
PY410 / 505
Computational Physics 1

Salvatore Rappoccio

1

Minimization and maximization

• Many times we’re just interested in the equilibria of
nonlinear systems :
–N-body problem in orbits
–Nonlinear potentials
–Dynamic behavior far from equilibria

• A good thing to have in your toolbox is to compute zeroes
and extrema of functions
–We’ve already done the roots in one dimension
–Now we’re ready to start generalizing this to n

dimensions
–Also ready to compute extrema (mins and maxes)

2

Minimization and maximization

• Minimization versus maximization : what’s the difference?

• Minimization :

• Maximization :

3

Minimization and maximization

• Minimization versus maximization : what’s the difference?

• Minimization :

• Maximization :

4

Just minimize -1.0 times the function!

Minimization and maximization

• A few wrinkles : global versus local extrema require care!
–Local extrema : easy
–Global extrema : hard

5

Global minimum

Local minima

Minimization and maximization

• This is closely related to the problem of finding roots, but
here we want roots of the derivative!

• Similar philosophies apply

• Also : there are two cases :
–If you have/need the derivative
–If you don’t

6

Minimization and maximization

• First example : Golden Section search

• Very similar to bisection
method for finding
roots!
–Bracket extremum

in interval [a,b]
–Iteratively reduce the

window until
the bracketing interval
is sufficiently small

7

a b

Minimization and maximization

• What does it mean to “bracket” an extremum?

• Pick a,b,c :

• Choose x

8

Minimization and maximization

• What does it mean to “bracket” an extremum?

• If f(x) < f(b) :

9

Minimization and maximization

• What does it mean to “bracket” an extremum?

• If f(x) < f(b) :

–Set
x---> b,
b---> c

10

Minimization and maximization

• What does it mean to “bracket” an extremum?

• Repeat :

11

Minimization and maximization

• What does it mean to “bracket” an extremum?

• If f(x) > f(b) :

–Set
x---> c

–REPEAT!
12

Minimization and maximization

• Putting it together :

13

Minimization and maximization

• What about accuracy?

• Function near extremum will be

• We want the second term to be small compared to the first,
which gives us:

• If we pick epsilon as the machine precision, then we only
get as good as sqrt(epsilon), which is a worse precision
(since epsilon < 1)

14

Minimization and maximization

• Need to pick x given a,b,c
• What to do?

• Define :
L = c-a
w = (c-b)/L
z = (x-b)/L

• Then the next
bracketing
segment will be
either :
w + z or 1 - w

• Choose z to make these equal! 15

Minimization and maximization

• Solving for z :

• Again with the
golden section!

• Because of this,
it’s called the “golden section search”

16

Minimization and maximization

• Pick a,b,c
• Let x = 0.38197* max (c-b, b-a)

17

Minimization and maximization

• First : we need to know that we’ve actually chosen a, b,
and c such that they bracket the minimum

• Simple strategy :
–Start with a guess
–Step “downhill”

through the function
–When you come back

up again, then you have
a candidate set of a,b,c

18

Minimization and maximization

• For the combination, then, we :

–Guess a1 and b1
–Step through to get candidate a,b,c that bracket

extremum
–Use golden search on a,b,c to get extremum

19

Minimization and maximization

• Is this too simple?
–Can be somewhat intensive, yes

–Next shot at this is to use parabolic interpolation instead
of the above strategy

–Makes sense, we’re looking for something parabola-like

–But! Assumes the function is parabola-like near your
extremum and where you’re evaluating things

20

Minimization and maximization

• Parabolic interpolation

–Assume you have a parabola f(x), and points a,b,c
–Define x as the minimum:

• This fails if the three points are colinear, so need to make
sure that isn’t the case!

• Also doesn’t go so well if the function is not bracketing

• Need a more robust strategy here, then
21

Minimization and maximization
• Brent’s method:

–Pick bounds (a,b)
–Find x = minimum of points

“so far”
–Let w = second-best minimum

“so far”
–Let v = previous value of w

–Attempt parabolic interpolation between (x,v,w)
–success = a < x < b, and “delta x” < 0.5 * “delta

v”
• Second bit prevents “bouncing around”

– if success : parabolic interpolation
–else : golden section interpolation
– In the worst case, this alternates (mathematically)

between parabolic steps and golden sections
22

Minimization and maximization
• Brent’s method:

–Pick bounds (a,b)
–Find x = minimum of points

“so far”
–Let w = second-best minimum

“so far”
–Let v = previous value of w

–Attempt parabolic interpolation between (x,v,w)
–success = a < x < b, and “delta x” < 0.5 * “delta

v”
• Second bit prevents “bouncing around”

– if success : parabolic interpolation
–else : golden section interpolation
– In the worst case, this alternates (mathematically)

between parabolic steps and golden sections
23

Minimization and maximization
• Very heuristically :

• Bracketing :
–Iterate “downhill” until you went down and up again

• Minimization :
–Use golden section alone, or with Brent’s method to find

minimum

24

Application : Higgs potential!

• What is that thing?

• Example of a spontaneous symmetry breaking:
–Bose-Einstein

condensates
–Higgs potential
–Ferromagnet

• Field starts off at zero
–Unstable!

• Decays to the true minimum at some finite value != 0

25

Application : Higgs potential!

• Simple 1-d Higgs potential:

• Let’s find the minima and maxima!

–Can do some hands on now

26

Optimization in multiple dimensions

• Last time we talked about optimization in one dimension

• Now let’s extend this!

• We took some shortcuts in 1-d :
–There’s only one derivative
–There’s only two kinds of extrema

• In N-d, these must be relaxed
–We replace a derivative with a gradient
–There are three kinds of extrema (max, min, saddle)

27

Optimization in multiple dimensions

• NR recommends using the
Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method
–http://en.wikipedia.org/wiki/

BFGS_method
• Approximates Newton’s

method (“gradient descent”)
• There are others, but this one

is pretty robust and also quite
fast

28

http://en.wikipedia.org/wiki/BFGS_method
http://en.wikipedia.org/wiki/BFGS_method

Optimization in multiple dimensions

• First : Newton’s method in N-dimensions
• recall : in 1-dim:

• or :

• Trivially switching to n-dim “schematically”:

• The grad matrix is the Hessian:
–http://en.wikipedia.org/wiki/

Hessian_matrix

• We then have the steepest descent,
• and can linearly descend in 1-d!

29

xnew = x0 � (f 0(x0))
�1f(x0)

xnew = x0 � (rf(x0))
�1f(x0)

http://en.wikipedia.org/wiki/Hessian_matrix
http://en.wikipedia.org/wiki/Hessian_matrix

Optimization in multiple dimensions

• Algorithm :
–Compute gradient
–Step along maximum

gradient to minimum!

• But! This is intensive. We can do better because we can
use an iterative approximation (H) to the Hessian matrix
(A-1) that’s “good enough”

30

• Near the current point, to second order we have:

• In newton’s method, grad-f = 0 so to get to the next point:

• Instead of the full Hessian matrix, we use an iterative
approximation

• Modify the above at points i+1 and i, take the difference,
and we get:

Optimization in multiple dimensions

31

• If we then assumed H(i+1) were actually A-1, then this
would be :

• Let’s construct a formula of the form H(i+1) = H(i) +
correction, so it would eventually converge to actual
Hessian matrix

• Must satisfy the above, and be calculable from what we
have “on hand”.

• Candidate:

Optimization in multiple dimensions

32
Outer product (a matrix)

Optimization in multiple dimensions

• Details aren’t so interesting, but this does converge to the
actual Hessian matrix

• An updated form of this converges with lower errors
(BFGS) :

• where :

33

Optimization in multiple dimensions
• So, this is the basis for our implementation

–Implemented in C++
–Also implemented in scipy

• Basically :
–Input function AND gradient
–Initialize approximate Hessian inverse (hessin) by unit

matrix, and initial direction to some random value
–while error is too big :

• update the line direction using hessin
• update gradient
• compute difference in gradient, update hessin
• calculate big complicated formula
• continue

• Other details are not interesting
34

Optimization in multiple dimensions

• Strategies for avoiding local minima :
–First find “coarse” minima with stable algorithm, initialize

from there, use BFGS to find minima with high precision
–Compute an ensemble of “pseudo experiments” (or

“toys”) where the initial value is randomly varied, take
the ensemble mean (or median)

–Pick “correct” initial conditions from first principles

35

Equilibria and modes of Molecules

• Let’s consider an example of molecules in a regular format
(lattice-like)

• For instance,
salt (sodium chloride)
http://en.wikipedia.org/
wiki/Sodium_chloride

• Let’s consider examples
like NaCl, Na2Cl+,
Na2Cl2, Na3Cl2+

36

http://en.wikipedia.org/wiki/Sodium_chloride
http://en.wikipedia.org/wiki/Sodium_chloride

Equilibria and modes of Molecules
• Potential is :

37

Coulomb
term

Repulsive term
to account

for Pauli exclusion

Numerical “trick”
to stabilize things at

low r (negligible at equil.)

Equilibria and modes of Molecules
• Numbers involved :

38

e2

4⇡✏0
= 1.44 eV � nm

↵ = 1.09⇥103eV

⇢ = 0.0321 nm

b = 1 eV, c = 0.01 nm

Equilibria and modes of Molecules

• Further reading :
– K. Michaelian, "Evolving few-ion clusters of Na and Cl",

Am. J. Phys. 66, 231 (1998), which uses a genetic
algorithm to study clusters of ions.

39

http://ajp.aapt.org/resource/1/ajpias/v66/i3/p231_s1

Equilibria and modes of Molecules

• Equilibrium structures are global minima of the potential
energy:

• A few cases are shown here :

40http://www-wales.ch.cam.ac.uk/CCD.html

http://www-wales.ch.cam.ac.uk/CCD.html

