PY410 / 505
Computational Physics 1

Salvatore Rappoccio

Derivatives + Integrals

* One of the most obvious things in computational physics is
to look at computation of derivatives and integrals

* You probably can guess how much of this is already known
to you, since this is how you learned to do these things
anyway!

* The "hard” part for you in calculus was probably getting
your brain around taking the limits of the “simpler” things
when the step size went to zero

» Well, that part is also hard for computers!

—30, you have to think a little differently here, and go back
to discrete derivatives and integrals

Derivatives + Integrals

» Conceptually this is probably the easiest chapter

 The devil is In the details, however

e

o
(.
o~
\ \

.

5
&N

The devil in the details

» Short discussion in Chapter 1 of Garcia
» Also parts are addressed in Chapter 2 of Garcia

Derivatives

* WWe've now seen several differentials in the previous
discussion

* We need to be able to compute the differential numerically,
SO as we mentioned, we take a step back :

f/(;l‘.) — him f(;l‘- + Al) — f(;l‘-)

Axr—0 AT

 First we take the “forward difference” :

fiw) = 12X 2T

+- %f"(z) + O(h?) .

* But we could equally have taken the “backward difference”:

flx) — ;Z('I- — h) n (—Qh) f(x) + O(h?) .

f'(z) =

Derivatives

» But! Here’'s the first devil :)

Improve
the accuracy!

e Combine the forward and backward
differences to get a
symmetric difference!

Recall : “Big-Ohh” Notation

* The "big-ohh” notation stands for “order”

* O(N2) operations means “the leading coefficient in the
number of operations scales like N2

« Remember, “operations” here really means
“multiplications”... addition is cheap!

* In computing, we want to minimize this as much as
possible since the computational time scales the same
way

Derivatives

» Since "h” is small, the error that we make is smaller (h?) :

flx+ h) — f(x — h) (’)(11-2) _

fiw) = 2h

 We want to make the error that we make as small as
possible!

« Simple thing : reduce h

—But! This has a bit of a problem because it increases the
computational time (ouch)

« Can we do better?

Derivatives

* Absolutely!

» Can try with a “five point stencil”:
—http://en.wikipedia.org/wiki/Five-point_stencil

« Consider the five points : {r —2h,z — h,z,2 + h,x + 2h}.

 Then the derivative looks like :

flx —2h) —8f(x — h) +8f(x+ h) — f(x+ 2h)

| ") 1-4 -
12)

f'(x) =

http://en.wikipedia.org/wiki/Five-point_stencil

Derivatives

* Five-point derivative method is simple enough to just write
it down

diff fivepoint(£, x, h) :

s Iameg OI ITuncCtlorn TO D adlrirerencliraceq

dfdx = (f£(x-2%h) - 8¥%f(x~h) + 8¥%f(x+h) - £(x+2%h)) / (12+%h)
dfdx

Derivatives

 What if we don’t know the functional form of the derivative?

* \WWe have to use some approximate functional form of the
data points to handle this

* One popular method is to use polynomial interpolation and
extrapolation

10

Ridder’s method

» Chapter 5, Section 7 of Numerical Recipes recommends
Ridder’s algorithm :

—Advances in Engineering Software, 4 75-76 (1978)

» Uses Ridder’s polynomial extrapolation.

* This relies on the so-called “Neuville’s algorithm™ to
compute the polynomial extrapolation, then computes the
derivative

11

http://dx.doi.org/10.1016/S0141-1195%2882%2980057-0

Neville’s Algorithm

» Derived to compute polynomial interpolation
—http://en.wikipedia.org/wiki/Neville's _algorithm

* Given n data points, you can construct the n-dimensional
polynomial (which is unique) as follows

—Let pij denote the polynomial of degree | - i which goes
through the points (xk,yk) for k=i..j.

—The pi; satisfy :

Pii (I‘) — Ui, 0 i J :* I,

(T — x)pij—1(x) + (* — i) piy15(T)

£ 5

D0<1< 9 <n.
i £X; - -

Pi. i \ ;r_) —

12

http://en.wikipedia.org/wiki/Neville's_algorithm

Neville’s Algorithm

» S0, we can fill a tableau to compute this from the left to the

right :

Po,o(;l?) — Yo
po1lx)

p1a(T) = Y1 po,2()
p12() poa(T)

Pao(T) = Yo pra(x) Poalx)
p2,3(x) p1a(T)

paa(T) = ya p2.a(T)
paalx)

13

Ridder’s method

» Start with the symmetric difference
» Compute polynomial extrapolations for n=10 polynomials
—Reduce the step size for each n

—Compute symmetric difference at smaller step size.
Store the result.

—Compute extrapolations for n-1 with Neville's algorithm

—Compare each new extrapolation to one order lower at
this step size, and the previous one
e |If error is smaller, keep the improvement
* else, continue

If you have lots of derivatives, over the entire time

this can save you a lot of CPU’s

14

Ridder’s Method

Input value
Initialize 10x10 array
Compute symmetric difference differential
for each polynomial extrapolation
reduce step size
compute symmetric difference differential
store results
compute error to previous step size
1f error is better, keep 1t
else, continue

15

Ridder’s method

dimension of extrapolation table
a = array([[0.0] * n] *n) # extrapolation table

a[0)[0)] = (£(x + h) - £(x - h)) / (2 * h)
answer = 0.0
error = nan to num(inf) / 2.0 # get a large value for the error
i xrai (n)
h /= 1.4
a[0)[i] = (f(x + h) - £(x - h)) / (2 * h)
fac = 1.4 * 1.4
J nge (1,1i+1)
al[jl[i)=(a[j-1][i]) * fac - a[j-1][i-1]) / (fac - 1)
fac %= 1.4 * 1.4
err = max(abs(a[j] (1] - a[j-1][1]),
(al3] (1] - a[j-1][1-1]))
err <= error :
error = err
answer = a[j][1)

(a[1] [1]) - a[i-1][1i~-1]) >= 2 ¥* error :

answer, error

Integration

* Covered (cursorily) in Garcia Chapter 10.2

» Also covered in Numerical Recipes Chapter 4
—(The C version is online for free :)
—http://apps.nrbook.com/c/index.html

17

http://apps.nrbook.com/c/index.html

Integration

* We've done derivatives. Now on to integration.
» Recall your high-school (ish) calculus class :
—http://en.wikipedia.org/wiki/Integral

4.0

| Step=1/1

1.0

0.5F

O'%.O 0.5 1.0 1.5 2.0 18

http://en.wikipedia.org/wiki/Integral

Integration

 To first order, that’s all we're going to do for computations
of integrals

—There are fancier, faster, better methods, but they are
successive approximations of this kind of thing except
one (Monte Carlo integration)

—We'll first consider the class of problems called
“quadrature” in numerical analysis

—See Chapter 4 of "Numerical Recipes” (C version online
for free from their website)

19

Integration

» Consider the integral :

I = /b dx f(x) .

(1

 Then define :

- = flx), y(a)=10, y(b) =1 .

 We COULD solve this as a differential equation!

» But instead we’ll start with the "bare bones” approximations

that you learned in high school/freshman calculus N

Integration : Trapezoidal Rule

* The rectangle sum is a slightly-less-than-wonderful
approximation of the integral

* The trapezoid sum is actually much better
—http://en.wikipedia.org/wiki/Trapezoidal_rule

* You compute the integral by approximating it as a
trapezoid :

< >

fla) + f(b)} A

b
(x)dr = (b— a)
/ flajdr = (5 —a, [2

|

|

|

|

|

|

|

|

|

|

|

|

| |

—e ¢
a b 21

http://en.wikipedia.org/wiki/Trapezoidal_rule

Integration : Trapezoidal Rule

 How accurate” Define h = (b-a) as our "small” parameter
* Approximate the integral by :

I = / dr f(x) ~ (b—a)f(xg) = hf(xg) .

cl

+ We Taylor-e'xpand f(x)

f(2) ~ f(x0) = (z — z0)f'(w0) + 5

 The error in the estimate Is :

(x — 20)2 f"(x0) + ... ,

b

b 1 ;
I —(b—a)f(xo) = f'(x0) / dr (r — xg) + §f"(;r.0) / dr (r —x9)" + ...

: b+ a b—a ‘
= f (xq) { > —IU] 5

1 : '
i Ef//(;ro) [(b — ;1‘,0)'3 - ((l. — ;1‘.0)'3]

= QO(h*) . S

Integration : Trapezoidal Rule

* Notice a trick we can play!

* If we choose xo = (b+a) / 2, then we get down to O(h?3)
instead of O(h2)!

—"Midpoint rule” :) e,
h (\C;/ (9

o
-
(R -+
¢ \

[=T=Z[f(a)+ f(b)] .

\

’ 1 2 pt!
I = / dx {f(a) + (x—a)f'(a)+ 5(;1‘. —a) f (a)+.. }

h? h?

= hf(a)+ ?f'(a) + Ff"(a.) + ...
h , h?
I = 5 {f(a)+ fla)+ hf(a)+ 7f (a)]
/"3 ' _ 3
I—T:—ﬁf (a)+ ... =0O(h?)

23

Integration : Trapezoidal Rule

* Then can break the integral into a bunch of trapezoids

* This is also related to “polygon tessellation” in computer graphics,
to compute (or display) the area in a 2-d image :

—http://en.wikipedia.org/wiki/Polygon_triangulation

» Easier and faster
than computing the
area in a more
complicated way!

* Almost all of your modern
computer games will allow
you to set the amount of
tessellation to optimize
performance or beauty depending
on your taste 24

http://en.wikipedia.org/wiki/Polygon_triangulation

Integration : Trapezoidal Rule

Options

'Graphics

Displa
Advanced Py

Network Display Mode Fullscreen | ¥ Monitor Primary ¥

Languages

Sound Resolution 5760x1080(..."| ¥ Multisampling 8x ¥

Voice » 3 . 3
Refresh Rate 60.0Hz ¥ Vertical Sync Disabled ¥

Graphics

Textures Effects

They, re USi ng Texture Rosolutron(}D Shadow Quality

s

tesse”ation here! Texture Filtering 16x Anisotropic 4 Liquid Detail

Projected Textures Enabled ¥ Sunshafts

Particle Density

Environment

View Distance
Environment Detail

Ground Clutter

-~

Recommended

Integration : Trapezoidal Rule

 Now you can guess what to do, we have successive
approximations :

/abdz flx) = Z:: [s

* The uncertainty here is :
N-—1

[~ Iy = Z ;1‘.:’+12— T; (f(xiq) + flx:)] .

r=1

[—Ir~QO ((N - 1)11.3) ~ QO ((b - (1,)11.2) ,

» Can therefore pick N,h to desired accuracy (same deal as
in tessellation!)

26

Integration : Trapezoidal Rule

trape201dal rule(f, a, b, n):

"M% Approximates the definite

) " '’
» A L_,J
31 - . ~ | 1 mmn
CIle Comnp "l__: S

h= (b~ a) / n
g = f(a) + £(b)
1 xrai (1,n):
g += 2 % f(a + 1 % h)
s *h /2

27

Integration : Simpson’s Rule

* This is more accurate than the Trapezoidal rule, and not

really slower :

—http://en.wikipedia.org/wiki/Simpson's_rule

* |nstead of approximating by a trapezoid, use a parabola!

* This is a “three-point”
rule, similar to that we
saw last class for the
derivatives with the
“symmetric” derivative

A

28

http://en.wikipedia.org/wiki/Simpson's_rule

Integration : Simpson’s Rule

* The approximation is thus :

b=a+42h h -
I = / dr f(x) = 3 fla)+4f(a+ h)+ f(b)]+ O(R”) .

(1

» Similarly to above, we can divide into intervals of size 2h if
we have a large area :

" i
/ dx f(x) zl—; fla)+4f(a+ h)+2f(a+ 2h)
+ 4f(a + 3h) +2f(a+4h) + ---

+2f(b—2h) +4f(b—h) + f(b)| + O ((b- a.)h4) .

* This particular implementation requires an EVEN number of
intervals, and that the function is evaluated at an ODD
number of points (need three points on each!) 29

Integration : Simpson’s Rule

81mpson(f a, b, n)
"W Approximates t
"l”;t’: FOINPO S J___- S'.. SOIl'S I 1]

h = (b - a) / n
g = f(a) + £(b)

(1, n, 2):
+= 4 * f(a + 1 * h)

(2, n-1, 2):
+= 2 % f(a + 1 * h)

s *h /3

30

Integration : For your homeworks!

* |n your homeworks (assigned Monday) you will go through
the same exercise of examining numerical precision of
integration, like we did for derivatives.

31

Integration : Adaptive methods

» Can often adapt the algorithm to a desired precision by
iterating

* This improves the accuracy dynamically, saving time when
the function is fairly linear

32

Integration : Adaptive methods

* S0, pseudocode is :

Choose N and compute h
Set h ——> h/2

Compute AJ = ‘IT(h) — IT(Qh)|
If Al > € repeat

» Can also reuse the computations as we did in our previous
example to speed up computational time :

(
YR B
®
®

< &
In
A
O
®
O
®
0

]
O
®
O
®
O
®
O
®
O

33

Integration : Adaptive methods

adaptive trapezoid(f, a, b, acc, output=

. ¢ 3 " . .
$ N e oA RYAL an A = A ad-Thad A
ve LrapezZolcal mectrlioq -

.

\ ~N oo W - Talatrh o -Tok T ot &
QO QesSl1lred aCCuracy acc.

old s = -le-30
h=Db~-a
n =1
s = (f(a) + £(b)) /
output = s
"W o= " 4 (n+l1) + ", Integral = " +
(h * (old s - 8/2)) > acc :

old s = s
i Xrar (n) :
g += f(a + (1 + 0.5) * h)
n %= 2
h /= 2
output ==

Next up : Root finding

* The next issue is to find the roots
of a function f(x)

S (] f(x) = 0}

* Lots of issues, not only
computational!

—May not have a root

—May have imaginary roots

—May have a large number of
roots

» Section 4.3 in Garcia, Chapter 9
In Numerical Recipes

Root finding

* But, given those caveats, once again it is very
straightforward logic here

* You've probably already seen Newton's method in your
mathematics classes

—http://en.wikipedia.org/wiki/Newton's_method

* Guess at the answer
* Find derivative
» Use it to get successively better approximations

36

http://en.wikipedia.org/wiki/Newton's_method

Root finding

Newton’s Method

» X

- Funktion
Tangente

N S N N N S S S S

37

Root finding

* A very simple version (not yet Newton's version) :

* Choose accuracy you want : ¢

« Guess x and dx, then fy = f(x)

« Stepis: =z — xz+dx

» Check to see if you've passed theroot: fy x f(x)

—If negative, you changed sign so, reverse : T — T — dx
and reduce your step : dx — dx/2

* If |dx| <e or f(x)=0 ,youredone

» Otherwise, iterate steps

38

Root finding

* The above assumes that the function f(x) is continuously
differentiable with at least one real root

* Much of the complications arise when this is not the case :

—Kinks F T g
SR S & a4 581
—Discontinuities PN ANEN ANE N

‘\yl = Y \
& . ~
(R ; .
J =
\d <.
-

—No real roots

» S0, we usually put in protections against this, and
eventually the code will give up and print a failure message

 Even still, can have
pathologies!

Root finding

» S0, the code for our simple root finding is here :

exp(x) * log(x) - x * x;

step = (

b {2:20.15f} " .format (step, x, dx)

(dx) > abs(ace) :
x += dx

f old * £(x) < 0 :

x == dx

dx /= 2

:20,15f) (2:20.15f}",.format (step, x, dx)

40

Root finding

* Problem! We already need to know the structure pretty
specifically of the function before we find the root

* S0, the code will happily continue until infinity if we give it a
guess in the wrong direction

* This is a bit of a pain, so we need something better

41

Root finding

* The next idea is to find a window within which the root will
fall : bisection method

—http://en.wikipedia.org/wiki/Bisection_method

F(X)

o Utilizes the intermediate
value theorem!

 Assumes that the function
has exactly one root
between x0,x1, at which
point it changes sign

42

http://en.wikipedia.org/wiki/Bisection_method

Root finding

» Repeatedly bisects the interval :

e Let =

|
2

= (zo +21)/2 be the bisection point

» Compute 1 f() x f(x1)

—If positive, then xo and x1/2 are on the same side of the
root, and X1z Is closer, so replace To — T'1

—Else, they're on opposite sides, so refine interval: x; — T

o If 21— 20| <€ orif f(x
with sufficient precision

) — () then we have the root

1
2

43

Root finding

¢ S0, the code looks like this :

Compute bisection

If they’re both on the
same sign, then
refine to [x1/2,x1]

Otherwise
refine to [Xo,X1/2]

lterate until
the accuracy
IS achieved

root bisection(f, x1, x2, accuracy=l.0e-6, max steps-lOOO, root_debug=
"iMReturn root of f(x) in bracketed by xl1, x2 with specified accuracy.
Assumes that f(x) changes :iqn once 1

UsSes D1sectlion root-rinaing algor I

fl = f(x1)
£f2 = f(x2)
£1 * £2 > 0.0:
X n("£ (x]
x mid = (x1 + x2) / 2.0
f mid = £(x_mid)
dx = x2 - xl
step = 0
root_debug:
root_print header ("Bisection Search", accuracy)
root_print step(step, x mid, dx, £ mid)
(dx) > accuracy:
f mid == 0.0:
dx = 0.0

£1 * £ mid > 0:
xl = x mid
£1 = £ mid

x2 = x mid
> £f2 = £ mid
x mid = (x1 + x2) / 2.0
f mid = £(x_mid)
dx = x2 - x1
step += 1
step > max_steps:
warning = "Too many steps (" (step) + "

X n (warning)
root_debug:

root_print_ step(step, x mid, dx, £ mid)
x_mid

Root finding

* OK, much better, we just have to find a bounding interval

» Usually a lot easier than having to remember what the
function actually looks like

* One problem : It's pretty darned slow.

45

Root finding

 Let's estimate the convergence rate :

—Number of iterations needed before root is located with
some desired accuracy

—Either dx < ¢ or f(z)<a
—We usually do the former, not the latter

* Look at bisection.
—After n bisection steps, then dz,, is given by :

|dx,| = |x1 — 20| after n iterations
1

1 1
= glden| = Zldvn_o| =+ = o|dwol
1

—So, 2—,,|d'~1"0| S €,

|dxq |

|dx| B log, e]
0.3010... 46

—O0r: n > log, [

(_‘

Root finding

« Can also represent as

Id-;lfnl = C"F Idmn— 1 If\ .

where (' Is a constant “convergence factor”

(Y is the “order of convergence”

 For bisection : 1
CF — —.a=1
27

* For the simple step-halving : Cr € [1 1] 8’ 1
— 9 ,

* Both of these are pretty darned slow to converge
» Can we do better? 47

Root finding

* Two better options :

—Secant method
* http://en.wikipedia.org/wiki/Secant_method

—Newton’s method (or Newton-Raphson, or “tangent”

method”
e hitp://en.wikipedia.org/wiki/Newton's _method

5

4}

* There are others,
but we'll just use these |

Secant Method

1+ l
1 F o
2 L

Tangarm Method

http://en.wikipedia.org/wiki/Secant_method
http://en.wikipedia.org/wiki/Newton's_method

Root finding

» Secant method (secare : Latin, “to cut™... think “section”)

 Choose the secant, the line between x0 and x1 that
intersects f(x)

° EquatiOn IS : s(x) = f(xq) flz) - f(IU)(;r. —).

£I1 — Iy

» Can utilize x0 as the initial guess, and then specify the
initial window (dx = x1 - x0)
—The next step is therefore chosen at where the secant
intersects f(x) = 0:

flxq)
Flx1) = flzo)

S(Thew) =0 = Tpew =1 — (1 — 20) =T + dTpew -

 Then iterate
49

Nelollilglellgle

* S0, pseudocode is :
—choose x0 and x1 "near” the root, dx = x1 - x0
—If either f(x0) = f(x1) then the method fails, so re-guess
—Replace :

dr — dTpew, o — L1, L1 — Tnew
—Check if: |dZpew| < €

* |f so, desired accuracy reached.
* Otherwise, iterate

50

Root finding

e Here’s the code for the secant method :

root_secant (£, x0, x1, accuracy=l.0e-6, max steps=20, root_debug=) :
"W%Return root of f(x) given gquesses x0 and xl1 with specified accuracy.
Uses secant root-finding algorithm.

Guess x0, x1 £0 = £(x0)
dx = x1 - x0
step = 0
root_debug:
root_print header ("Secant Search", accuracy)
root_print step(step, x0, dx, £0)
fO == Q:
x0
(dx) > abs (accuracy) :

fl = f(x1)
Check for o

anomaly x1
fl == f0:
‘ 1on ("Secant horizontal £ (x0 f(x1l) algorithm fails")

dx %= - f1 / (f1 - £0)
x0 = x1
£0 = £1

Make x1 += dx

step += 1
_root number of steps = step
step > max_steps:
root_max_steps(”:cc: gsecant", max_steps)
. root_debug:
Iterate Untll root_print_step(step, x1, dx, fl)
accuracy x1

reached

replacements

Root finding

 If a few conditions are met, then this is much faster than
bisection :

—If f(x) is smooth near the root
—If xO and x1 are close enough to the root

—Given these two, a Taylor expansion should be a good
approximation

* Assume that the root is at zero (for simplicity, but without
loss of generality, you can always do a change of variables
to make this at some other x)

* Then, in the expansion :

2 I e
flx)~af' + Tf" =af' _1 +;F2f’_ :

» we have written simply (0) = f', £°(0) = f”

52

Root finding

* Then we can plug this into the secant approximation to
et . '
J (7 — xg)x1 [[1 + ;1‘.1,;7]

Lnew — Iq ;1_'% - ;’l_',%
(1 —xo) '+ ——1"
—1 1 + 1‘-16% -
— I - 4
_ 1 + (x1 + 0) '2% _

¢

£L10 fN ;
2f'

 To find the convergence, we rewrite Xx_new and x1 in terms
of our convergence relation from above, and define C_F
and alpha :

Thew| = Crla|*, r1| = Cr|xo|® .

53

Root finding

* S0, we do a little algebraic massaging and get :

 The RHS is independent of x1, so we must have

i
h_1-L—0 = a-:1+2‘[’:1.618033988...=1+1.
Y (8%

* |.e. the rate of convergence
Is equal to the golden mean!

* Faster than linear, but not
quite quadratic

» But! Strong assumptions about
behavior of f(x)

54

Root finding

* Finally, Newton-Raphson method (or “tangent” method) is
the fastest we will consider that has the smallest number of
assumptions

» But this time, instead of the secant, we utilize the
derivative (“tangent™)

*langentis : ¢(x) = f(xo) + f'(z0)(x — x0)
* Then we see where the tangent intersects the x axis:

f(xo)
f'(xo)

= T + dx .

Lnew — Lo

55

Root finding

» Similar to secant algorithm :

* Chose x0 near the root
* Check if f(x0) = 0.
—If = 0, fails
—Else continue
« Compute dx, replace x0 by x_new
» Checkif |dx|<e or f(Znew) =0
—If so, accuracy reached
—Else : iterate

56

Root finding

 Two cases here :

—f" Is analytic : rate of convergence is ~quadratic

—f must be computed numerically : rate of convergence is
~secant method

57

* Tangent method is :

If f’ is analytic,
use this

Compute f, f', dx

Make replacements

Iterate until convergence

Root finding

root_tangent (£, fp, x0, accuracy=l.0e-6, max steps=20, root_debug=
NNUD b=t of f(x) with derivative fp = df (x) /dx

. PR " o .
gl1verl initial guess XU, W1t speclriieqd accuracy.

1 1 - 1
Taaa Newtron-Ranhaon
USes NewCOoIl—-RapIllsorn

f0 = £(x0)
fp0 = fp(x0)
fp0 == 0.0:
Ex] df/dx = 0 algorithm fails")
dx = - £0 / £p0
step = 0
root_debug:
root_print header ("Tangent Search", accuracy)
root_print_step(step, x0, dx, £0)
f0 == 0.0:
x0

fp0 = fp(x0)
fpQ == 0.0:

dx = - £0 / £p0
x0 += dx
f0 = £(x0)
(dx) <= accuracy fO0 == 0.0:
x0
step += 1
step > max_steps:
root_max steps("root tangent", max steps)
root_debug:
root_print_step(step, x0, dx, £0)
x0

Application : Cross sections

* You should have encountered cross sections in one of your
classes : A

Number of interactions Cross section

unit time Incident flux

59

Application : Cross sections

* You should have encountered cross sections in one of your
classes :

A 'ﬁ R
=4 4 A
o http://www.jupiterscientific.org/
* sciinfo/crosssection.html
.._)_). — a.—:)._) ?_)._l}» s
* —>» ?_)0% .:}%' *—> 5
JECIy Tr
):.-;—z»_” A = 7R?
+.i)>._c);_}:_)'o_::_)' e:?—)'._)
Number vt
(dimensionless) AV NN
‘\4 « T
9
Number of interactions Cross section
unit time Inmth flux
\ Number/time/area

Time 50

http://www.jupiterscientific.org/sciinfo/crosssection.html
http://www.jupiterscientific.org/sciinfo/crosssection.html

Cross sections

» Happens a lot in physics
—Collision of galaxies
—Particle physics (ubiquitous!)
—Optical scattering

—Etc

61

Cross sections

* Take a simple case :

—Particle of mass “m” scattering from an isotropic central
force field
« Examples : billiard balls, Rutherford scattering

- dV(r).
F=f(rr= ()r.
dr
» Use conservation of linear and angular momenta to solve
the problem

—This occurs in the plane of the scatter (2-d)

62

Cross sections

» Conservation of energy :

E=T+V = %'m (7"2 + 7‘292) + Vi(r)

» Conservation of angular momentum (normal to plane) is:

L. =mrf =mf

L

* Butwe know : . _ dr _ dr df/
dt dfl dt
* SO0 we can get rid of ALL of the time derivatives in the energy
expression!
1 fdu\? 1
E = §'mf2 (@> +u?| + V(1/u) u= =

« Can then integrate this to get the trajectory in parametric form
63

Cross sections

* So we're looking for an equation of the form :

r=r(6)

 Define our axes :

zaxis (©
(out of the board)

64

Cross sections

* Define the “impact parameter” b

Hyperbolic path

Figure 6.14.1 Hyperbolic path (orbit) of a charged particle moving in the inverse-square
repulsive force field of another charged particle.

Fowles and Cassiday, Analytical Mechanics

* By conservation of angular + linear momenta and energy :

| | /
_ L _ L _ |t

mvg /2mkE \/ 2E /m 65

Cross sections

» Can solve the energy formula to get a parametric equation
for r in terms of theta :

dr r? / , b2 V(r)
9 b\ r? E

» At the point of closest approach (PCA) the derivative is
zero, so define this as rmin.

66

Cross sections

* Typically we have experiments with many incident particles
(“beam”)

* Then we can consider a distribution of impact parameters

with density
2mh db :

Vie

» Classically, given E and b, you !
can get the unique scattering d
angle theta 2}

 Example : Lennard-Jones potential
for interactions between pairs of
neutral atoms or molecules 1 l N

o -
—
3 T

p—

ey 12 ray 6
o= [(3)"- ()

* Interesting bit is that more than one b can lead to the same
theta!

67

Cross sections

» Consider a differential of the impact parameter. The
scattering angles will therefore be in the range :

(b, E)
db

0,0 + db] = (b, E).0(b. E) 1

db

» Typically detectors of particles are located “at infinity” (far
away)

- They exist at some angle ., and subtend some physical
space (solid angle d)

* Thus we have :
(Incident particles per unit area per unit time) x Area =27 Z b db

68

Cross sections

* Now, consider the differential scattering cross section :

(6,) = Number detected per unit time - 2mh db b dfl.
O\Ys) = (Incident Intensity) x df? - 2msinf, df, sinf. | db

* Now, since many incident particles are detected in the
same “slice” of the detector, define a deflection angle as
the total number of radians that the position vector rotates
along the trajectory :

T do(t > dr
Ob,E) =0(—00) — / Ldz‘zrr—‘Zb/ ’ :
of — X dt . rnlin ,‘2 \/1 — .li‘:?z_ . ‘ (Fz'}

69

Cross sections

* The scattering angle is related to the deflection angle:

0<0, =40 —2nr <

 And the differential cross section is :

" b |dO|!
) = —
7 (0s) Z sinf. | db

i—1 b=b;

Hey look! A discrete sum!

70

Scattering

» Recall definition of r min :

Hyperbolic path

Figure 6.14.1 Hyperbolic path (orbit) of a charged particle moving in the inverse-square
repulsive force field of another charged particle.

- We have shown : dr re \/1 b2 Vir)

do — b
—RHS is zero at r_min (Yay! It's a root!) 71

Scattering

 Also recall the differential cross section :

d_(f __ Number detected per unit time 2wbdb b | db,
dQ (Incident Intensity) x df - 2mwsinf, df, sinf, | db

* |If we can compute dtheta/db, we can get the scattering
Cross section

 Example : hard sphere

S0, we have

b(0) = Rsina = Rsin (” > 9) — —Rcos(6/2)

* Thus: db R (98>

2

— — S11l

dfs 2

72

Scattering

 Example : Rutherford Scattering : EM scattering of object
with charge g1 off of an object with charge g2

_ kq1qo
r

A\
\\(9:7'('—2?7&0

v

target nucleus

* Look at the change in momentum : Ap=p —p

http://tberg.dk/books/Classical_Mechanics_(Taylor).pdf 3

http://tberg.dk/books/Classical_Mechanics_(Taylor).pdf

Scattering

 We know that |p’| _ \p\

, In the direction
SO we can write of unit vector u!

Ap| = 2psinf/2 /

\ |Ap| =2 psin(6/2)

* We get an isosceles triangle

P

 But, we know from Newton’s second law:
Ap = /FAt

» Since F is in the direction of u, we perform this in one

dimension: 00
Apl= [[Fula

— OO 74

Scattering

* The components of the integral cancel except for the force
in the u direction, so investigating this again:

e Thus:

75

Scattering

* Now use a trick :

. dy
V=
g — W

0

- Can use conservation of angular momentum to solve for 1/

Lo| = [r x p’

target nucleus 76

Scattering
» Solving for the magnitude of Lz :
di) /\

* Tangential velocity is:

d) r
V=Tr—
dt —
* SO
d :
Lo| = mer—?f = mr

* Finally can substitute this into the integral:

=k k d
Ap| :/ e cos Ydt :/ N COS 1 4

r? r? bp/mr?

— O
77

Scattering

« Simplifying :

Yo .

q1gq2m

= cos Ydi
/wo bp

* And doing the integral, we get :

Ap| = cos@/2 and |Ap|=2psinf/2

 \We solve for b:

2k
Ap| = q;qu cos /2 = 2psin /2
P
k
p— ALY cot 6 /2

meZ 78

Scattering

* Can finally put it together and compute scattering cross

section:
d_U _ Number detected per unit time ~ 27bdb b |dé, ~1
dQ (Incident Intensity) x df -~ 2msinf. df. sinf. | db

* In this case :

d_g _< kq1 k2)2
dQ \4Esin®6/2

79

Scattering

* Finally consider the Lennard-Jones potential:

5
Vie
4+

3_

80

Scattering

* How would we go about computing this?
» Of course, we need to do it numerically!
* Or rather : you'll compute it numerically in your homework!

e Let's sketch it out

81

Scattering

e Critical bit is here :

>k k d
\Ap|:/ 4192 cos Y dt =/ 1492 COS ¥

2

e T \ r2 bp/mr?

* We had the force in the integrand, but the factors of r
canceled fortuitously

» Can use another (less fortuitous) trick, though. Limits of
integration were g

 However, this is o
Yo :/ Wt
0

<0
« \We can use the same trick: Yo = w4

'min

82

Scattering

* Rewriting all of this in terms of E, v, and the potential, this
IS our total deflection angle:

(b, E) = 0(—o0) — / PO it = - 20 / —
o —0OC N “ T'min -,‘2 \/1 — % — v

(r)
E

* |n order to plot the differential cross section, we :
—Compute this integral numerically for several b’s
... dO . ,
—Compute the derivative — numerically for those b’s
: db
—We'd then have

do (Incident Intensity) x df ~ 2msind, db, D sinflg | db

83

Scattering

* To do this, we must compute the deflection angle

O(b,E) = 0(—o0) — /* -) t - Zb/ \/
J —0C 1
* Given r_min, we can compute the integral

* Therefore, this is a two-step problem :

—Compute r_min numerically
—Compute integral

84

Scattering

* Our overall plan is thus :
—Set up scattering problem (E, b)
—Find r_min numerically
—Integrate dtheta/dr(b,E) numerically, given r_min

+2 19 (¢ e dr
Ob. E) = O(—oc) _/ %dz‘:ﬂ—%/ M
J —0C v J 'min r‘Z \/1 o f%_ o Vir)

E

85

Scattering

* Our overall plan is thus :
—Set up scattering problem (E, b)
—Find r_min numericall
—Integrate dtheta/dr(b,E)

merically, given r_min

0, B) = 0(—00) ~ [Tt =n

—

86

Scattering

* Our overall plan is thus :
—Set up scattering problem (E, b)
—Find r_min numerically
—Integrate dtheta/dr(b,E) numerjcally, given r_min

dr

e

O(b, E) = 0(—oc) — / dt = 7 — 2b

87

Scattering

* Find r_min numerically :
—Recall :

—r_min is defined by dr/dtheta = 0
—Function is:

dr r

6 b\

—So0, we find the root of this!

38

Scattering

* |Integrate dtheta/dr numerically :
—Find r_min (from previous)
—Initialize to pi
—Integrate over a small “dTheta” with Trapezoid rule
—Add up the dTheta’s to get total

O(b,E) = #(—o0) —./_x at _Zb/ \/1

89

Scattering

* |Integrate dtheta/dr numerically :
—Find r_min (from previous)
—Initialize to pi
—Integrate over a small “d\heta” with Trapezoid rule
—Add up the dTheta’s to getXptal

o B)=0(-o0) ~ [Tt =

90

Scattering

* |Integrate dtheta/dr numerically :
—Find r_min (from previous)
—Initialize to pi
—Integrate over ax¢mall “dTheta” with Trapezoid rule
—Add up the dThetas to get total

2 19 (¢ > dr
Ob.E) = O(—oc) _/ %dt:ﬂ—‘Zb/ '

2 T o
—0OC “ 'min 7“ \/1_ %._ ‘;}
y Ju Y,

91

Scattering

* Integrate dtheta/dr numerically :
—Find r_min (from previous)
—Initialize to pi
—Integrate over a small “"dTheta” with Trapezoid rule
—Add up the dTheta’s to get

20 d0 (1 >
O(b, E) = 0(—oc) _/ %dt:ﬂ—%/

92

Scattering

* |Integrate dtheta/dr numerically :
—Find r_min (from previous)
—Initialize to pi
—Integrate over a small “dTheta” with Trapezoid rule
—Add up the dTheta’s to get total

O(b,E) = 0(—oc) — /*x O 4t = 7 2

, 2 T o
df “ 'min 7‘2 \/1 — %— — Vir)
ra F

93

* As you know, oftentimes in scattering, the potentials are
attractive and the incoming particle can orbit the other

—Gravitational capture
—Electron capture
* \WWe can also investigate orbiting in our example

* We're computing the deflection angle Theta, but if you're
orbiting, this can go completely nuts (somewhat obviously)

94

» Define the effective potential for scattering as the sum of
the actual potential, and the centrifugal potential (from
angular momentum of the incoming particle) :

b 2
Ver(r) = V(1) + E (—)

° Then th'S Iooks Somethlng Ilke + Lennard-Jones Potential Vg =1,ry =1, E= 0.5, Eb® = 1.1
-

r) <+ <l 2
» Orbiting occurs when E : Y e
equals the max of the B e
effective potential _ * E—
— 0+
- -
T -0.5
d, N=""max

.'r - _ -1 ' 1 '

95

Scattering Pseudocode

Integrate dtheta/dr
numerically :

—Initialize to pi
—Find r_min (from
previous)

—Integrate over a small
“dTheta” with Trapezoid
rule

—Add up the dTheta’s to
get total

) =

Define theta step :

dtheta = ~1.0 * asin(b /

To return : list of trajectories
rtheta = [.r_max, pi + dtheta]
traj = [array(rtheta)]

To return : Total deflection
deflection = pi - 2%dtheta

trajectory(

.r_max)

Find the distance of closest approach with the "root simple" method
dr = =-1.0 * .xr_max / 100

r max =
r min = root_simple (

- _Mmax
- f-r_lm‘ 1' r_lnaxl dr)

Integrate to find successive changes in theta :
dr = (r_max - r min) / .steps
accuracy = le-6

i X (.steps) :

r upper = traj([i] [0)

r lower = r upper - dr

itheta = traj[i][1]

dtheta = - .b * adaptive trapezoid(

rtheta[0] -= dr

rtheta[l] += dtheta

traj.append(array(rtheta))

deflection += 2 * dtheta

.dTheta_dr, r lower, r upper, accuracy)

Use symmetry to get the outgoing trajectory points

i , { .steps-1, 0, -1) :
rtheta[0] += dr
dtheta = traj[i] [1] - traj[i-1][1]
rtheta[l] += dtheta

traj.append(array(rtheta))

[deflection, traj)

Scattering Pseudocode

 For each value of b:

» Calculate deflection
angle

* Plot x vs y of scatter

 Be careful about rmax!

—Make sure it makes
sense!

cout << " Classical Scattering from Lennard-Jones potential"
double E = (0.705; // set global value of E
cout << " Energy E = " << B << endl;
double b min = 0.6, db = 0.3;
int n b = 6;
double b = 0.0;
double VO = 1,.0;
cout << " b " &L "\t'" << "Theta(b) \n"

L " mrmmme= L& T\ <K Temmeeee= K<L end];
lennard jones 1j(VO);

(int 1 = 0; 1 < n b; i++) {

ingstream sstream;
<< "trajfile cpp " << 1 << "_.data";
ream file(sstream.str().c_str());

b=Dbmin + i * db;
: svector< : spair<double,double> > trajectory;
double deflection = 0.0;

Theta<lennard jones> theta(1j, B, b,*a.s;[loo);
theta.trajectory(deflection, trajectorPh
szcout << " T <L b <« " " &< deflection << ::endl;
(int 1 = 0; 1 < trajectory.size(); i++) {
double r = trajectory(i].first;
double theta = trajectory([i]).second;
char buff[1000]);
sprintf (buff, "%8.4f %8.4f", r¥*cos(theta), r*sin(theta)):;
file << buff << ::endl;
}
file << ::endl;

file.close();

