PY410 / 505
Computational Physics 1

Salvatore Rappoccio

Partial Differential Equations

» Start looking at PDE's

—http://en.wikipedia.org/wiki/
Partial_differential_equation

* Just like ODE's, only harder! (Kidding)

* You should be familiar with the mathematics of PDE'’s
—Poisson equation
—Diffusion equation
—Wave equation

* The general strategy is to look at finite derivatives (just
like we did in ODE's), but now we have to look in
multiple dimensions at once!

http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Partial_differential_equation

Partial Differential Equations

* First example : Elliptic PDEs

* Given an electric charge distribution rho(r), Poisson’s
equation is :

v = BV PV BV)

2 2) z2 €0

* This determines the potential V(r) at each pointr,
provided boundary values are specified

—Dirichlet : V(r) specified on boundary

—Neumann : normal component n - VYV specified on
boundary

* For electrostatics, this specifies normal component of E-field in
a conductor

—Periodic : V(r) = V(r + dr) for some dr 3

Partial Differential Equations

* Why “elliptic™?
 Consider 2-d and let

V(x,y) ~

(ni.kl- r+ikyy

 Then:
UV (a,y) = (2 +)V (z,y)

* The kx, ky values in k-space of a given eigenvalue satisfy

(k2 + kg) = constant

 This is (of course) a circle, which is an ellipse

* We'll continue this “conic section” terminology, as you
probably have done in your other courses

Partial Differential Equations

» Second case : parabolic PDEs

» Given a source S(r,t) and a diffusion coefficient D(r), the
diffusion equation is :

on(r,t)
ot

* This determines the concentration “n” in a closed space

—Now need both initial conditions (t=t0) AND boundary
conditions (Dirichlet, Neumann, periodic)

V- (D(r)Vn(r,t)) = S(r,t)

Partial Differential Equations

* Why “parabolic” ?
» Consider one spatial dimension, and a constant D, with

n(x,t) ~ e~ wittikz

* The differential operator on the LHS has the eigenvalue

.
—w + DEk* = constant

* which is a parabola in omega-k space

Partial Differential Equations

* The time-dependent Schroedinger equation is also a
parabolic PDE :

M (r,t h? _,
'z'h(,(l) _ ., 2 ViV (r, t)+ Vir)¥(r,t) = H¥Y(r, 1)
ot 2m

* This can be viewed as a diffusion equation with
imaginary diffusion constant D = ih/(2m), or
mathematically as a diffusion equation in imaginary time
with real diffusion constant) — h/(2m)

Partial Differential Equations

* Third case : hyperbolic PDE's
* The wave equation is :
1 0%u(r,t)
cz Ot?
* this Is hyperbolic because the eigenvalues of the
differential operator are :

| 2
— —w” + k® = constant
Ca—i

Vu(r,t) = R(r,t)

* These are hyperboloid surfaces in omega-k space

* Again need initial conditions (t=t0) and boundary
conditions (Dirichlet, Neumann, Periodic)

Elliptic PDES

Partial Differential Equations

 Let’s first take a look at the solution to the elliptic
equation for Poisson’s equation (solving Gauss’s law for
electrostatics)

* We have Gauss’s law V. E = pla,y, z) |
€0

 The static electric field can be written as :

E=-VV,

* And V(r) satisfies Poisson’s equation:

vz‘v _ (()2 | ()2 | ()2) v p(;l‘.! U, ;T.)

dx?2 Jy? 0z

10

Partial Differential Equations

* Now, we need to discretize the entire space

» Consider a 2-d space and discretize in 10x10 blocks:

9 O O OO0 0 0 0 O
L= 8 O ® @ ® @ ® ¢ ® 0 O
70 @ ®© @ 0 0 0 O
6 O ® @ ® @ ® 0 ® 0 O
5 0@ 0 0 0 0 O
+ O ® @ ® ¢ ® & » 0 O
O @ ® @ ® @ ® @ » O
2 0O ® @ ® 0 ® 0 & 0 O
I O @ ® @ ® @ & 0 & O

j= 0 O OO0 0O0O0O0O0O0
= 0 1 2 3 4 5 6 7 8 9

11

Partial Differential Equations

* The 2-d Poisson’s equation is :

0* 0* i
(|) Viz,y) = —plx,y) ,

dr? = Jy?

» Let’'s work in units with epsilon_0 = 1, and solve in the
region of a square with length A=1.0

 The grid is :

r;=1th, 1=0,1,...L,L+1, yj=gh, 37=0,1,...L,L+1.
* The lattice spacing is h = 1/(L+1)
o et

* Now we need to discretize this

12

Partial Differential Equations

* The discretization is to look at an equivalent of Euler’s
formula, but now we have to do it in two dimensions:

0? 0%\ . 1 i i i i
(i);r.'z T i)y'z) """(T-a-.yj) = %) ["’"i+1.j + ""'ef—l.j +""eﬂ.j+1 T ""'z.j—l — 4""'i.j]
— i) 00000000
L= 8 O ® @ ® @ ® ¢ ® ¢ O
» Note the following : 7 00 ® 00000 00
—The lattice is only connected 5006660606000
to its four nearest neighbors e eesReeeo
_ L)) , + O e 0 0000 00
—We will deflng odd” and even 0 060606666 6 O
sites dependingonwhetheri+] ., 0 e 0o e @ ¢ @ @ @ O
IS odd or even (red/black) Il O e ®0®® 000 0O
—The boundaries are indicated /= © © © 0 0 00 OO
i= 0] 2 3 4 5 6 7 h 9

with open circles

13

Partial Differential Equations

* First attempt . Jacobi’s iterative method
* Suppose we have a solution of the discretized equation
» At each lattice site :

r 1 r r r r .
Vii= 1 ["‘"@4,1.}' +Vicrj + Vi + Vi + thi.j] :
* [f we knew the RHS, then we could compute the LHS

» But, the RHS pieces all have their own equations similar
to this one!

* They all need to be solved simultaneously

* Instead of that, we try for a guess at each point, and
then iteratively solve :

mn 1 T T T ‘
1--"’5.;“1:1[1-(“) Vit i+ Vi + Vi +h° p,J], n=20,12,...

14

Partial Differential Equations

* This should remind you a bit of the relaxation method for
our ODE’s

—We guess, then iterate until our boundary is solved
and the equations are satisfied at the points

 But, all we know for sure are the boundary points

» Can instead iterate until our solution stops changing very
much

» Usually “relaxes” to the right solution, but there are of
course pathologies that can occur

15

Partial Differential Equations

* Next example : use the Gauss-Seidel method

* This is almost the same as the Jacobi method, but uses
the updated neighbor sites

—Remember the red/black? Red only talks to black, and
vice versa

* Then we have :

|

n+l __ & [n sn+1 n sn+1 2]
‘ L. o 4 ‘ t+1.7 T ‘ t—1.79 T ‘ t, 74+ 1 T ‘ ., 7—1 T h p‘--]

» This converges faster than the Jacobi method

16

Partial Differential Equations

* Finally, consider the Successive Over-Relaxation (SOR)
method

» Jacobi and Gauss-Seidel do not use V_|j at the same
lattice point in updating V_j

* |f we use a linear combination of the old and new
solutions, we can get better convergence

l. ‘

".,.’;_7.1;_1 = (1 - W‘)‘:ﬂj + % [‘ i+1,] + V tn-+l_lj +V sz—+—1 +V 1n-+-11 T h'zpﬁj]

* Omega is called the “over-relaxation” parameter
—Can be tuned for performance

17

Partial Differential Equations

» A few notes :
—Converges only if 0 < omega < 2
—Faster than Gauss-Seidel only if 1 < omega < 2

—It converges fastest on a square lattice if
2

C— b
1 N

L
* Here, L is the number of lattice points

W

18

Partial Differential Equations

* For our strategy, we will use the red/black splitting to
solve the equations faster :

—First update the even sites, then update the odd sites

—Can use the SOR method (or the others) with faster
convergence In this case

* [n Numerical Recipes 19.5, the iterations required to
reduce the overall error by a factor of 10-p for Laplace’s

equanonls
1pL? for Jacobi’s method
roe 4 1 ~pL? for the Gauss-Seidel method
pr for SOR with w ~2/(1 +7/L)

ot
o

3,7
1,

| ut
ot O

50
50

oy P O [
Wi= X X
X W W
w X X

by

8
()

X
() | b
O

(fiiameam) 19

Partial Differential Equations

 To solve for the convergence rates, let's look at the
Poisson equation again:

2V 92V 1

| ()yZ €0 P

O

e |In matrix form, this is :

RN

Discrete VZ Charge density
Po |

oIsson
operator

» Can break A into lower triangular, diagonal and upper
triangular bits :

A=L+D+ U,

20

Partial Differential Equations

* Then, at each step, the Jacobi iteration is

Dx") = —(L + U)x“”‘” +b .
x"=_-D HL+U)x""Y4+D'b.
* The matrix :
~-D ' (L + U)

* This is the “iteration matrix”, and the magnitude of the
largest eigenvalue is the “spectral radius” for the
relaxation problem

21

Partial Differential Equations

« Spectral radius “Fs” should satisfy :
—0 <ps < 1 for the method to be stable

—depends on the boundary conditions and the lattice
spacing

—approaches 1.0 as the number of lattice points
Increases

* For LxL square lattice with Dirichlet boundary
conditions :

ps == 1

22

Partial Differential Equations

* How to derive spectral radius ps ?
* Let's justdoitin 1-d
* The 1-d Laplace equation is :

A2V)
dx? '
 This can be discretized as :
x=0 x=h x = ih x =Lh
O @ » ® ® n & ® & O
Vz 11 T Ve —1 — 2 Ve —0
h? '

1 1 R R
‘l +1 — E (""i%—l -+ ""i—l) .

» With Dirichlet BC's V(0)=V(L+1)=0, we see the

: : ‘ ki
eigenvectors are:) _ . (Lﬂ+'1) k=12 L

 The Jacobi iteration is :

L

23

Partial Differential Equations

* Eigenvalues are determined by plugging In:
1 1. [mk(z4+1 o (Tmk(i—=1)\]
§(uf:’1+uf"’l):§ sm(£+1))+sm(L(I+1)>

— COS T 'll(-'k'}
S \L+1/) "

* The spectral radius is given by the largest eigenvalue:

T T4
Ps — COS ~] 37 2 (for large L)
L+1 2172 J

» Similar analysis in 2-D gets the Numerical Recipes

version for 2™ 5
hy COS (Ll) + h? cos (Ly 1)
Ps =

h? + h.;}

24

Partial Differential Equations

 How many iterations does it take for the solution to be
damped by a factor of 10-p?

» Determined by the spectral radius!

¢ /.
—p _ n o pln 10 ~ 2pL~1n 10 ~ 1 2
10 Ps = n CTnp) = 5 ~ 21)[, .

» Jacobi method is not very efficient!

 [f L =1000, then n = 1M to improve to 1% of current
value

25

Partial Differential Equations

e Gauss-Seidel does a little better
e [teration matrix is

—(L+D)'U,

* Then the spectral radius for the LxL Dirichlet lattice is :

o

T | R
ps ~1— — = n o pL* .

bo

* Only about twice as fast as Jacob!

26

Partial Differential Equations

 What about SOR?

 Much better here, we have :

ne =~ 1 2; = n o~ % pL .

* S0, If L=1000, need only n=667 iterations to improve to
1% of current value

27

Partial Differential Equations

* What about computational complexity?

» Jacobi and Gauss-Seidel update all interior lattice points
per iteration

» So, for LxL 2-D lattice, we would have O(L*)

+ For SOR, we would have (O(L3?)

* Neither of these are wonderful for very large L

28

Partial Differential Equations

» Can also use spectral analysis to solve our PDE’s, just like
you do in your math classes

* Here, speotra'l analysis” is the FFT.
~In 1D: (2" _ o(2) .
2

* Then we express t and rho in terms of their Fourier

transforms :
x) 'A'dlx T / 'A'dlx .
J(z) = Jz? / pl2) m
* This is diagonalized in k-space :
~k*g(k) = o(k) = g(k) = —OA(.Q‘) :
 The solution is then the inverse FFT:
T) = zA €T dl\
fl@)=-—= 7

» Two problems : 1. boundary conditions, 2. singularity at k=0)

Partial Differential Equations

* Boundary conditions dictate the type of Fourier transform
you want to use

—Sometimes sine transforms are best, sometimes
cosine, sometimes exponential

» Consider 1-D lattice 0 < x < L with N points
r, =nL/Nn=20,..., N—1
* The complex FFT coefficients of f(x) are

N—1
1 r ko . 2im/N
gr = E W fo . W = 2™/ N

rn=>_0
* The inverse will be periodic in xn with period L.:

N-—-1
1
f = W gy
v N ; "

* So, if periodic conditions : use the complex FFT ”

Partial Differential Equations

* For Dirichlet conditions f(0) = f(L) = O, then sine Fourier
transform is best:

AV E ()

« For Neumann conditions use cosine Fourier transform:

fn = \/—[(104- Q\]*’\/izcos(mz'l‘)(lk

* Note : These are not just the real and imaginary parts of
the complex exponential transform!

—3ine, Cosine, and exp(ikx) are all complete sets with
different boundary conditions

—3Sine/Cosine are real, so also require 2x as many
points

31

Partial Differential Equations

 Let’'s go back to Poisson’s equation in 2d:

0° 0 Viz,y)
oz " oyz) Y

 Let's take an NxN grid in region 0 < x,y < 1
* Presume there is a point charge at the center
* Impose periodic BCs so we use the exponential FFT

» Since the FFT is linear, we can do it separately in the x
and y directions, and it doesn’t matter which order!

32

Partial Differential Equations

 The 2-D FFT coefficients are

1 N—1N-—1 1 N—1 N-1
""'rm = ?)) ‘:_‘:,rmj-+-nk“,rj.k ’ ﬁm.n — T)) “:,‘:.-’nl‘] -+-nA,pj‘k -
T j=0 k=0 j=0 k=0
* The inverse transforms are :
N—1N-1 N—1N-1
y‘ y‘ W —Im- A”‘ m.n s Pik — y‘ y‘ W e Anpm n -
m=0 n=0 m=0 n=0

» SO, If we plug these into our discretized equation and
equating coefficients oW -7 we get :

1 I‘ " + I‘ - + I‘ h ‘|‘ I‘ = 4 ‘:;rm.n — _ﬁm.n '
h2

o -
* [FFT gives the 1/ = , h; Pm,n , ,
potential! A -4 —Wm _W-—m _ Wn _ W ;371

Partial Differential Equations

* |[n some sense, this is even easier than relaxation
methods

 Take FFT of rows of rho

» Take FFT of columns of rho e
~ 1~ /)771.71

"'lm n o d —Wm —W-m _ }n _ J}/—n

Solve equation in Fourier space
V = ¢cpt.Matrix(N, N)
W = cmath.exp(1.03 * 2 * math.pi / N)

» Solve equation in Fourier ey
domain " -

n (N) 3

denom = 4.0 - Wm - 1 / Wm - Wn - 1 / Wn
(denom) != 0.0:
V[m] [n] = rho[m] [n] * h**2 / denom
Wn %= W
Wm %= W

 Take IFFT of rows of rho

 Take IFFT of columns of rho y

Partial Differential Equations

» Since PDE’s are done in higher dimensions, it is
oftentimes beneficial to use "multigrid methods”

» General gist : start at a coarse scale, get close to the
answer, then go to a finer scale

—Similar to adaptive RK4 in philosophy
 For this, need an estimate of the error at each stage

» Described in Chapter 19 Section 6 of Numerical Recipes

35

Partial Differential Equations

* So let's again consider Poisson’s equation in 2 D:

J*u | d*u e y)
ox2 ' Qy2 Bkt
» Again let’'s impose this on a grid with units 0-1 and
impose Dirichlet boundary conditions

* As before, the solution obeys :

1

2
Ui ; — 1 [ui+1.j T Uij—1,5 T Ui jr1 T Ui j—1 T h fi..j] -

36

Partial Differential Equations

* Then here is where things get different
» This uses a succession of ¢ lattices / grids
* This is the "multigrid”

» Here’s the trick : define the interior lattice points as a
power of 2 so that :

L=2+2

* Thus the lattice spacing is

h=1/(L—1)
* There are then sequentially coarser lattices with number
of interior points as :

gt=1 _yot=2 _, 59V =1

37

Partial Differential Equations

* Now to compute the error, we define the solution at any
stage in the calculation as u(x, y)

» Also define the exact solution Uayact (T, Y)
* The correction is

U = Uexact — U
 The “residual” or “defect’ is defined as

r=Vu+ f.

* The correction and the residual are related by

Vv = [Vzucmct + f] — [Vz'u. + f] = —r.

» So interestingly, this has the same form as Poisson’s
equation with v as the function u, and r being a known
source function! 38

Partial Differential Equations

* Now define the “Simple V-Cycle Algorithm”
» Define two grids (coarse and fine) with points:

L=2+2 L=2t142

* Need to move from one grid to another

» Given any function on the lattice, we need to :
—restrict the function from fine to coarse
—Interpolate the function from coarse to fine

39

Partial Differential Equations

* |f we have those, the multigrid V-cycle can be defined recursively :
-¢ = () , there is only one interior point, so solve exactly:

uy,1 = (uo,1 +ug1 +ur o+ ur 2+ /?-2f1.1)/4 :
—Otherwise, calculate current [, = 2¢ + 2
—Perform pre-smoothing iterations with a local algorithm (Gauss-

Seidel, etc). This will damp out the short wavelength errors in
the solution

—Estimate correctio; — ¢4 — 71 as:
_ exact
« Compute residual

1 .
i, — Iz_z ['U-i,+1.j T Ui—1,5 T Ui j41 T Ui j—1 — 4'll-i..j] + fi..j -
 Restrict residual r-> R to the coarser grid
» Set the coarser grid correction V = 0 and improve it recursively
* Prolongate the correction V-> v onto the finer grid

—Correctu->u+v
—Perform post-smoothing Gauss-Seidel iterations and return

Improved u
40

Partial Differential Equations

* |s this worth it? What's the scaling with L"?

» Recall that Jacobi / Gauss-Seidel iterations are the most
time-consuming parts of the calculation.

-Single step: (J(L*?)

* Now this gets performed on the sequence of grids with :
ot 4 2t-1 4962 5 920=1

* So the total number IS of order:

L’ ZZ)N gL~ 1

n=—>U

+ So in this, the TOTAL is (’)(L“) ! .

Partial Differential Equations

» Details of restricting residual to coarser lattice:
» Define the coarser lattice H = 2h
» Set the value to the average of the values on the four

COrners. e s e e e .
000 .O. oo. .O.
0, 0, . ©,
.0, .0, 0,
.0, .0, .0, o,
1 S S
Ry = 1 ["‘;..j T+ Tit1,5 T Tij4+1 T 'I‘e+1.j+1] 1 =21-1,] = 2J —1.

42

Partial Differential Equations

 Details to prolong the correction to the finer lattice :
* Need to solve the equation

VV = —R(x,y) .

* In the code this will be called “twoGrid”

* Then we copy the value of V(l,J) into the four
neighboring points on the finer lattice v(i,)) :

Vij = Vig1,j = Vij41 = Vipr,j1=V9g, 1=21-1,73=2J-1.

43

Partial Differential Equations

* Two possibilities :

—Grid centered :2°+1=9—-2?+1=5-2"+1=3.

(3}0@0@0@0{? O—e @ ~ @ . 3D,
"0+ 04

DD e@+ @+ ® R S S S

T T I

He@De@eDe® ® ¢ ® o @ . * .
>+ 06 ¢ 040+ 9

@o@o@o@o@ S S —

4040 +0+4¢

@o@o@o@o@ & —eo O . ©) ® . @

* Note : grid-centered needs to one more poit in each dimensior),

Partial Differential Equations

* The boundary points are specified as follows :

—Cell-centered : Boundary points move in space toward
the center of the region at each coarsening (so care
must be taken here)

—Vertex-centered : Boundary points do not move when
lattice Is coarsened

e A little more convenient to use vertex-centered

45

Partial Differential Equations

* What about restriction (fine->coarse) and prolongation
(coarse->fine) operations?

e Cell-centered :

—Prolongation : Set the values on the
fine to the value from the coarse

—Restriction : Average fine points to get
coarse points

* Vertex-centered :

—Prolongation : use bilinear interpolation ‘ @ ‘
at which value at F at a coarse grid
point is copied to 9 neighboring
fine-grid points with weights :

|

1
| bt

—Restriction : Adjoint of the
prolongation

I LI

Wy
o
OO0 |l | b bt DD [t e B | bt

o . [X -)
clo—a«“jlo—tolo— e [O [y o
L

46

Partial Differential Equations

* [mprovements are to use more than one cycle
—Repeat the two-grid iteration more than once

—Full multigrid starts with coarses grid, then proceeds to
finer grids

—Numerical Recipes Chapter 19 Section 6 goes over
this

—Can look into them at your leisure

47

Parabolic PDES

48

Partial Differential Equations

* Let's now turn to parabolic differential equations
—Includes diffusion and time-dependent Schroedinger

equation
. h? 0?2
th—u(x. 1) = —- — + Vix)w .
ot (@) 2m dx? (@)
—Formal solution is:
¥ h? 0%
Wlr. 1) = ?_-’THt';f? T H = : L Viix) =- I
W(x, t) =€ (e, 0) H 5 I Vix)="H'",

—where H is the hermitian Hamiltonian operator

49

Partial Differential Equations

* Two separate strategies:
—"Marching” in time

« Similar to ODE technology, but now must account for derivatives in
spatial dimension too!

—Spectral analysis

 Just like in your classes, we can also solve the PDE in the Fourier
domain, and it is often more convenient

Will examine both solutions

50

Partial Differential Equations

* First: Marching

51

Partial Differential Equations

* The time-evolution is unitary, so the total probabillity is
conserved :

i\ T i\ 1 | . | .
(f’._’ﬁm> = (e—ﬁm) , /|’1;..'(I.f)|2d;1‘.: /|1,.'(;1‘..O)|2d1

* Diffusion equations, on the other hand, are NOT unitary

%, 02

(Tn(1) =

T2 n(x,t)+ Cn(x,t) .

* This leads to the characteristic damping

» Schroedinger’s equation is mathematically equivalent to
diffusion with an imaginary diffusion constant (or a real
one, in imaginary time): o h o920 1

Viix)w .
d(t) ~ 2m o2 h (@) .

Partial Differential Equations

* We will look at a free particle as an instructive case:

» where the momentum is p= +v2mE
* Of course, the plane wave is not localized in space

—Probability is not =1 over all space, so not a “real”
particle solution

 Can instead construct a Gaussian state:

1
' 1 q Y [PRy 2 / > 2
@(I) — (2 € (x—x0)" /(207)
nma=

—But, this is stationary :

. h d
{ — M M H* £z ———— ' €Tr) = .
\1)> /;) da @ (1) (1 dl‘) (D(l) U -

>

Partial Differential Equations

* To get this to move, multiply by a phase factor:
V() = o(x)e™™
» then we have:
(1| pl) = /) dr ¢*(x)e *F* (ﬁi> e* ()
J_ . t dx

>

= / dx [hk|o(x)|? — iho(x)d (x)]

>

» Expectation value of the energy is:

1)2 — hz ,112 | 1
lomlY/ T am \Y T2)

* This is close to the classical result if the packet isn’t too
narrow 54

Partial Differential Equations

* Our wavepacket s :

|
'l"’:".(;r'-. O) — (\/ 1) ! Gi‘k[] T — T ::.'7:' 'IlQ
' 2ma?

* Moves to the right with speed hbar kO / m

* Psi is approximated on a lattice by an N-component
complex vector

* |f potential is a function of space alone, can precompute

th fit ras/ON & 17683
e quantity —l-\/[&.}(.\t) fZ}l)

-

* which can be used to speed up computational times

55

Partial Differential Equations

* Also examine finite difference methods
» Start with a forward time-centered scheme (FTCS) :
—Discretized equation :

41 a2 T 2 LLn [\) P
. — UW. < W (10 — 20"
1h—2 = h” 1 J+1 T g—1 21 J 4 V.ahm
AL - ‘ ~ | 1% 7
Oy 2m 52 I

_This can be solved explicitly for the solution at the next
time step :

2 2 a,m L s
gl _ gm0t | AT Vi TV 2Y; VT
o " h 2m 52 A
'l';'i..‘;'
('l,":-’.g \

—If we introduce the column v =
vector of values : vy

—Then the equation is |)
q \1,71.+1 — (I tH) ‘I’n -

(in matrix form): h 56

Partial Differential Equations

* Problem with this simplest scheme : always unstable
* For instance, for an eigenvector we have:

HY' = E9'

* Then we'd compute:

. = ' o 2 r o n
\II'H'I — (o I();E) P — (1 . IO;E> \I,n—l — (1 . IO;E> \Ill !
l l l

* The magnitude of this is :
(SQE'Z n
“I"H'll — (\/1 : t]_.)) }\I’I‘ — O, as n — o0 .
;2

* Bo0o0000.

57

Partial Differential Equations

* What about backward time space centered (BTCS) implicit

differencing?
2+l oin 2 afm+1 4+l o rntl
> W O S P o 21" Uy
v ~ . - I 1Y% 4
04 2m 62 U

» Can't be solved exactly.

- o _n+1 41 a..n+1
. _+_ 1 I()t h.... l‘zlf' _+_ 1 + l'xlf . — 2 l‘xl-" o
'U,.-‘ - | —I'_ T 4 - . xll-". - | ' ‘:'". a2 | .
. h 2m 02 7T J

* If we solve all N equations at the same time, we get a

matrix form: 10
at O (I + %H) ‘Iln,-+-1 — \Iln !

iy \
e with steps: ¥"*' = (I | ht H) P

58

Partial Differential Equations

* This one, on the other hand, is “stable”, but still wrong:

i, B\ ! i, E\ °
1 } ‘I’n — 1 : \Il”'_l
(1+25) o= (14525
?(StE o 1
o= 114 |
(1+57)
* Magnitude will be :

TR —1
’\Il”'“’“l‘: (\/1 | o1 &) ‘\Ill‘ — 0, as n— x.

\Iln-:-1

h‘.?

* No probability conservation, still booooo.

59

Partial Differential Equations

« Symmetric time space centered (STCS) differencing does
the trick (Crank-Nicolson):

0
\I,n.+1 \Iln o I—tH ‘I,n. \Iln-J,-l .
o HL (0" +)
* Matrix solution: gn+1 _ I+ﬂH - I idtH o
2h 2h
—This is unitary : ——— - ’\1,1
T | L iE '-
" 2R

—And conserves probabillity

at each step
‘\Iln.+1’ — ’\I]l‘

60

Partial Differential Equations

* As you'd naively guess, this is also more accurate than the
forward and backward only versions (by an order of
magnitude)

* To show explicitly, write the exact evolution operator for
one time step:

. 22 23
— L HS —_ ' '
¢ n)t = € =1-z | > G |
» Here, we have z = (O(4d;)
1 2 3

« Backward scheme : 7

+
+
1 2 | z z2 23 2
: - — 57 — - o - c e 1 — -,—-)
* Crank-Nicolson 1+ : (1 2) (1 0TI TR T) (2
scheme: 2,3

Partial Differential Equations

* We have the Schroedinger equation :

0 h? 0?
h—v(x,t) = ———v + Vix)y.
I 2f.)t V(@) 2m dx? l’ (@)

» Solved using Crank-Nicolson algorithm :

\I’n+1 — [T4 I(StH - I I(StH K
B - 92h 2h ‘

* And this is basically a matrix inversion problem!
* Is it tractable?
—Incidentally, yes! It's a sparse matrix!

62

Partial Differential Equations

* For instance, impose Dirichlet BC's , and we get :

P\ 1 frE T,
(01‘2> =S U -2, for 1< <N
' j z | Yr_ — 20% , for 9 = N
» if N=5 then we get : —2 1' 0 0 0
12 1 -2 1 0 0
Hpirichiet = S 0 1 -2 1 0
=0 0 1 =2 1
0 0 0 1 =2
Vi 0 0 0 0
0o Vo 0 0 0
+1 0 0 Vg 0 0
0 0 0 V, 0
0 0 0 0 V;

63

Partial Differential Equations

* Imposing periodic BC's we get'

9245\ ™ i 1’\’ + 3 21 , for 7 =1
T (T . AT
(3), =5 { ¥t 257, 1< <)
|] S ..\?' U =2¢%, for =N
* if N=5 then we get : /_Q 1 0 0 1
e [1 -2 1 0 0
Hperiodic = — 553 0 1 -2 1 0
it () () 1 -2 1
\1 0 0 1 -2
/1—“’1 () 0 0 ()
0 Vo 0 0 ()
+ 0o 0 V; 0 ()
0 0 0 V; 0
\ 0 0 0 0 V;

64

Partial Differential Equations

» S0 both of these are tridiagonal, so we can use our Matrix
Methods from earlier in the semester to solve this very

quickly
» Explicitly : 1
_ Weer) (1_ Yt — o-t
Note that (I-|- 2hH> (I 2hH> =Q I.
1 / 20
—where : _ = e
Q=3 (” 2hH)

—3S0, we solve the linear equation:
Q\ — \I,n ! Y = Q—l \I,n ’

—We get an intermediate “chi”, which we can use to solve:
\I/n+1 =y — \Il” -

65

Partial Differential Equations

» Second : spectral analysis

66

Partial Differential Equations

* To solve this ‘exactly’, can look at the exact solution in the
Fourier domain (and keep in mind that we're going to do
the FFT later)

* Write the S.E. as
L ov(x,t) h? 0%y(x,t) it -
h ot 2m O02x% Viz)p(z,t) = (T + V)P, i)
* Here, T is a differential operator and V is a multiplicative
operator in position space

* |n Fourier domain :
U(p, t) =

 then we’d have:

_Ou(p, t) p* - 1 > ~ ~
ih = ——(p,t) - dq V(p—q)i(q.t) .
= 5V (pst) \/H/_x ¢ Vip—qvigt)

dr e PPz, t) |

1 >
¥ 27Th /—x

67

Partial Differential Equations

* Here, the kinetic operator T is multiplicative, while the
potential operator V is a convolution

—30, this is an integral equation in the Fourier domain
* Formal solution :

'1.1‘:"'(111--, f) _ e—i[_T—«L—V} (t—tp)/h 'l,;':-’(;l‘.., t()) |

* Where :

e'=1+ A- 1AA | ,;’AAA-}»---

T and V do not commute here, so exponential is not
amenable to numerical evaluation

68

Partial Differential Equations

* To make the discrete time approximation, we use a small
time step delta t :

) (f 1+ 4,) — ot T +V)oe /fh ‘l,;':-’(;l‘.., f.)

* |In this case, T and V can be disentangled (linear
approximation ===> they commute)

« Can use Baker-Campell-Hausdorff formula :

—http://en.wikipedia.org/wiki/Baker-Campbell-
Hausdorff formula

_This states that : €~--\ (f’.B _ (E’.C

N T
—if and only if : C:A-}-b—l——[A,b]-}----

69

http://en.wikipedia.org/wiki/Baker-Campbell-Hausdorff_formula
http://en.wikipedia.org/wiki/Baker-Campbell-Hausdorff_formula

Partial Differential Equations

e Commutatoris:

R2 [d? h2 h2, d

T V] = ‘ Vix)| = T Sa :
7.V 2m | da? a (l) 2m () m |)d.;r. 7

» So, the simplest factorization has an error of O(4?):

6—&(_'7’-4—1/‘_)0} /h ~ e—i'Tdt,.-"'he—ivd’t /h |

« The symmetric factorization, however, has an error O(4}):

o~ U T+V)o¢/h o —iV8:/(2h) ,—iT 8¢ /h ,—iV5¢/(2h)

—In addition, this is unitary so preserves the normalization
of the wavefunction

70

Partial Differential Equations

» Split the time evolution operator into a symmetric
factorization

» Evolve by :

—Multiply by first half-step : w(x,t) — v (z) = e V@ CRyz 1)
(diagonal in position space)

—Fourier transform to p-space : ¥:(p) = v 3 e=ir/hy ()

—Multiply by kinetic evolution
(diagonal in momentum space)

~ ~ - 2 < pfe -y T
Uy (1)) s 1y (1)) — P 0t/(2mh) oy (1)) .

—Fourier transform back to x-space : () = 1 / da ey (p)

V2rh]

—Multiply by the second half step
evolution operator S\ —iV(@)de /(2R) (.
(diagonal in position space) (@, t+0:) =€ l“"‘?q(‘l') '

Hyperbolic PDES

72

Partial differential equations

* We now turn to the final chapter in our investigation of
PDE's : hyperbolic waves

* This class covers a wide range of physical phenomena

—Light waves
—Sound waves
—Water waves
—etc
* The wave equation is Source term
1 d?u(r, t) i

VZu(r,t) = R(r,t) .

2 Jt2
/ \

Wave speed Hyperbolic (+dt*2 - dx2)

73

Partial differential equations

* There Is a unique solution if

—the initial values of u(r, ty)and du(r, t)/0t|;—., are
specified

—the boundary values are specified on a closed region

» SO0 examine the 1-d equation with no source term:

0% u 5 0%u
é ‘ — (‘ - é ‘ b
t2 Ox?

* This factorizes into simpler first-order equations:

A AV
oz~ “oxz \ot "z) \ot ‘oz)

74

Partial differential equations

» Solutions to this equation are given by a superposition of
left- and right-moving waves:

u(x,t) = glex +ct) + f(x — ct) .

0)))
(i - c(—) g(x+ct) =0, (‘— + c(—) fla—ct)=0,

ot Ox Jt Ox

* Here, g and f are determined from initial conditions

75

Partial differential equations

» Examine one of the equations (“right-moving” one):

— C

ou(x, 1) Ju(x, 1)
ot dr

* The analytical solution here is :
u(z, t) = folx — ct) ,

» where fO(x) is the initial condition at t=0

* This basically means the initial shape simply propagates
with a velocity c

—This is called “advection”

» Contrast with cases where the wave shape depends on
position

—This Is “convection” (hot fluid rising, colder fluid
sinking, for instance) 76

Partial differential equations

* In the advective case, the flux is conserved:
oui OF(i)
ot dr
* Here, u(x,t) is a vector of functions, and the vector F is
the conserved flux of u

* Now, suppose that u(x,t) is the density at point x and
time t

» Total amount (mass) of fluid in a boundary is:
M(t) = / u(x, t)dr .
- The rate of change of fitid in the region is:

d d [*F T Ou(x, t)
—M(t) = — ulxz. t)dr = — dx
i W= g /L i@, t) 2 /L ot

Jxr dx -

_ /.:‘R HF('U-(;T., IL)) d.;l‘- — F('ll-(;lfjJ, f)) . F('ll-(;lf]‘g., f)) ’

Partial differential equations

 This should remind you of your vector calculus (Stoke’s
theorem, etc)

—http://en.wikipedia.org/wiki/Flux
—http://en.wikipedia.org/wiki/Stokes' theorem

dS = ndS

dScosU}
{
dSsin#
-dS
dS

= [-(dScos#) dScos#

/8

http://en.wikipedia.org/wiki/Flux
http://en.wikipedia.org/wiki/Stokes'_theorem

Partial differential equations

* In 1-d, should be clear how we may discretize this

* Again can try the forward time-centered solution as we did
last lecture (generalized Euler’'s method!)

co
n+l _ _.n L (n T
wiT =g = e (ufyy —uf_q) .
* So we try the FTCS .
co
n+1l _ n t (n M)
uj lu ¥ % l 41 U i—1
-
 The spatial derivative was approximated by a symmetric
y
difference : % R ¢
du(x,t) U;q —Uuj_y
dx 20,
 As we saw last class, the
“bare bones” Euler-step-like _
solution is unconditionally pikide _ % (Cmmml _Ceku—ml)

unstable -
n tkjoz - c — (1 ,'C()t S tkjdy — 1k joy
o If u} ~ €™ modes amplified by: = | 1 — 15— sin(kd,) | ™% = Lo

£

Partial differential equations

* Instead, try the “Lax” method:

1 co
n41 (n n st T) n
i . — — U + .) (U-,- — U .) .
~ ¢ 7+1 7—1 O < 7+1 7—1
J 2 20,

* The mode amplification factor in this case is:

1

s - co
[— _ ﬁ(‘;\'(.‘l- ’1—(';“()1 t
S — 9 (C. + €)

_ (ei.kdl. B e—z.k(sl.) |
2();‘1_'.

2
[€]? = cos?(kd,) + (—‘) sin?(kd,) .

£

« If we choose 0; = 0., / ¢ then flux is exactly conserved

* Any other choice of delta t will make this either decay or
grow without bound 80

Partial differential equations

* This is the Cou:)ant-Freidrichs-Lewy condition:
CO¢

— <1

(5 — (CFL number)
T

» Consider the domain of dependency

* For any differencing scheme, the domain consists of the
set of points in the “past cone”

* |f the differencing domain is wider in X than the domain
of dependency, then this is stable

* |[f the differencing domain is narrower, then unstable

O o O O
!
A

® ® * ®

® ®© o o O
®e & o o O
® & & &0
® © o o O

Y @ ¢ o o O

CFL Unstable 81

Partial differential equations

» Can also add terms of order d7 in the discretization
* Using du/dt = —cou/0x then we get:

OJu 07 0*u

u(x, t +6;) = ul(x, t 0 — —
u(x,t + 0;) = u(z, t) + “ ot + 2 0t?

+ ...

Ou %67 9%u
~u(x, t) — cdy— +

ox 2 Ox?
~ =D
o ceo”
n+l _ _.n L (n n t n a..n
ut = — 2 (u, — U 4 4 u — 2u.-) .
- 7 O C 7+1 7 — 1) 2 (J+1 7
J 20, 20

* This is the “Lax-Wendroff’” method

* The stability is the same CFL condition as before in the Lax
method

 Note that the added term is a discretized diffusive term
on(x,t) d*n(x,t) Dé;

. n+1 n n ¢ n
(— D _ nlf 5 (n;,q+ni_ 1—271.1-') .
ot Ja? | 03
 General feature : diffusive terms in recurrence formulae

have damping effects on the amplitude 82

Partial differential equations

» Can also consider nonlinear wave equations
—Don’'t preserve shape in general
—Linear wave equation has linear dispersion!

* Dispersion is the relation between wave number and
frequency.

—Plane wave : u(z,t) ~e" Y = (—iw —dck)(—iw + ick) = 0
= w=xck.

* Here, all the modes move with the same velocity c
« Wave velocity is omega / k

* What if the velocity depends on the wave number?

—Example: Ju(x, t) Ju(x,t) d*u(x, t)
,. = —C—— d— .
ot dx dx?
—Plugging in etk —wwt (plane wave), we get a
dlsper3|on: w = ck — d:lf3 . Wave velocity depends on k!

83

Partial differential equations

* Now let's go back to advection equation and add a
diffusive term
du(x,t) ou(x, t) D()zu(;r.. t) |

. — —C . ~
ot dx a2

* From plane wave, we get the dispersion relation:

2
‘) o — et) — Ly
0 = ck 1 D2 : (?’.l“’" ct)—Dk“t ’

84

Partial differential equations

* Some nonlinear equations can have traveling waves
« Example is Burgers’ equation:
—http://en.wikipedia.org/wiki/Burgers' equation

ou Ju Ju
— = —(X- Bu—
Ot 0x ox

* The last term is nonlinear in the wave amplitude
» Can solve by calculating partial derivatives:

Ju Ju Ju , e
o = et Bu) f' — B f tor = 5 = “(a+Bu)f /(14 8f't)
(ju I 3ffdi N du—f/l—}—dfz‘
dx

 This is solved if we have a right-moving wave with
functioru(x,t) = f (x — (a + Bu)t) ,
* This wave moves with velocity ¢ = a + Bu(x, t) -

http://en.wikipedia.org/wiki/Burgers'_equation

Partial differential equations

* Here, the velocity depends on the density of the wave!
* This leads to breaking and shock fronts:

86

Partial differential equations

* The Burgers’ equation was introduced in 1948 as a simple
model Of ShOCk propagatlon J.M. Burgers, Adv. Appl. Mech. 1, 171 (1948)
du du 0%u
.. FUS- = Va s,
ot dx a2
* First, set nu = 0 and we get

Ju r)u
,, 1 = (.
ot r)z
« Compare to the linear wave equation:
Ju)
(.u P Ju 0
ot ()1

« Schematically the speed is equal to “u’!
» Peaks travel faster than troughs in the wave

» Eventually we get breaking, which we cannot represent as a
function since it is multi-valued

» Passes through a shock front (solution is discontinuous) sz

Partial differential equations

 This kind of PDE was studied by Godunov in 1959

S.K. Godunov, Mat. Sb. 47, 271 (1959)

* This is a class of “Riemann problem”

—IVP for a PDE which has a piecewise constant initial value
function, with a discontinuity (like a step function)

* Need to find an exact or approximate algorithm for this

—called a “Riemann solver”

-

UT
o+l . n 0 o — D .
wpTt = Uy — [Fﬁé F._] + 5 w1+ uj—1 — 2uy]

* Here, FJIZ é IS the average flux on the cells to the left and
right of the lattice point j, respectively

» Solve these from Riemann problems in the cells to the right
and left of j using “upwind” initial data:

(4) {uj ifu; >0 (=) {'uj if u; <0

. = . .
J 0 otherwise 0 otherwise ”

Partial differential equations

 The solution in the left cell is :

(+) 2 1 12
FJ-_% = max { §(uj_1) E(U

89

