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Minimization and maximization

• Many times we’re just interested in the equilibria of 
nonlinear systems : 
–N-body problem in orbits 
–Nonlinear potentials 
–Dynamic behavior far from equilibria 

• A good thing to have in your toolbox is to compute zeroes 
and extrema of functions 
–We’ve already done the roots in one dimension 
–Now we’re ready to start generalizing this to n 

dimensions 
–Also ready to compute extrema (mins and maxes)
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Minimization and maximization

• Minimization versus maximization : what’s the difference? 

• Minimization :  

• Maximization : 
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Minimization and maximization

• Minimization versus maximization : what’s the difference? 

• Minimization :  

• Maximization : 
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Just minimize -1.0 times the function!



Minimization and maximization

• A few wrinkles : global versus local extrema require care! 
–Local extrema :  easy 
–Global extrema : hard
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Global minimum

Local minima



Minimization and maximization

• This is closely related to the problem of finding roots, but 
here we want roots of the derivative! 

• Similar philosophies apply 

• Also : there are two cases :  
–If you have/need the derivative 
–If you don’t
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Minimization and maximization

• First example : Golden Section search 

• Very similar to bisection 
method for finding 
roots! 
–Bracket extremum 

in interval [a,b] 
–Iteratively reduce the 

window until 
the bracketing interval 
is sufficiently small
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Minimization and maximization

• What does it mean to “bracket” an extremum? 

• Pick a,b,c :  

• Choose x
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Minimization and maximization

• What does it mean to “bracket” an extremum? 

• If f(x) < f(b) :
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Minimization and maximization

• What does it mean to “bracket” an extremum? 

• If f(x) < f(b) : 

–Set  
x---> b, 
b---> c
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Minimization and maximization

• What does it mean to “bracket” an extremum? 

• Repeat :
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Minimization and maximization

• What does it mean to “bracket” an extremum? 

• If f(x) > f(b) : 

–Set  
x---> c 

–REPEAT!
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Minimization and maximization

• Putting it together : 
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Minimization and maximization

• What about accuracy? 

• Function near extremum will be 

• We want the second term to be small compared to the first, 
which gives us: 

• If we pick epsilon as the machine precision, then we only 
get as good as sqrt(epsilon), which is a worse precision 
(since epsilon < 1)
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Minimization and maximization

• Need to pick x given a,b,c 
• What to do? 

• Define : 
L = c-a 
w = (c-b)/L 
z = (x-b)/L 

• Then the next  
bracketing  
segment will be  
either : 
w + z   or   1 - w 

• Choose z to make these equal! 15



Minimization and maximization

• Solving for z : 

• Again with the 
golden section! 

• Because of this,  
it’s called the “golden section search”
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Minimization and maximization

• Pick a,b,c 
• Let x = 0.38197* max (c-b, b-a)
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Minimization and maximization

• First : we need to know that we’ve actually chosen a, b, 
and c such that they bracket the minimum 

• Simple strategy :  
–Start with a guess 
–Step “downhill”  

through the function 
–When you come back  

up again, then you have  
a candidate set of a,b,c
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Minimization and maximization

• For the combination, then, we : 

–Guess a1 and b1 
–Step through to get candidate a,b,c that bracket 

extremum 
–Use golden search on a,b,c to get extremum
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Minimization and maximization

• Is this too simple? 
–Can be somewhat intensive, yes 

–Next shot at this is to use parabolic interpolation instead 
of the above strategy 

–Makes sense, we’re looking for something parabola-like 

–But! Assumes the function is parabola-like near your 
extremum and where you’re evaluating things
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Minimization and maximization

• Parabolic interpolation 

–Assume you have a parabola f(x), and points a,b,c 
–Define x as the minimum: 

• This fails if the three points are colinear, so need to make 
sure that isn’t the case! 

• Also doesn’t go so well if the function is not bracketing 

• Need a more robust strategy here, then
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Minimization and maximization
• Brent’s method: 

–Pick bounds (a,b) 
–Find x = minimum of points  

“so far” 
–Let w = second-best minimum  

“so far” 
–Let v = previous value of w 

–Attempt parabolic interpolation between (x,v,w) 
–success = a < x < b,  and “delta x” < 0.5 * “delta 

v” 
• Second bit prevents “bouncing around” 

– if success : parabolic interpolation 
–else : golden section interpolation 
– In the worst case, this alternates (mathematically) 

between parabolic steps and golden sections
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Minimization and maximization
• Brent’s method: 

–Pick bounds (a,b) 
–Find x = minimum of points  

“so far” 
–Let w = second-best minimum  
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–Let v = previous value of w 
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between parabolic steps and golden sections
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Minimization and maximization
• Very heuristically :  

• Bracketing :  
–Iterate “downhill” until you went down and up again 

• Minimization :  
–Use golden section alone, or with Brent’s method to find 

minimum
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Application : Higgs potential!

• What is that thing? 

• Example of a spontaneous symmetry breaking: 
–Bose-Einstein  

condensates 
–Higgs potential 
–Ferromagnet 

• Field starts off at zero 
–Unstable! 

• Decays to the true minimum at some finite value != 0
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Application : Higgs potential!

• Simple 1-d Higgs potential: 

• Let’s find the minima and maxima! 

–Can do some hands on now
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Optimization in multiple dimensions

• Last time we talked about optimization in one dimension 

• Now let’s extend this! 

• We took some shortcuts in 1-d :  
–There’s only one derivative 
–There’s only two kinds of extrema 

• In N-d, these must be relaxed 
–We replace a derivative with a gradient 
–There are three kinds of extrema (max, min, saddle)
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Optimization in multiple dimensions

• NR recommends using the 
Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method 
–http://en.wikipedia.org/wiki/

BFGS_method  
• Approximates Newton’s 

method (“gradient descent”) 
• There are others, but this one 

is pretty robust and also quite 
fast

28

http://en.wikipedia.org/wiki/BFGS_method
http://en.wikipedia.org/wiki/BFGS_method


Optimization in multiple dimensions

• First : Newton’s method in N-dimensions 
• recall : in 1-dim: 

• or :  

• Trivially switching to n-dim “schematically”: 

• The grad matrix is the Hessian: 
–http://en.wikipedia.org/wiki/ 

Hessian_matrix  

• We then have the steepest descent, 
• and can linearly descend in 1-d!
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xnew = x0 � (f 0(x0))
�1f(x0)

xnew = x0 � (rf(x0))
�1f(x0)

http://en.wikipedia.org/wiki/Hessian_matrix
http://en.wikipedia.org/wiki/Hessian_matrix


Optimization in multiple dimensions

• Algorithm :  
–Compute gradient 
–Step along maximum 

gradient to minimum! 

• But! This is intensive. We can do better because we can 
use an iterative approximation (H) to the Hessian matrix 
(A-1) that’s “good enough” 
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• Near the current point, to second order we have: 

• In newton’s method, grad-f = 0 so to get to the next point: 

• Instead of the full Hessian matrix, we use an iterative 
approximation 

• Modify the above at points i+1 and i, take the difference, 
and we get:

Optimization in multiple dimensions
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• If we then assumed H(i+1) were actually A-1, then this 
would be : 

• Let’s construct a formula of the form H(i+1) = H(i) + 
correction, so it would eventually converge to actual 
Hessian matrix 

• Must satisfy the above, and be calculable from what we 
have “on hand”.  

• Candidate:

Optimization in multiple dimensions
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Optimization in multiple dimensions

• Details aren’t so interesting, but this does converge to the 
actual Hessian matrix 

• An updated form of this converges with lower errors 
(BFGS) : 

• where : 
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Optimization in multiple dimensions
• So, this is the basis for our implementation 

–Implemented in C++ 
–Also implemented in scipy 

• Basically :  
–Input function AND gradient 
–Initialize approximate Hessian inverse (hessin) by unit 

matrix, and initial direction to some random value 
–while error is too big :  

• update the line direction using hessin 
• update gradient 
• compute difference in gradient, update hessin 
• calculate big complicated formula 
• continue 

• Other details are not interesting
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Optimization in multiple dimensions

• Strategies for avoiding local minima : 
–First find “coarse” minima with stable algorithm, initialize 

from there, use BFGS to find minima with high precision 
–Compute an ensemble of “pseudo experiments” (or 

“toys”) where the initial value is randomly varied, take 
the ensemble mean (or median) 

–Pick “correct” initial conditions from first principles
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Equilibria and modes of Molecules

• Let’s consider an example of molecules in a regular format 
(lattice-like) 

• For instance,  
salt (sodium chloride) 
http://en.wikipedia.org/ 
wiki/Sodium_chloride  

• Let’s consider examples 
like NaCl, Na2Cl+, 
Na2Cl2, Na3Cl2+
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Equilibria and modes of Molecules
• Potential is : 
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Coulomb 
term

Repulsive term 
to account 

for Pauli exclusion

Numerical “trick” 
to stabilize things at 

low r (negligible at equil.)



Equilibria and modes of Molecules
• Numbers involved : 
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e2

4⇡✏0
= 1.44 eV � nm

↵ = 1.09⇥103eV

⇢ = 0.0321 nm

b = 1 eV, c = 0.01 nm



Equilibria and modes of Molecules

• Further reading : 
– K. Michaelian, "Evolving few-ion clusters of Na and Cl", 

Am. J. Phys. 66, 231 (1998), which uses a genetic 
algorithm to study clusters of  ions.
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http://ajp.aapt.org/resource/1/ajpias/v66/i3/p231_s1


Equilibria and modes of Molecules

• Equilibrium structures are global minima of the potential 
energy: 

• A few cases are shown here :

40http://www-wales.ch.cam.ac.uk/CCD.html
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