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The challenge: triggering at (HL-)LHC

Extreme bunch crossing frequency of 40 MHz → extreme data rates O(100 TB/s)

“Triggering” = filter events to reduce data rates to manageable levels

 3
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Future challenges @ LHC

 4

LHC TODAY HL-LHC

‣~ 40 collisions/event

‣~ 10 sec/event processing time

‣~ 200 collisions/event


‣more granular detector

‣~ minutes/event processing time

‣flat budget for computing 

resources

Extreme bunch crossing frequency of 40 MHz → extreme data rates O(100 TB/s)
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The challenge: triggering at (HL-)LHC

 5

CHALLENGE: maintain physics in increasingly complex 
collision environment 

→ untriggered events lost forever!

Sophisticated techniques needed to preserve the physics!

Squeeze the beams to increase data rates 

→ multiple pp collisions per bunch crossing (pileup)

2016: <PU> ~ 20-50 

2017 + Run 3: <PU> ~ 50-80 

HL-LHC: 140-200

Extreme bunch crossing frequency of 40 MHz → extreme data rates O(100 TB/s)

“Triggering” = filter events to reduce data rates to manageable levels
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• Output: max. 1 MB/event 
• Processing time ~ 20 s 
• Accurate global reconstruction 
• Software implemented on CPUs
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CMS Trigger
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100 ms 1 s1 ns 1 μs

Deploy ML algorithms very early in the game

Challenge: strict latency constraints!
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Physics case: jet tagging

Study a multi-classification task to be implemented on FPGA: discrimination 
between highly energetic (boosted) q, g, W, Z, t initiated jets

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied
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Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied

Z W gluon

t→bW→bqq

3-prong jet

Reconstructed as one massive jet with substructure

q/g backgroundW→qqZ→qq

2-prong jet 2-prong jet no substructure

and/or mass ~ 0
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Physics case: jet tagging
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ML in substructure is well-studied

Z W gluon

Input variables: several observables known to have high discrimination 
power from offline data analyses and published studies [*] 

[*] D. Guest at al. PhysRevD.94.112002, G. Kasieczka et al. JHEP05(2017)006, J. M. Butterworth et al. PhysRevLett.100.242001, etc..

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.94.112002
https://link.springer.com/article/10.1007/JHEP05(2017)006
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.242001
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Physics case: jet tagging

• Fully connected neural network with 16 expert-level inputs: 

- Relu activation function for intermediate layers 

- Softmax activation function for output layer

 12

16 inputs

64 nodes 
activation: ReLU

32 nodes 
activation: ReLU

32 nodes 
activation: ReLU

5 outputs 
activation: SoftMax

AUC = area under ROC curve 
(100% is perfect, 20% is random)

• We train (on GPU) the five output multi-classifier on a sample of ~ 1M events with two 
boosted WW/ZZ/tt/qq/gg anti-kT jets

better



Neural Network to FPGA 
translation with hls4ml
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high level synthesis for machine learning

2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.
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hls  4  ml

hls4ml

HLS  4  ML

Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.

– 5 –

https://hls-fpga-machine-learning.github.io/hls4ml/

Implemented a user-friendly and automatic tool to develop and optimize FPGA 
firmware design for DL inference: 

• reads as input models trained with standard DL libraries 
• uses Xilinx HLS software (accessible to non-expert, engineers resource not common in HEP) 
• comes with implementation of common ingredients (layers, activation functions, binary NN …) 

https://arxiv.org/abs/1804.06913

https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913
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hls4ml: unique aspects
• Due to extreme constrains from trigger system we remove some complexity from run-

time, and move it to compile-time 

- Weights are ‘baked into’ FPGA firmware - not reconfigurable without reprogramming device 

- For longer latency applications, weights storage in on-chip block memory is possible 

- No loading weights from peripherals via - e.g. DDR, PCIe 

• Allow many different: layer types, activation functions, kernel sizes, input/output 
dimensions at compile-time while keeping hardware fully utilised at run-time 

• Keeps the latency and resource usage low: inference is optimized for the model 

• User controllable trade-off between resource usage and latency/throughput 

• Thanks to HLS: easy to target different devices, clock frequency

 15
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With hls4ml package we have studied/optimized the FPGA 
design through:


• compression: reduce number of synapses or neurons 

• quantization: reduces the precision of the calculations (inputs, 
weights, biases) 

• parallelization: tune how much to parallelize to make the 
inference faster/slower versus FPGA resources

Efficient NN design for FPGAs
FPGAs provide huge flexibility


Performance depends on how well you 
take advantage of this

Constraints:
Input bandwidth
FPGA resources
Latency 

NN training

FPGa project 

designing



hls4ml - CERN Schneider Meeting - Sioni Summers27.06.2019  17

Efficient NN design: quantization
• Quantify the performance of the classifier with the AUC 

• Expected AUC = AUC achieved by 32-bit floating point 
inference of the neural network 
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• DSPs (used for multiplication) are often 
limiting resource


- DSPs have a max size for input (e.g. 
27x18 bits), so number of DSPs per 
multiplication changes with precision

compression

70% compression ~ 70% fewer DSPs

Number of DSPs available

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

Efficient NN design: compression
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Efficient NN design: reuse

• Key feature of hls4ml: a handle to trade resource usage and latency/throughput 
• Reuse = 1: fully unroll everything onto different resources 

- Fastest, most resource intensive 

• Reuse > 1: one resource used sequentially for several operations 
- Slower, but save resources

 19
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Parallelization: DSPs usage
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Figure 11: DSP usage in the pruned 3-layer model as a function of the network precision. The various
curves illustrate resource usage for di�erent resource usage factors.

Figure 12: FF and LUT usage in the pruned 3-layer model as a function of the network precision. The
various curves illustrate resource usage for di�erent resource usage factors.

corresponding to the four layers of neuron values that must be computed, with each increment in reuse
factor. This is in line with expectations from Eq. 2.4 where additional reuse of multipliers in a given
layer calculation incurs added latency. In the right plot of Fig. 13, the initiation interval is shown for
di�erent reuse factors. By design, the initiation interval and the reuse factor match as a new input can
be introduced to the algorithm only when all multiplications for a given DSP multiplier are completed.
At very low network precision, the HLS synthesis initiation interval is smaller than the reuse factor.
This is because multiplications are no longer implemented in DSPs but through FFs and LUTs.

– 19 –

Fully parallel

Each mult. used 1x

Each mult. used 2x 

Each mult. used 3x 

…
Reuse factor: how much to parallelize operations in a hidden layer
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Parallelization: Timing

Figure 13: Latency (left) and pipeline interval (right) in the pruned 3-layer model as a function of the
network precision. The various curves illustrate resource usage for di�erent resource usage factors.
The latency is given in clock cycles for a 200 MHz clock frequency.

3.3 Firmware Implementation

In this section, we compare the resource estimates from HLS synthesis with a firmware implementation
after final Vivado optimization. To get a rough scaling of the di�erences between the HLS synthesis
resource estimates and a final firmware implementation, we use a "bare" firmware design that allows for
the compilation of the ML algorithm with almost no additional resources. This “bare” implementation
consists of a simple VHDL wrapper that connects the available pins on the FPGA input/output directly
to the hls4mlfirmware block with the assumption that all inputs are delivered on the same clock edge
for evaluation. Including the VHDL wrapper, we perform the firmware implementation and compare
the resulting resource usage.

When performing the implementation, we noticed that the target latency benchmarks in HLS
could not be attained, and we had to reduce the clock speed so as to allow for the compiled algorithm
to meet the timing constraints. The amount needed to reduce of the clock speed became larger with
NN complexity; algorithms that took a large part of the FPGA required slower clocks. For the 3-layer
pruned NN at 32-bit precision, a clock of 8 ns was needed to implement an HLS block designed for
5 ns. This is observed for all reuse factors. A simple solution to overcome this issue is to synthesize
the HLS design for a slightly faster clock than intended. We also note that di�erent versions of Vivado
HLS have varying degrees of success meeting timing. We have had more success meeting timing with
Vivado 2�16.4 than 2�17.2.

Due to the limited number of pins, we now consider a di�erent neural network model with fewer
inputs. BK: subtle point to clarify how this IO limitation will a�ect everyone. In this case, we consider
a small 1 hidden layer model with 10 inputs and 1 output node. We also tested with the 3-layer
pruned network and we find similar quantitative conclusions in the regions where the number of pins
was su�cient for implementation. For the rest of this subsection, we present results with the 1-layer
network using an 8 ns clock at implementation.

– 20 –
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Figure 6: Illustration of the iterative parameter pruning and retraining with L1 regularization proce-
dure. The distribution of the absolute value of the weights relative to the maximum absolute value
of the weights is shown after each step of the pruning and retraining procedure. In the top left, the
distribution before compression is shown, while in the bottom right, the distribution after compression
is displayed.

Parallelization

The trade-o� between latency and FPGA resource usage is determined by the parallelization of the
inference calculation. In hls4ml this is configured with a multiplier “reuse factor” that sets the number
of times a multiplier is used in the computation of a layer’s neuron values. With a reuse factor of one,
the computation is fully parallel. With a reuse factor of R, 1/R of the computation is done at a time
with a factor of 1/R fewer multipliers.

FPGA multpliers are pipelined; therefore, the latency of one layer computation, Lm, is approxi-
mately

Lm = Lmult + (R � 1) ⇥ I Imult + Lactiv, (2.4)

where Lmult is the latency of the multiplier, I Imult is the initiation interval of the multiplier, and Lactiv
is the latency of the activation function computation. Equation 2.4 is approximate because, in some

– 13 –
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Features under development
• ‘Large’ neural networks 

- Very high ‘reuse’ factor -> longer latency 

• Convolutional Neural Networks 

- Popular for image processing 

• Recurrent neural networks 

- For time series/list processing 

• Binary / Ternary neural networks 

- Very low precision weights, use FPGA resources efficiently 

• Boosted Decision Trees 

- Not neural networks, but can be effective and efficient

 22
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Conclusion

• hls4ml software package translates trained neural networks into synthesizable FPGA 
firmware 

• User can tune resource usage vs. latency/throughput 

• Initially targeting Level 1 Trigger - big FPGAs, O(1 μs) latency 

• Also working on larger networks with longer latency for other applications e.g. neutrino, 
astronomical experiments, industrial applications 

• Website: https://hls-fpga-machine-learning.github.io/hls4ml/ 

• Paper: https://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07027 

• Code: https://github.com/hls-fpga-machine-learning/HLS4ML 

• Fast ML Workshop: https://indico.cern.ch/event/822126/ 
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