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Partial Differential Equations

• Start looking at PDE’s 
–http://en.wikipedia.org/wiki/

Partial_differential_equation   
• Just like ODE’s, only harder! (Kidding) 

• You should be familiar with the mathematics of PDE’s 
–Poisson equation 
–Diffusion equation 
–Wave equation 

• The general strategy is to look at finite derivatives (just 
like we did in ODE’s), but now we have to look in 
multiple dimensions at once!
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Partial Differential Equations

• First example : Elliptic PDEs 

• Given an electric charge distribution rho(r), Poisson’s 
equation is :  

• This determines the potential V(r) at each point r, 
provided boundary values are specified 
–Dirichlet : V(r) specified on boundary 
–Neumann : normal component               specified on 

boundary 
• For electrostatics, this specifies normal component of E-field in 

a conductor 
–Periodic : V(r) = V(r + dr) for some dr 3



Partial Differential Equations

• Why “elliptic”? 
• Consider 2-d and let 

• Then :  

• The kx, ky values in k-space of a given eigenvalue satisfy 

• This is (of course) a circle, which is an ellipse 

• We’ll continue this “conic section” terminology, as you 
probably have done in your other courses
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Partial Differential Equations

• Second case : parabolic PDEs 

• Given a source S(r,t) and a diffusion coefficient D(r), the 
diffusion equation is :  

• This determines the concentration “n” in a closed space 
–Now need both initial conditions (t=t0) AND boundary 

conditions (Dirichlet, Neumann, periodic)
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Partial Differential Equations

• Why “parabolic” ? 
• Consider one spatial dimension, and a constant D, with 

• The differential operator on the LHS has the eigenvalue 

• which is a parabola in omega-k space
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Partial Differential Equations

• The time-dependent Schroedinger equation is also a 
parabolic PDE :  

• This can be viewed as a diffusion equation with 
imaginary diffusion constant                     , or 
mathematically as a diffusion equation in imaginary time 
with real diffusion constant 
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Partial Differential Equations

• Third case : hyperbolic PDE’s 
• The wave equation is : 

• this is hyperbolic because the eigenvalues of the 
differential operator  are :  

• These are hyperboloid surfaces in omega-k space 

• Again need initial conditions (t=t0) and boundary 
conditions (Dirichlet, Neumann, Periodic)
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Elliptic PDES
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Partial Differential Equations

• Let’s first take a look at the solution to the elliptic 
equation for Poisson’s equation (solving Gauss’s law for 
electrostatics) 

• We have Gauss’s law :  

• The static electric field can be written as :  

• And V(r) satisfies Poisson’s equation:
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Partial Differential Equations

• Now, we need to discretize the entire space 

• Consider a 2-d space and discretize in 10x10 blocks:
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Partial Differential Equations

• The 2-d Poisson’s equation is :  

• Let’s work in units with epsilon_0 = 1, and solve in the 
region of a square with length A=1.0 

• The grid is : 

• The lattice spacing is h = 1/(L+1) 
• Let  

• Now we need to discretize this
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Partial Differential Equations
• The discretization is to look at an equivalent of Euler’s 

formula, but now we have to do it in two dimensions: 

• Note the following :  
–The lattice is only connected  

to its four nearest neighbors 
–We will define “odd” and “even”  

sites depending on whether i+j  
is odd or even (red/black) 

–The boundaries are indicated  
with open circles
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Partial Differential Equations
• First attempt : Jacobi’s iterative method 
• Suppose we have a solution of the discretized equation 
• At each lattice site : 

• If we knew the RHS, then we could compute the LHS 
• But, the RHS pieces all have their own equations similar 

to this one! 
• They all need to be solved simultaneously 
• Instead of that, we try for a guess at each point, and 

then iteratively solve : 
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Partial Differential Equations

• This should remind you a bit of the relaxation method for 
our ODE’s 
–We guess, then iterate until our boundary is solved 

and the equations are satisfied at the points 
• But, all we know for sure are the boundary points 

• Can instead iterate until our solution stops changing very 
much 

• Usually “relaxes” to the right solution, but there are of 
course pathologies that can occur
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Partial Differential Equations

• Next example : use the Gauss-Seidel method 
• This is almost the same as the Jacobi method, but uses 

the updated neighbor sites  
–Remember the red/black? Red only talks to black, and 

vice versa 
• Then we have :  

• This converges faster than the Jacobi method
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Partial Differential Equations

• Finally, consider the Successive Over-Relaxation (SOR) 
method 

• Jacobi and Gauss-Seidel do not use V_ij at the same 
lattice point in updating V_ij 

• If we use a linear combination of the old and new 
solutions, we can get better convergence :  

• Omega is called the “over-relaxation” parameter 
–Can be tuned for performance

17



Partial Differential Equations

• A few notes :  
–Converges only if 0 < omega < 2 
–Faster than Gauss-Seidel only if 1 < omega < 2 
–It converges fastest on a square lattice if 

• Here, L is the number of lattice points

18



Partial Differential Equations

• For our strategy, we will use the red/black splitting to 
solve the equations faster : 
–First update the even sites, then update the odd sites 
–Can use the SOR method (or the others) with faster 

convergence in this case 

• In Numerical Recipes 19.5, the iterations required to 
reduce the overall error by a factor of 10-p for Laplace’s 
equation is : 
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Partial Differential Equations

• To solve for the convergence rates, let’s look at the 
Poisson equation again: 

• In matrix form, this is :  

• Can break A into lower triangular, diagonal and upper 
triangular bits : 
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Partial Differential Equations

• Then, at each step, the Jacobi iteration is 

• The matrix :  

• This is the “iteration matrix”, and the magnitude of the 
largest eigenvalue is the “spectral radius” for the 
relaxation problem
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Partial Differential Equations

• Spectral radius “    ” should satisfy :  
–0 <     < 1 for the method to be stable 
–depends on the boundary conditions and the lattice 

spacing 
–approaches 1.0 as the number of lattice points 

increases 

• For LxL square lattice with Dirichlet boundary 
conditions :
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Partial Differential Equations

• How to derive spectral radius          ? 
• Let’s just do it in 1-d  
• The 1-d Laplace equation is  : 

• This can be discretized as : 

• The Jacobi iteration is :  

• With Dirichlet BC’s V(0)=V(L+1)=0, we see the 
eigenvectors are:
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Partial Differential Equations

• Eigenvalues are determined by plugging in: 

• The spectral radius is given by the largest eigenvalue: 

• Similar analysis in 2-D gets the Numerical Recipes 
version for 2D :
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Partial Differential Equations

• How many iterations does it take for the solution to be 
damped by a factor of 10-p? 

• Determined by the spectral radius! 

• Jacobi method is not very efficient! 
• If L = 1000, then n = 1M to improve to 1% of current 

value
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Partial Differential Equations

• Gauss-Seidel does a little better 

• Iteration matrix is  

• Then the spectral radius for the LxL Dirichlet lattice is : 

• Only about twice as fast as Jacobi!
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Partial Differential Equations

• What about SOR? 

• Much better here, we have :  

• So, if L=1000, need only n=667 iterations to improve to 
1% of current value
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Partial Differential Equations

• What about computational complexity? 

• Jacobi and Gauss-Seidel update all interior lattice points 
per iteration 

• So, for LxL 2-D lattice, we would have 

• For SOR, we would have  

• Neither of these are wonderful for very large L
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Partial Differential Equations

• Can also use spectral analysis to solve our PDE’s, just like 
you do in your math classes 

• Here, “spectral analysis” is the FFT.  
–In 1D:  

• Then we express f and rho in terms of their Fourier 
transforms : 

• This is diagonalized in k-space :  

• The solution is then the inverse FFT: 

• Two problems : 1. boundary conditions, 2. singularity at k=0
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Partial Differential Equations

• Boundary conditions dictate the type of Fourier transform 
you want to use 
–Sometimes sine transforms are best, sometimes 

cosine, sometimes exponential 
• Consider 1-D lattice 0 < x < L with N points 

• The complex FFT coefficients of f(x) are 

• The inverse will be periodic in xn with period L: 

• So, if periodic conditions : use the complex FFT
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Partial Differential Equations

• For Dirichlet conditions f(0) = f(L) = 0, then sine Fourier 
transform is best: 

• For Neumann conditions use cosine Fourier transform: 

• Note : These are not just the real and imaginary parts of 
the complex exponential transform! 
–Sine, Cosine, and exp(ikx) are all complete sets with 

different boundary conditions 
–Sine/Cosine are real, so also require 2x as many 
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Partial Differential Equations

• Let’s go back to Poisson’s equation in 2d: 

• Let’s take an NxN grid in region 0 < x,y < 1 
• Presume there is a point charge at the center 
• Impose periodic BCs so we use the exponential FFT 

• Since the FFT is linear, we can do it separately in the x 
and y directions, and it doesn’t matter which order!
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Partial Differential Equations

• The 2-D FFT coefficients are 

• The inverse transforms are : 

• So, if we plug these into our discretized equation and 
equating coefficients of                  we get :  

• IFFT gives the  
potential!

33



Partial Differential Equations
• In some sense, this is even easier than relaxation 

methods 
• Take FFT of rows of rho 
• Take FFT of columns of rho 

• Solve equation in Fourier  
domain 

• Take IFFT of rows of rho 
• Take IFFT of columns of rho
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Partial Differential Equations

• Since PDE’s are done in higher dimensions, it is 
oftentimes beneficial to use “multigrid methods” 

• General gist : start at a coarse scale, get close to the 
answer, then go to a finer scale 
–Similar to adaptive RK4 in philosophy 

• For this, need an estimate of the error at each stage 

• Described in Chapter 19 Section 6 of Numerical Recipes

35



Partial Differential Equations

• So let’s again consider Poisson’s equation in 2 D: 

• Again let’s impose this on a grid with units 0-1 and 
impose Dirichlet boundary conditions 

• As before, the solution obeys : 
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Partial Differential Equations

• Then here is where things get different 
• This uses a succession of     lattices / grids 
• This is the “multigrid”! 

• Here’s the trick : define the interior lattice points as a 
power of 2 so that :  

• Thus the lattice spacing is 

• There are then sequentially coarser lattices with number 
of interior points as :
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Partial Differential Equations

• Now to compute the error, we define the solution at any 
stage in the calculation as 

• Also define the exact solution 
• The correction is 

• The “residual” or “defect” is defined as 

• The correction and the residual are related by : 

• So interestingly, this has the same form as Poisson’s 
equation with v as the function u, and r being a known 
source function! 38



Partial Differential Equations

• Now define the “Simple V-Cycle Algorithm” 
• Define two grids (coarse and fine) with points: 

• Need to move from one grid to another 
• Given any function on the lattice, we need to : 

–restrict the function from fine to coarse 
–interpolate the function from coarse to fine
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Partial Differential Equations
• If we have those, the multigrid V-cycle can be defined recursively : 

–If           , there is only one interior point, so solve exactly: 

–Otherwise, calculate current  
–Perform pre-smoothing iterations with a local algorithm (Gauss-

Seidel, etc). This will damp out the short wavelength errors in 
the solution 

–Estimate correction                                  as : 
• Compute residual 

• Restrict residual r-> R to the coarser grid 
• Set the coarser grid correction V = 0 and improve it recursively 
• Prolongate the correction V-> v onto the finer grid 

–Correct u -> u + v 
–Perform post-smoothing Gauss-Seidel iterations and return 

improved u
40



Partial Differential Equations

• Is this worth it? What’s the scaling with L? 

• Recall that Jacobi / Gauss-Seidel iterations are the most 
time-consuming parts of the calculation. 
–Single step:  

• Now this gets performed on the sequence of grids with : 

• So the total number is of order: 

• So in this, the TOTAL is                       !!!! 41



Partial Differential Equations

• Details of restricting residual to coarser lattice: 
• Define the coarser lattice H = 2h 
• Set the value to the average of the values on the four 

corners:
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Partial Differential Equations

• Details to prolong the correction to the finer lattice : 
• Need to solve the equation 

• In the code this will be called “twoGrid” 
• Then we copy the value of V(I,J) into the four 

neighboring points on the finer lattice v(i,j) :
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Partial Differential Equations

• Two possibilities :  
–Cell centered :  

–Grid centered :  

• Note : grid-centered needs to one more poit in each dimension 
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Partial Differential Equations

• The boundary points are specified as follows :  

–Cell-centered : Boundary points move in space toward 
the center of the region at each coarsening (so care 
must be taken here) 

–Vertex-centered : Boundary points do not move when 
lattice is coarsened 

• A little more convenient to use vertex-centered
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Partial Differential Equations
• What about restriction (fine->coarse) and prolongation 

(coarse->fine) operations? 
• Cell-centered :  

–Prolongation : Set the values on the  
fine to the value from the coarse 

–Restriction : Average fine points to get  
coarse points 

• Vertex-centered :  
–Prolongation : use bilinear interpolation 

at which value at F at a coarse grid  
point is copied to 9 neighboring 
fine-grid points with weights :  

–Restriction : Adjoint of the 
prolongation
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Partial Differential Equations

• Improvements are to use more than one cycle 
–Repeat the two-grid iteration more than once 
–Full multigrid starts with coarses grid, then proceeds to 

finer grids 

–Numerical Recipes Chapter 19 Section 6 goes over 
this 

–Can look into them at your leisure

47



Parabolic PDES
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Partial Differential Equations

• Let’s now turn to parabolic differential equations 
–Includes diffusion and time-dependent Schroedinger 

equation 

–Formal solution is: 

–where H is the hermitian Hamiltonian operator
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Partial Differential Equations

• Two separate strategies: 
–“Marching” in time  

• Similar to ODE technology, but now must account for derivatives in 
spatial dimension too! 

–Spectral analysis 
• Just like in your classes, we can also solve the PDE in the Fourier 

domain, and it is often more convenient

50
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Partial Differential Equations

• First: Marching
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Partial Differential Equations

• The time-evolution is unitary, so the total probability is 
conserved : 

• Diffusion equations, on the other hand, are NOT unitary 

• This leads to the characteristic damping 
• Schroedinger’s equation is mathematically equivalent to 

diffusion with an imaginary diffusion constant (or a real 
one, in imaginary time):
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Partial Differential Equations

• We will look at a free particle as an instructive case: 

• where the momentum is 
• Of course, the plane wave is not localized in space 

–Probability is not =1 over all space, so not a “real” 
particle solution 

• Can instead construct a Gaussian state: 

–But, this is stationary :
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Partial Differential Equations

• To get this to move, multiply by a phase factor: 

• then we have: 

• Expectation value of the energy is: 

• This is close to the classical result if the packet isn’t too 
narrow 54



Partial Differential Equations

• Our wavepacket is : 

• Moves to the right with speed hbar k0 / m 
• Psi is approximated on a lattice by an N-component 

complex vector 
• If potential is a function of space alone, can precompute 

the quantity 

• which can be used to speed up computational times
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Partial Differential Equations

• Also examine finite difference methods 
• Start with a forward time-centered scheme (FTCS) : 

–Discretized equation :  

–This can be solved explicitly for the solution at the next 
time step :  

–If we introduce the column  
vector of values : 

–Then the equation is  
(in matrix form):
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Partial Differential Equations

• Problem with this simplest scheme : always unstable 
• For instance, for an eigenvector we have: 

• Then we’d compute: 

• The magnitude of this is : 

• Boooooo. 
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Partial Differential Equations

• What about backward time space centered (BTCS) implicit 
differencing?  

• Can’t be solved exactly.  
• Three unknown quantities on the LHS of 

• If we solve all N equations at the same time, we get a 
matrix form: 

• with steps : 
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Partial Differential Equations

• This one, on the other hand, is “stable”, but still wrong: 

• Magnitude will be :  

• No probability conservation, still booooo.
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Partial Differential Equations

• Symmetric time space centered (STCS) differencing does 
the trick (Crank-Nicolson): 

• Matrix solution :  

–This is unitary : 

–And conserves probability 
at each step : 
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Partial Differential Equations

• As you’d naively guess, this is also more accurate than the 
forward and backward only versions (by an order of 
magnitude) 

• To show explicitly, write the exact evolution operator for 
one time step: 

• Here, we have 

• Backward scheme :  

• Crank-Nicolson  
scheme: 
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Partial Differential Equations

• We have the Schroedinger equation : 

• Solved using Crank-Nicolson algorithm :  

• And this is basically a matrix inversion problem! 
• Is it tractable?  

–Incidentally, yes! It’s a sparse matrix!
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Partial Differential Equations

• For instance, impose Dirichlet BC’s , and we get : 

• if N=5 then we get :
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• Imposing periodic BC’s we get: 

• if N=5 then we get :

Partial Differential Equations
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Partial Differential Equations

• So both of these are tridiagonal, so we can use our Matrix 
Methods from earlier in the semester to solve this very 
quickly 

• Explicitly :  
–Note that 

–where :  

–So, we solve the linear equation: 

–We get an intermediate “chi”, which we can use to solve:

65



Partial Differential Equations

• Second : spectral analysis
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Partial Differential Equations

• To solve this ‘exactly’, can look at the exact solution in the 
Fourier domain (and keep in mind that we’re going to do 
the FFT later) 

• Write the S.E. as  

• Here, T is a differential operator and V is a multiplicative 
operator in position space 

• In Fourier domain :  

• then we’d have:
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Partial Differential Equations

• Here, the kinetic operator T is multiplicative, while the 
potential operator V is a convolution 
–So, this is an integral equation in the Fourier domain 

• Formal solution : 

• Where : 

• T and V do not commute here, so exponential is not 
amenable to numerical evaluation
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Partial Differential Equations

• To make the discrete time approximation, we use a small 
time step delta t :  

• In this case, T and V can be disentangled (linear 
approximation ===> they commute) 

• Can use Baker-Campell-Hausdorff formula :  
–http://en.wikipedia.org/wiki/Baker-Campbell-

Hausdorff_formula  
–This states that :  

–if and only if : 
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Partial Differential Equations

• Commutator is :  

• So, the simplest factorization has an error of            : 

• The symmetric factorization, however, has an error          : 

–In addition, this is unitary so preserves the normalization 
of the wavefunction
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Partial Differential Equations

• Split the time evolution operator into a symmetric 
factorization 

• Evolve by :  
–Multiply by first half-step : 

(diagonal in position space) 

–Fourier transform to p-space : 

–Multiply by kinetic evolution 
(diagonal in momentum space) 

–Fourier transform back to x-space : 

–Multiply by the second half step  
evolution operator 
(diagonal in position space) 71



Hyperbolic PDES
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Partial differential equations

• We now turn to the final chapter in our investigation of 
PDE’s : hyperbolic waves 

• This class covers a wide range of physical phenomena :  
–Light waves 
–Sound waves 
–Water waves 
–etc 

• The wave equation is
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Wave speed Hyperbolic (+dt^2 - dx^2)

Source term



Partial differential equations

• There is a unique solution if 
–the initial values of           and                     are 

specified 
–the boundary values are specified on a closed region 

• So examine the 1-d equation with no source term: 

• This factorizes into simpler first-order equations:
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Partial differential equations

• Solutions to this equation are given by a superposition of 
left- and right-moving waves: 

• Here, g and f are determined from initial conditions
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Partial differential equations

• Examine one of the equations (“right-moving” one): 

• The analytical solution here is : 

• where f0(x) is the initial condition at t=0 
• This basically means the initial shape simply propagates 

with a velocity c 
–This is called “advection” 

• Contrast with cases where the wave shape depends on 
position 
–This is “convection” (hot fluid rising, colder fluid 

sinking, for instance) 76



Partial differential equations

• In the advective case, the flux is conserved: 

• Here, u(x,t) is a vector of functions, and the vector F is 
the conserved flux of u 

• Now, suppose that u(x,t) is the density at point x and 
time t 

• Total amount (mass) of fluid in a boundary is: 

• The rate of change of fluid in the region is:
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Partial differential equations
• This should remind you of your vector calculus (Stoke’s 

theorem, etc) 
–http://en.wikipedia.org/wiki/Flux 
–http://en.wikipedia.org/wiki/Stokes'_theorem 
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Partial differential equations

• In 1-d, should be clear how we may discretize this 
• Again can try the forward time-centered solution as we did 

last lecture (generalized Euler’s method!) 

• So we try the FTCS : 

• The spatial derivative was approximated by a symmetric 
difference : 

• As we saw last class, the  
“bare bones” Euler-step-like  
solution is unconditionally  
unstable 

• If                   : modes amplified by: 79



Partial differential equations

• Instead, try the “Lax” method: 

• The mode amplification factor in this case is: 

• If we choose                       then flux is exactly conserved 

• Any other choice of delta t will make this either decay or 
grow without bound 80



Partial differential equations

• This is the Courant-Freidrichs-Lewy condition: 

• Consider the domain of dependency  
• For any differencing scheme, the domain consists of the 

set of points in the “past cone” 
• If the differencing domain is wider in x than the domain 

of dependency, then this is stable 
• If the differencing domain is narrower, then unstable
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Partial differential equations

• Can also add terms of order         in the discretization 
• Using                             then we get: 

• This is the “Lax-Wendroff” method 
• The stability is the same CFL condition as before in the Lax 

method 
• Note that the added term is a discretized diffusive term 

• General feature : diffusive terms in recurrence formulae 
have damping effects on the amplitude 82



Partial differential equations
• Can also consider nonlinear wave equations 

–Don’t preserve shape in general 
–Linear wave equation has linear dispersion! 

• Dispersion is the relation between wave number and 
frequency.  
–Plane wave :  

• Here, all the modes move with the same velocity c 
• Wave velocity is omega / k 

• What if the velocity depends on the wave number? 
–Example: 

–Plugging in                     (plane wave), we get a 
dispersion:

83
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Partial differential equations

• Now let’s go back to advection equation  and add a 
diffusive term 

• From plane wave, we get the dispersion relation:
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Partial differential equations

• Some nonlinear equations can have traveling waves 
• Example is Burgers’ equation: 

–http://en.wikipedia.org/wiki/Burgers'_equation  

• The last term is nonlinear in the wave amplitude 
• Can solve by calculating partial derivatives: 

• This is solved if we have a right-moving wave with 
function: 

• This wave moves with velocity 85
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Partial differential equations

• Here, the velocity depends on the density of the wave! 
• This leads to breaking and shock fronts:
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Partial differential equations

• The Burgers’ equation was introduced in 1948 as a simple 
model of shock propagation 

• First, set nu = 0 and we get 

• Compare to the linear wave equation: 

• Schematically the speed is equal to “u”! 
• Peaks travel faster than troughs in the wave 
• Eventually we get breaking, which we cannot represent as a 

function since it is multi-valued 
• Passes through a shock front (solution is discontinuous) 87
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Partial differential equations
• This kind of PDE was studied by Godunov in 1959 

• This is a class of “Riemann problem” 
– IVP for a PDE which has a piecewise constant initial value 

function, with a discontinuity (like a step function) 
• Need to find an exact or approximate algorithm for this 

– called a “Riemann solver” 

• Here,             is the average flux on the cells to the left and 
right of the lattice point j, respectively 

• Solve these from Riemann problems in the cells to the right 
and left of j using “upwind” initial data:
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S.K. Godunov, Mat. Sb. 47, 271 (1959)



Partial differential equations

• The solution in the left cell is :  

• and on the right it is : 
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