efficiency of jet veto

 $d\sigma = d\sigma_{LO} + \alpha_S d\sigma_{NLO} + \alpha_{EW} d\sigma_{NLO EW}$ NLO QCD NLO EW

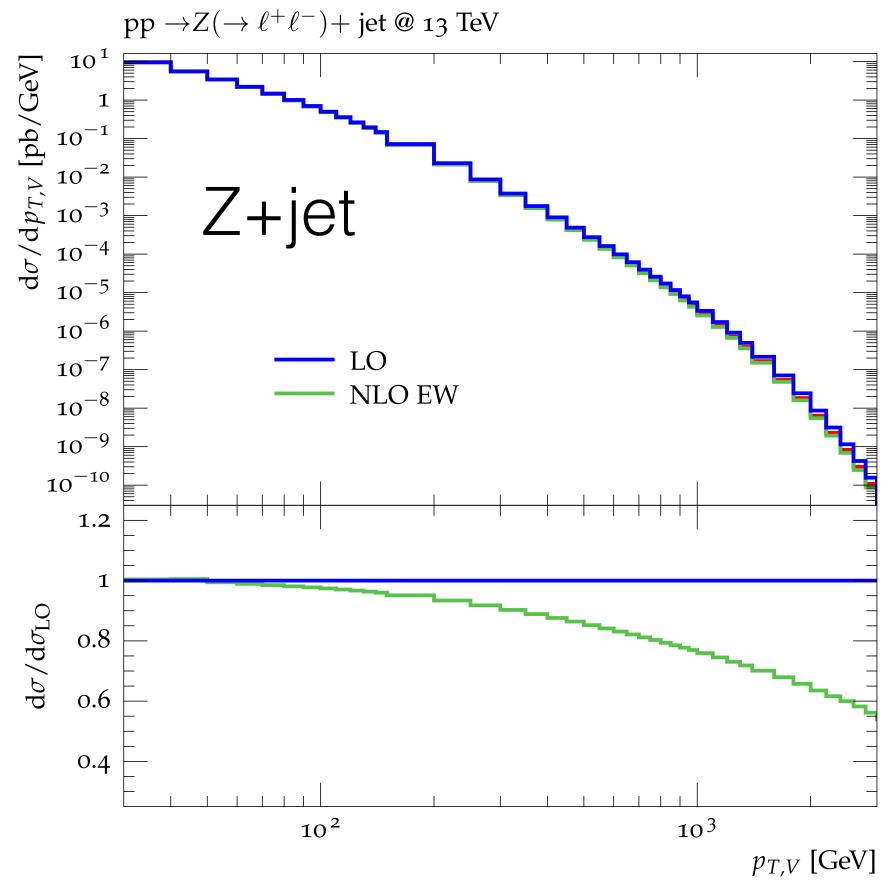
NNLO QCDNNLO EWNNLO QCD-EW

- What about this contribution? • Explicit calculation for most processes out of reach • Uncertainty estimates?

And again...

 $+\alpha_{S}^{2} d\sigma_{\text{NNLO}} + \alpha_{EW}^{2} d\sigma_{\text{NNLO} EW} + \alpha_{S} \alpha_{EW} d\sigma_{\text{NNLO} QCD \times EW}$

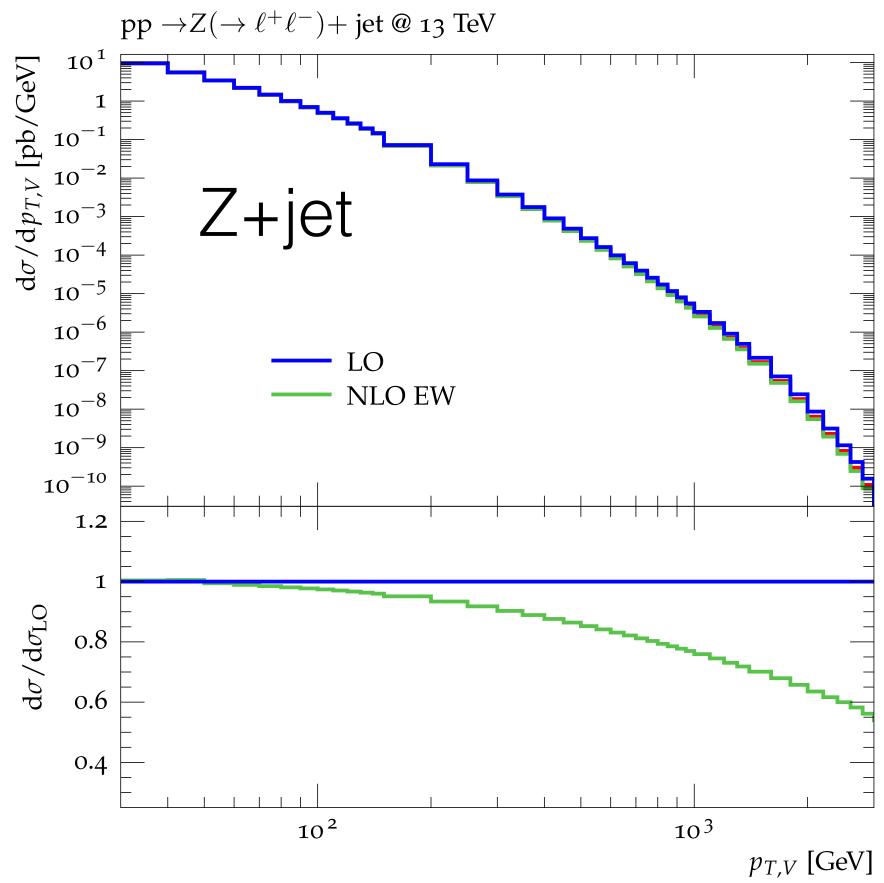
Pure EW uncertainties



NLO EW corrections are negative & sizeable at large $p_{T,V}$

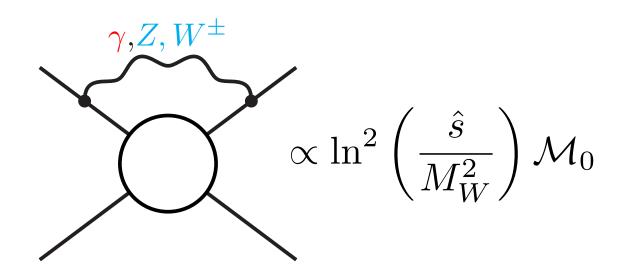
How to estimate corresponding pure EW uncertainties of relative $\mathcal{O}(\alpha^2)$?

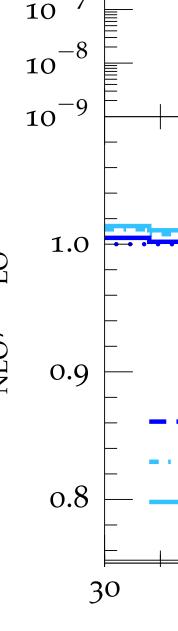
α_s^3 Pure Eval uncertainties $lpha^3$



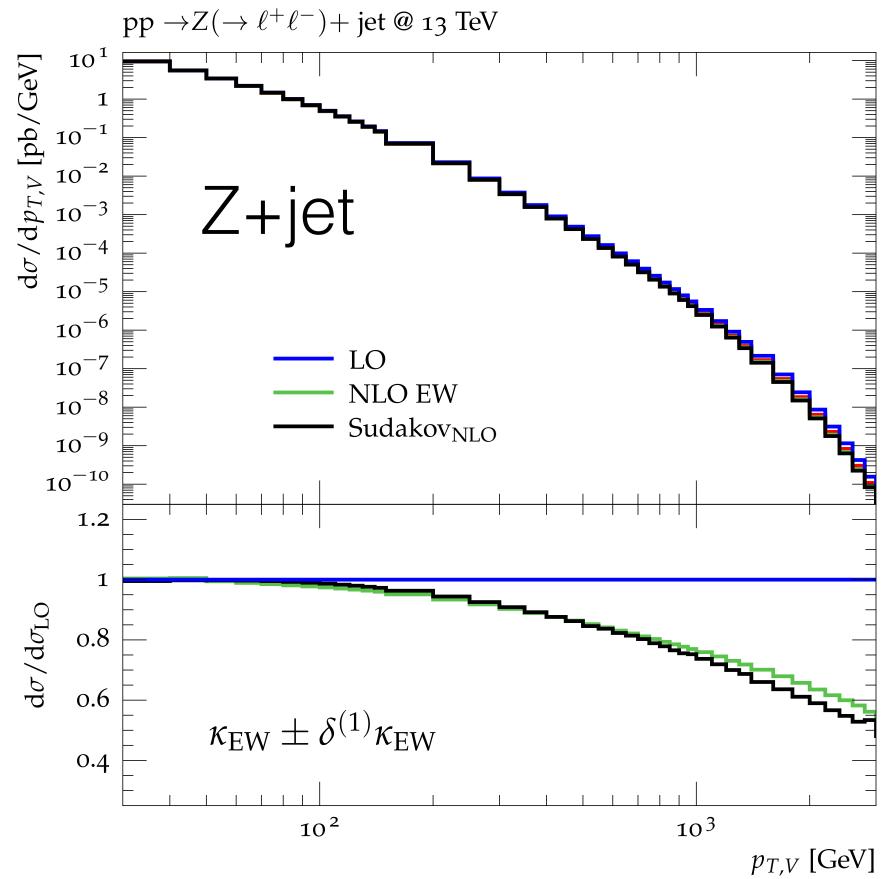
NLO EW corrections are negative & sizeable at large $p_{T,V}$

Origin: soft/collinear logs from virtual EW gauge boson (EW Sudakov logarithms)



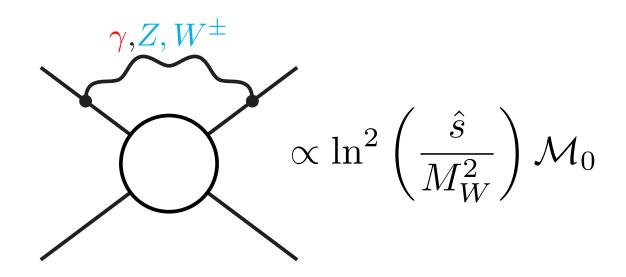


α_{S}^{3} Pure Evaluation uncertainties $lpha^3$

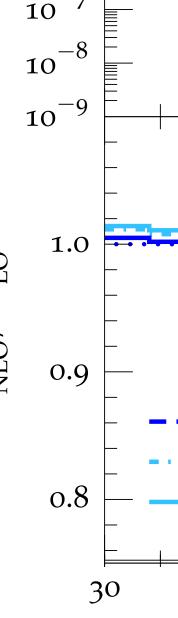


NLO EW corrections are negative & sizeable at large $p_{T,V}$

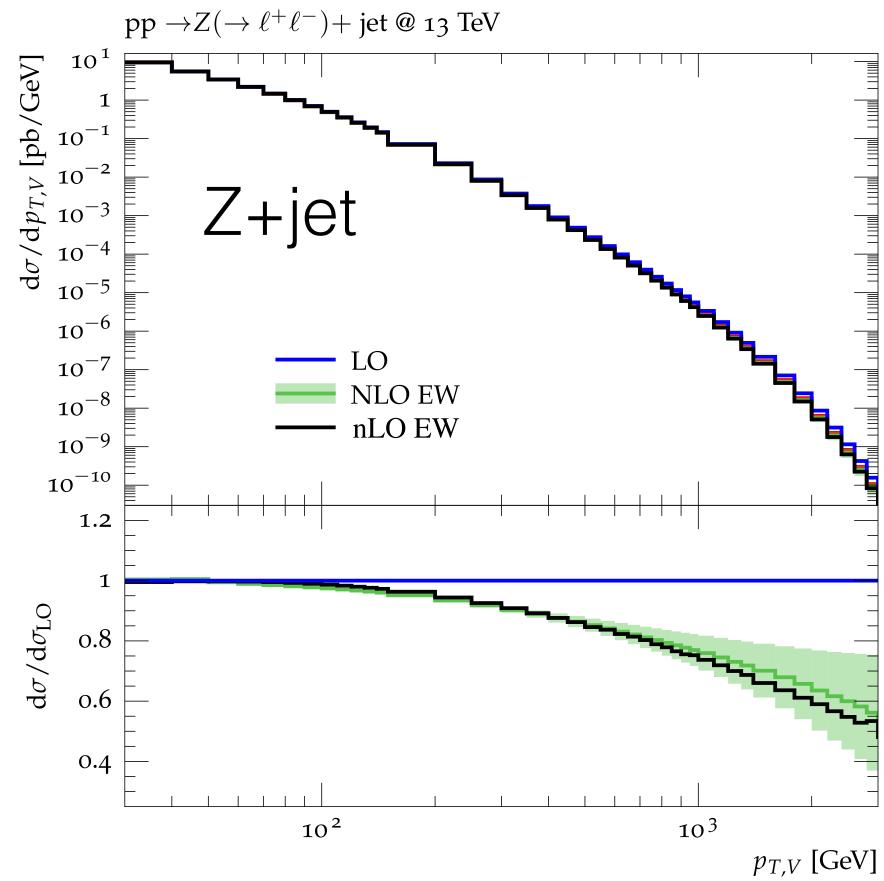
Origin: soft/collinear logs from virtual EW gauge boson (EVV Sudakov logarithms)



Large EW corrections dominated by Sudakov logs!

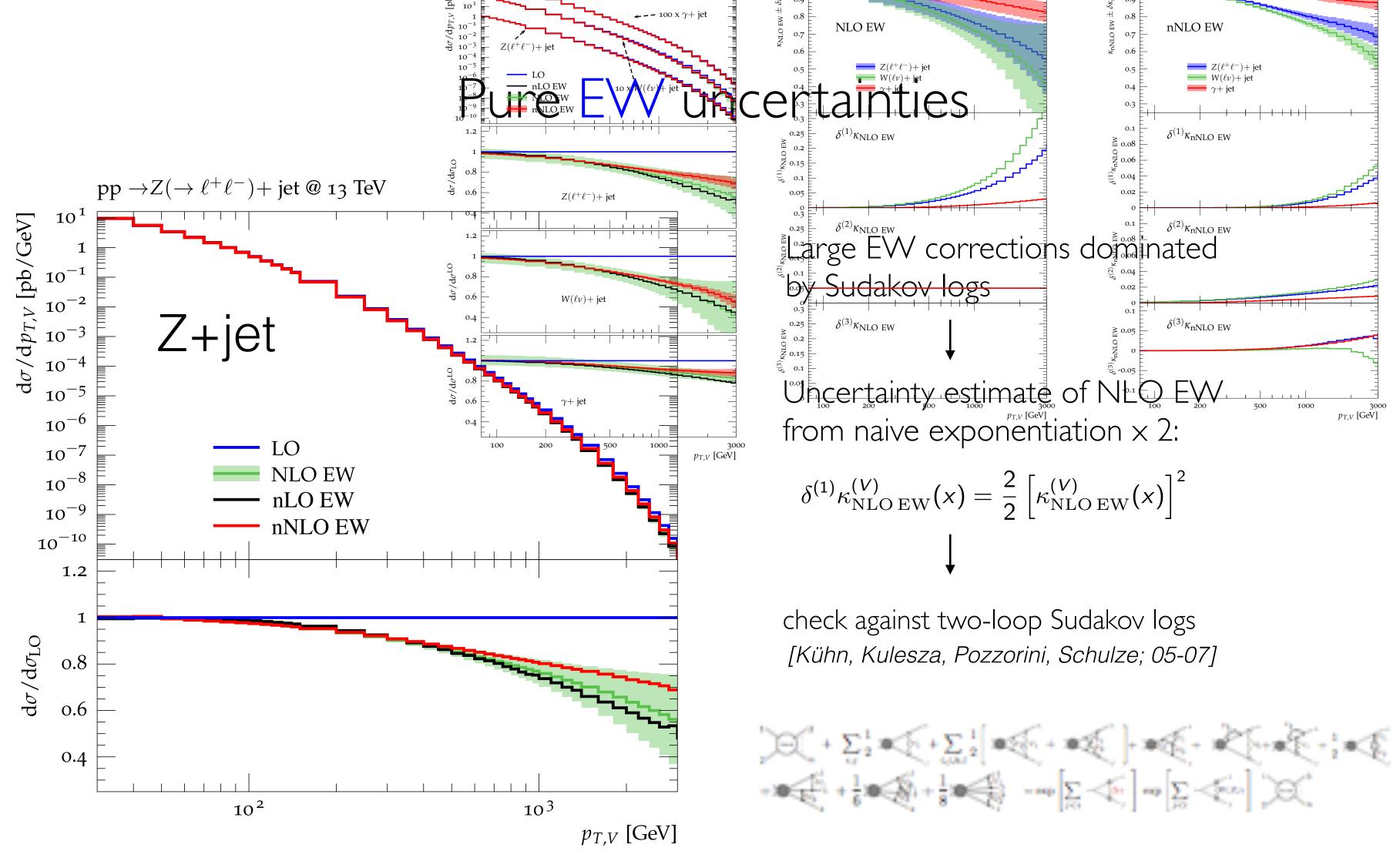


Pure EW uncertainties



Large EW corrections dominated by Sudakov logs! Uncertainty estimate of NLO EWfrom naive exponentiation

$$\delta_{\mathrm{N^kLO\,Sud}}^{(1)} \simeq \frac{1}{k!} \left[\delta_{\mathrm{Sud}}^{(k-1)} \right]^k$$



- NLO QCD+EW corrections fully automated in several tools
- Based on efficient evaluation of tree and one-loop amplitudes via numerical methods
- .and automated subtraction methods (CS and FKS)
- QCD and EW corrections overlap and are not unambiguously defined for processes involving four quarks at LO
- NLO results are available up to very high multiplicities
- Remaining perturbative uncertainties from NNLO QCD, EW, and QCD-EW are often becoming relevant

Recap

References

These Lectures are partly based on:

- Stefan Weinzierl, DESY Monte Carlo school, 2012
- Ansgar Denner, DESY Monte Carlo school, 2014
- Andreas van Hameren, DESY Monte Carlo school, 2017
- Giulia Zanderighi, Graduate Course on QCD, 2013
- Rikkert Frederix, MCnet Summer School, 2015
- Gavin Salam, Basics of QCD, ICTP–SAIFR school on QCD and LHC physics, 2015