

# **Overview of online and offline reconstruction in ALICE for LHC Run 3**

David Rohr drohr@cern.ch Connecting the Dots, 2020 22.4.2020



22.4.2020

David Rohr, drohr@cern.ch

### ALICE in Run 3: 50 kHz Pb-Pb

ALICE

- Record large minimum bias sample.
- All collisions stored for main detectors  $\rightarrow$  no trigger.
- Continuous readout  $\rightarrow$  data in drift detectors overlap.
- 50x more events stored, 50x more data.
- Cannot store all raw data  $\rightarrow$  online compression.
- $\rightarrow$  Use GPUs to speed up online processing.

- Overlapping events in TPC with realistic bunch structure @ 50 kHz Pb-Pb.

- Timeframe of 2 ms shown (will be 10 20 ms during production).
- Tracks of different collisions shown in different colors.

### **ALICE Raw Data Flow in Run 3**





### **ALICE Raw Data Flow in Run 3**





22.4.2020

David Rohr, drohr@cern.ch

### **ALICE Raw Data Flow in Run 3**





### **Tracking in ALICE in Run 3**



- ALICE uses mainly 3 detectors for tracking: ITS, TPC, TRD + (TOF)
  - 7 layers ITS (Inner Tracking System silicon tracker)
  - 152 pad rows TPC (Time Projection Chamber)
  - 6 layers TRD (Transition Radiation Detector)
  - **1 layer TOF** (Time Of Flight Detector)



### **Processing in ALICE in Run 3**





### **Processing in ALICE in Run 3**





### **Tracking in ALICE in Run 3**



Bulk of computing workload:

#### **Synchronous**

>90% TPC tracking / compression Low load for other detectors

#### Asynchronous

- TPC among largest contributors
- Other detectors also significant

### ALICE GPU processing strategy

Baseline solution (almost available today): TPC + part of ITS tracking on GPU

Mandatory solution to keep up with the data rate online.

Defines number of servers / GPUs.

#### Optimistic solution (what could we do in the ideal case): Run most of tracking + X on GPU.

- Extension of baseline solution to make best use of GPUs.
  - Ideally, full barrel tracking without ever leaving the GPU.
  - In the end, we will probably be somewhere in between.



### **ALICE TPC upgrades and implications**



- Need continuous TPC readout to store full minimum bias data sample.
  - The TPC of Run 1 and 2 uses MWPC (Multi Wire Proportional Chambers) readout and a gating grid to suppress the ion back flow.
- Gating grid limits readout to ~3 kHz, prevents continuous readout.
- → Replace MWPCs with GEMs (Gas Electron Multiplier), Intrinsic ion back flow blocking (99%), no gating grid.
- Still, significantly more space charge in the TPC compared to Run 1 and 2.
  - GEM amplification creates ~20 ions (gain 2000) per electron.
    - Dominant over ions from primary ionization.
    - Scales linearly with interaction rate up to 50 kHz.
  - Ions drift from end plate to central electrode in ~200 ms.
  - Ion charge in the TPC produces an electric field, distorting the electrons during drift.
  - Up to 20 cm distortions in radial direction.
  - Must be corrected to O(0.1) mm to maintain the intrinsic TPC resolution.
- z-coordinate of TPC hits depends on time of the vertex:  $z \approx \pm (z_0 v_{drift} * (t t_{vertex}))$ 
  - Need to assign a hit to a vertex to obtain its z coordinate, but the vertex is usually only known after tracking.
- Processing based on time frames (10 20 ms of continuous data) instead of events.



### **Important challenges for Run 3 tracking / processing**



- Performance
  - Have to process 50 times more events than before.
- Data compression
  - Full minimum bias data taking, no event rejection, need to store **50 times more data** than before.
- Calibration
- Need calibration procedure for space charge distortions.
- Tracking
  - Need to be able to track TPC data with continuous readout, and with space charge distortions.

### **TPC Calibration**





- Other calibrations (like dE/dx run in parallel).
- We foresee 2 SCD calibrations in Run 3:
  - 1. Track based:
    - TPC Tracks reconstructed with relaxed cuts and matched to inner / outer detectors.
    - Track refit with only ITS / TRD / TOF information.
    - Residuals of TPC hits wrt. refitted tracks are collected.
    - TPC volume is voxelized, and a correction per voxel is calculated.
    - Corrections are smoothed to compensate for bad TRD chambers, holes in TRD / TOF acceptance.
  - The track based TPC calibration corrects also several other effects:
    - Misalignment, drift velocity, E x B, …
  - Needs a certain number of tracks in each voxel to extract the correction.
    - In Run 2, the calibration interval was 40 minutes. This will be reduced to O(1) minute in Run 3.
  - Distortions fluctuate over time:
    - Scales with instantaneous luminosity, i.e. TPC occupancy, e.g. by beam burn-off.
      - Accounted for by scaling the correction map with the luminosity.
      - To be precise, the difference to a static correction map at luminosity ~0 is scaled.
    - Short-term fluctuations by LHC bunch structure, collision centrality, etc.
      - Not accounted for during Run 2, but effect below intrinsic TPC resolution.
  - > Need a new method for short-term fluctuations in Run 3, correction stable over ~5 ms.



### **TPC Calibration**



- Most complicated TPC calibration is for space charge distortions (SCD).
  - Other calibrations (like dE/dx run in parallel).
  - We foresee 2 SCD calibrations in Run 3:
    - 1. Track based.
    - 2. Integration of digital currents:
      - Aggregating the currents arriving at the TPC end plates.
      - Allows for the computation of:
        - The number of amplification ions produced.
        - Space charge produced by the ions.
        - Electric field in the TPC by the space charge.
        - Distortions of the electrons during the drift.
      - Since this is computationally very heavy, we aim to employ a neural network.
    - This requires the full ion history and thus continuous readout, impossible with triggered readout in Run 2.
    - Cannot correct other effects but SCD by design.
    - Probably less total precision than track-based distortion.
    - Fast enough to correct short-term fluctuations.
    - Could correct for the delta to average distortion by using the delta to average digital currents.
    - 3. Alternative: Self-contained TPC calibration using cluster to track residuals.

### **TPC Calibration**



- Most complicated TPC calibration is for space charge distortions (SCD).
  - Other calibrations (like dE/dx run in parallel).
  - We foresee 2 SCD calibrations in Run 3:
    - 1. Track based.
    - 2. Integration of digital currents.
- ALICE calibration procedure:
- In Run 1 and 2, ALICE was processing the data 4 times: Online (trigger / QA) / 2 calibration passes / physics pass.
- This will be reduced to 2 passes: synchronous and asynchronous.
  - An intermediate postprocessing step will process the calibration input extracted by the synchronous pass and create the final calibration.
- For the TPC this means:
  - Collection of the integrated digital currents:
    - Happens during synchronous processing on the readout card level (must happen in the FPGA, since servers / network might drop data rendering the next 180 ms of raw data unreconstructible).
  - Extraction of residuals for track-based calibration:
    - Happens during synchronous processing on the EPN. Only O(1%) of the tracks are needed. Peripheral collisions are selected.
  - Correction maps are created between synchronous and asynchronous (or at the beginning of asynchronous to avoid storing them).
- The correction is applied as follows:
  - Average distortions are corrected by the track-based correction.
  - The track-based corrections are scaled with the luminosity.
  - Short term fluctuations are corrected by the integrated digital current method.

#### David Rohr, drohr@cern.ch

### **TPC Data Compression**



X. Y. Z

Track

#### The TPC data compression is composed of several steps: Row, Pad, Time Raw data are clusterized. Custom data format as integer / floating point with number of bits matching the TPC resolution. Forward-transform Entropy is reduced as much as possible: Clusters attached to tracks are stored as residual to the track. ack-transformation Unattached clusters are sorted and stored as difference wrt. the previous cluster. Correlated values treated together. Clusters of tracks not used for physics are removed: Strategy A: Identification and removal of unneeded clusters: Secondary leg of track with $p_T < 200 \text{ MeV}/c$ . Track segment with high inclination angle. Low- $p_{T}$ track below 50 MeV/c. Noisy pads, charge clouds from low- $p_{T}$ protons.

- Strategy B:
  - Remove everything except for identified good tracks.
- Remaining clusters are entropy-compressed with ANS encoding.

### TPC is the largest data-contributor

- Must be reduced from 3.4 TB/s raw data to ~70 GB/s to storage.
- At the storage level, other detectors contribute as well.
  - $\rightarrow$  Entropy-compressed, but not as sophisticated as TPC.



## **TPC Tracking**



- There are 2 (related) main challenges caused by continuous readout / space charge distortions
  - How to assign a z-position to a cluster?
  - How to apply SCD corrections (inhomogeneous magnetic field, cluster error parameterization) if z is now known.
- Tracking strategy:
  - The naïve brute force approach:
    - We know all possible vertex times from the fast interaction triggers.
    - We can correct all clusters multiple times, for each possible vertex time.
    - Run the tracking multiple times, and select only the tracks belonging to the current vertex.
    - $\rightarrow$  Working but infeasible, increases processing time by factors.
  - $\rightarrow$  Need a better approach.





- There are 2 (related) main challenges caused by continuous readout / space charge distortions
  - How to assign a z-position to a cluster?
  - How to apply SCD corrections (inhomogeneous magnetic field, cluster error parameterization) if z is now known.







- There are 2 (related) main challenges caused by continuous readout / space charge distortions
  - How to assign a z-position to a cluster?
  - How to apply SCD corrections (inhomogeneous magnetic field, cluster error parameterization) if z is now known.







- There are 2 (related) main challenges caused by continuous readout / space charge distortions
  - How to assign a z-position to a cluster?
  - How to apply SCD corrections (inhomogeneous magnetic field, cluster error parameterization) if z is now known.







- There are 2 (related) main challenges caused by continuous readout / space charge distortions
  - How to assign a z-position to a cluster?
  - How to apply SCD corrections (inhomogeneous magnetic field, cluster error parameterization) if z is now known.



Standalone ITS tracking.

Standalone TPC tracking, scaling *t* linearly to an arbitrary *z*.

#### Precise tracking needs *z* for:

- Cluster error parameterization
- Inhomogeneous B-field
- Distortion correction

### Effects smooth →

irrelevant for initial trackletting





- There are 2 (related) main challenges caused by continuous readout / space charge distortions
  - How to assign a z-position to a cluster?
  - How to apply SCD corrections (inhomogeneous magnetic field, cluster error parameterization) if z is now known.



- Standalone ITS tracking.
- Standalone TPC tracking, scaling *t* linearly to an arbitrary *z*.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.





- There are 2 (related) main challenges caused by continuous readout / space charge distortions
  - How to assign a z-position to a cluster?
  - How to apply SCD corrections (inhomogeneous magnetic field, cluster error parameterization) if z is now known.



- Standalone ITS tracking.
- Standalone TPC tracking, scaling *t* linearly to an arbitrary *z*.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.
- Refine z = 0 estimate, refit track with best precision
- For the tracks in one ITS readout frame, select all TPC tracks with a compatible time (from *z* = 0 estimate).





- There are 2 (related) main challenges caused by continuous readout / space charge distortions
  - How to assign a z-position to a cluster?
  - How to apply SCD corrections (inhomogeneous magnetic field, cluster error parameterization) if z is now known.



- Standalone ITS tracking.
- Standalone TPC tracking, scaling *t* linearly to an arbitrary *z*.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.
- Refine *z* = 0 estimate, refit track with best precision
- For the tracks in one ITS readout frame, select all TPC tracks with a compatible time (from *z* = 0 estimate).
- Match TPC track to ITS track, fixing z-position and time of the TPC track.
- Refit ITS + TPC track outwards.





- There are 2 (related) main challenges caused by continuous readout / space charge distortions
  - How to assign a z-position to a cluster?
  - How to apply SCD corrections (inhomogeneous magnetic field, cluster error parameterization) if z is now known.



- Standalone ITS tracking.
- Standalone TPC tracking, scaling *t* linearly to an arbitrary *z*.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.
- Refine *z* = 0 estimate, refit track with best precision
- For the tracks in one ITS readout frame, select all TPC tracks with a compatible time (from *z* = 0 estimate).
- Match TPC track to ITS track, fixing z-position and time of the TPC track.
- Refit ITS + TPC track outwards.
- Prolong into TRD / TOF.





- There are 2 (related) main challenges caused by continuous readout / space charge distortions
  - How to assign a z-position to a cluster?
  - How to apply SCD corrections (inhomogeneous magnetic field, cluster error parameterization) if z is now known.
- This works, but yields another subtle problem:
  - Clusters are stored in a grid for fast cluster search during seeding / track following.
  - There is one common grid, cluster positions in the grid cannot be corrected.
  - Track position is in the "corrected coordinate system", cannot be used to find clusters during track following, etc.
  - → Apply "inverse" correction to track position to identify grid cells for cluster search.
    - Select clusters in grid cell, and apply "forward" correction for candidates on the fly.
    - Select best cluster, and fit in corrected track coordinate system.
  - Requires repeated cluster transformation on the fly, but:
    - No need to store the clusters multiple times (TPC clusters are the largest data contribution).
    - Tracking runs only once.

### **Processing requirements**



#### Synchronous processing:

- TPC data compression: Needs full TPC tracking for track model / cluster removal.
- Calibration: Needs partial ITS / TPC / TRD / TOF tracking for a small subset of events.
- → Full TPC tracking is largest compute contribution.

#### Asynchronous processing:

- Full TPC reconstruction.
  - Some additional steps like dE/dx and more sophisticated fit.
  - Overall, TPC faster than during synchronous processing: fewer clusters after removal, no clusterization, no compression.
- Full ITS / TRD tracking.
  - More complex combinatorics than in TPC
- Vertexing, etc.
- → TPC tracking not the single dominant compute task.
- TPC tracking defines synchronous workload and size of farm.
  - Use GPUs, which are efficient at TPC tracking.
  - Processing partial time frames on the GPU would imply a special treatment at the borders.
  - Simpler to process full time frame on GPU at once, if possible (mostly a memory concern).
- Optimistic scenario for asynchronous workload:
  - Use GPUs for as many steps as possible, e.g. full barrel tracking.

### **Overview of Barrel Tracking Chain on GPU**



- **GPU components** for **baseline scenario** almost finished (**baseline = mandatory parts of synchronous reconstruction**):
  - TPC distortion corrections (most critical point now)
  - Material lookup during tracking not finished (not strictly needed for TPC).
- TPC Track Merger still runs certain steps on the CPU, not critical.
- Junk identification below 10 MeV/c missing (still searching for a good algorithm, affects compression ratio by ~15% in strategy A).
- TPC entropy compression on GPU missing (not strictly needed, can run on CPU).
- Optimistic scenario for better GPU utilization in asynchronous reconstruction, work in progress.







- ALICE reconstructs timeframes (TF) independently (128 256 orbits  $\rightarrow$  ~10 ~20 ms  $\rightarrow$  ~500 ~1000 collisions).
  - One TPC drift time of data not reconstructible at TF border (~ 90 us)  $\rightarrow$  < 0.5 1 % of statistics lost (baseline is 0.5 %).
  - Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.
- Trying to avoid the ring buffer approach, could be added later if needed.
- Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.
  - Classically: reuse memory between events, collisions are not that large.
  - ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.
  - Some memory must persist during timeframe processing.

### Persistent data Memory TPC Raw 1 TPC Hits 1 Memory TPC cluster finder TPC raw data can be removed after clusterization, memory will re reused.







- ALICE reconstructs timeframes (TF) independently (128 256 orbits  $\rightarrow -10 -20$  ms  $\rightarrow -500 -1000$  collisions).
  - One TPC drift time of data not reconstructible at TF border (~ 90 us)  $\rightarrow$  < 0.5 1 % of statistics lost (baseline is 0.5 %).
  - Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.
- Trying to avoid the ring buffer approach, could be added later if needed.
- Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.
  - Classically: reuse memory between events, collisions are not that large.
  - ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.
  - Some memory must persist during timeframe processing.





- ALICE reconstructs timeframes (TF) independently (128 256 orbits  $\rightarrow -10 -20$  ms  $\rightarrow -500 -1000$  collisions).
  - One TPC drift time of data not reconstructible at TF border (~ 90 us) → < 0.5 1 % of statistics lost (baseline is 0.5 %).
  - Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.
  - Trying to avoid the ring buffer approach, could be added later if needed.
- Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.
  - Classically: reuse memory between events, collisions are not that large.
  - ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.
  - Some memory must persist during timeframe processing.





- ALICE reconstructs timeframes (TF) independently (128 256 orbits  $\rightarrow -10 -20$  ms  $\rightarrow -500 -1000$  collisions).
  - One TPC drift time of data not reconstructible at TF border (~ 90 us)  $\rightarrow$  < 0.5 1 % of statistics lost (baseline is 0.5 %).
  - Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.
- Trying to avoid the ring buffer approach, could be added later if needed.
- Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.
  - Classically: reuse memory between events, collisions are not that large.
  - ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.
  - Some memory must persist during timeframe processing.





- ALICE reconstructs timeframes (TF) independently (128 256 orbits  $\rightarrow -10 -20$  ms  $\rightarrow -500 -1000$  collisions).
  - One TPC drift time of data not reconstructible at TF border (~ 90 us)  $\rightarrow$  < 0.5 1 % of statistics lost (baseline is 0.5 %).
  - Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.
  - Trying to avoid the ring buffer approach, could be added later if needed.
- Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.
  - Classically: reuse memory between events, collisions are not that large.
  - ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.
  - Some memory must persist during timeframe processing.



#### Work in Progress



- ALICE reconstructs timeframes (TF) independently (128 256 orbits  $\rightarrow$  ~10 ~20 ms  $\rightarrow$  ~500 ~1000 collisions).
  - One TPC drift time of data not reconstructible at TF border (~ 90 us)  $\rightarrow$  < 0.5 1 % of statistics lost (baseline is 0.5 %).
- Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.
- Trying to avoid the ring buffer approach, could be added later if needed.
- Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.
  - Classically: reuse memory between events, collisions are not that large.
  - ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.
  - Some memory must persist during timeframe processing.

| Persistent data |               |               |               |             |               | Non-persistent scratch data for algorithms |         | Non-persisting input data |              |              |
|-----------------|---------------|---------------|---------------|-------------|---------------|--------------------------------------------|---------|---------------------------|--------------|--------------|
| TPC<br>Hits 1   | TPC<br>Hits 2 | TPC<br>Hits 3 | TPC<br>Hits 4 | ITS<br>Hits | TPC<br>Tracks | ITS<br>Tracks                              | Matches | lemory                    | TPC<br>Raw 2 | TPC<br>Raw 1 |

- Estimated maximum memory needed during important steps (with TF length = 128 orbits):
  - TPC Cluster finder: ~ 3 GB ( + input / scratch data, which is pipelined)
  - TPC Transformation: 12.1 GB
  - TPC Sector tracker:
  - TPC Merger / track fit:

- (including persistent memory from previous steps)
- TPC Compression: 12.
- 14.1 GB 12.9 GB

~ 14.6 GB

- Later steps do not scale their scratch memory with TPC input  $\rightarrow$  less memory intensive.
- We assume a 16 GB GPU will suffice for TF of 128 orbits, unclear if 12 GB will suffice after optimizations.

### **Performance (TPC processing only)**



- Critical assumption: The processing time must scale linearly (or less) with the input data size!
  - Otherwise we must not process full time frames at once.
- Cannot yet process a full time frame on GPU.
  - Extrapolating to full time frame by extrapolating linearly in the number of clusters: The curves are flat → Above assumption true.
  - GPU slower for small input data due to insufficient parallelism, CPU slightly faster with small input due to better cache utilization.



### **Performance (TPC processing only)**



• Performance of Processing steps (14.5 million TPC hits) ★ Cluster finding has inefficient algorithm on CPU, dominates synchronous processing
 → Asynchronous processing gives better GPU v.s. CPU estimate.

| Step                          | AMD Radeon 7 | NVIDIA RTX 2080 Ti | Intel Skylake 4.5 GHz 1 core | 2080 Ti / CPU |
|-------------------------------|--------------|--------------------|------------------------------|---------------|
| Zero Suppression Decoding     | 38 ms        | 19 ms              | 986 ms                       | 52x           |
| Cluster Finding               | 87 ms        | 79 ms              | <b>21343 ms</b>              | 270x          |
| Track Finding                 | 109 ms       | 65 ms              | 8759 ms                      | 135x          |
| Track Fit                     | 284 ms       | 243 ms             | 7204 ms                      | 30x           |
| Cluster Compression           | 137 ms       | 105 ms             | 1452 ms                      | 14x           |
| Synchronous Processing Total  | 657 ms       | 511 ms             | * 39816 ms                   | 78x           |
| dE/dx calculation             | 61 ms        | 22 ms              | 906 ms                       | 41x           |
| Asynchronous Processing total | 304 ms       | 237 ms             | <b>13381 ns</b>              | 56x           |

#### Relative performance of GPU Models (Sync + Async):

★ Best options from AMD / NVIDIA

| GPU Model                          | Performance | GPU Model                            | Performance |
|------------------------------------|-------------|--------------------------------------|-------------|
| NVIDIA RTX 2080 Ti ★               | 100.0%      | NVIDIA V100                          | 88.5%       |
| NVIDIA Quadro RTX 6000 (active)    | 105.8%      | NVIDIA T4                            | 59.3%       |
| NVIDIA Quadro RTX 6000 (passive) ★ | 94.5%       | AMD Radeon 7 ★                       | 77.8%       |
| NVIDIA RTX 2080                    | 83.5%       | AMD MI50 ★                           | 74.1%       |
| NVIDIA GTX 1080 (sorting excluded) | 60.1%       | Intel Skylake 1 core 4.5 GHz (async) | 1.77%       |

### **Performance (TPC processing only)**



• Performance of Processing steps (14.5 million TPC hits)

★ Cluster finding has inefficient algorithm on CPU, dominates synchronous processing
 → Asynchronous processing gives better GPU v.s. CPU estimate.

| Step                                               | AMD Rad                              |                                                |                         | te 4.5 GHz 1 co <mark>re</mark>         | e   2080 II / CPU |  |  |  |
|----------------------------------------------------|--------------------------------------|------------------------------------------------|-------------------------|-----------------------------------------|-------------------|--|--|--|
| Zero Suppression D                                 | ecoding Most r                       | promising candida                              | tes from AMD / NVIDIA:  | 986 i <mark>n</mark> :                  | s 52x             |  |  |  |
| Cluster Finding                                    | AMD                                  | Vega20 or NVIDIA                               | Turing architectures    | 21343 i <mark>n</mark> :                | s 270x            |  |  |  |
| Track Finding                                      | <ul> <li>No big performan</li> </ul> | ce difference betw                             | veen professional / con | sumer cards. <sup>9</sup> <sup>n:</sup> | s 135x            |  |  |  |
| Track Fit                                          | as expected since                    | as expected since all code is single precision |                         |                                         |                   |  |  |  |
| Cluster Compressio                                 | • 2000 GPUs suffic                   | s 14x                                          |                         |                                         |                   |  |  |  |
| Synchronous Proce                                  | <sup>SSIN</sup> NVIDIA Turina.       | 57 ms                                          | 511 ms                  | 39816 m                                 | s 78x             |  |  |  |
| dE/dx calculation                                  |                                      |                                                |                         | 906 i <mark>n</mark> :                  | s 41x             |  |  |  |
| Asynchronous Proce                                 | essing total 3                       | 04 ms                                          | 237 ms                  | 13381 n                                 | s 56x             |  |  |  |
| Relative performance of GPU Models (Sync + Async): |                                      |                                                |                         |                                         |                   |  |  |  |
| GPU Model                                          |                                      | Performance                                    | GPU Model               |                                         | Performance       |  |  |  |
| NVIDIA RTX 2080 Ti                                 | *                                    | 100.0%                                         | NVIDIA V100             |                                         | 88.5%             |  |  |  |
| NVIDIA Quadro RTX                                  | 6000 (active)                        | 105.8%                                         | NVIDIA T4               | NVIDIA T4                               |                   |  |  |  |
| NVIDIA Quadro RTX                                  | 6000 (passive) ★                     | 94.5%                                          | AMD Radeon 7 ★          | AMD Radeon 7 ★                          |                   |  |  |  |
| NVIDIA RTX 2080                                    |                                      | 83.5%                                          | AMD MI50 ★              | AMD MI50 ★                              |                   |  |  |  |
| NVIDIA GTX 1080 (Se                                | orting excluded)                     | 60.1%                                          | Intel Skylake 1 core    | Intel Skylake 1 core 4.5 GHz (async)    |                   |  |  |  |
|                                                    |                                      |                                                |                         |                                         |                   |  |  |  |





- ALICE will record 50 kHz Pb-Pb minimum bias data in Run 3 without trigger.
  - Continuous TPC readout, time frames of 10 20 ms instead of events.
- Storage of all data needs sophisticated data compression and online processing.
- Processing farm used for synchronous (online) and asynchronous processing (periods without beam).
  - Usage of GPUs mandatory in synchronous processing (baseline scenario).
  - Aiming to use GPUs as much as possible also in asynchronous processing (optimistic scenario).
  - Baseline scenario almost ready, promising candidate for optimistic scenario is the full barrel tracking chain.
- Most demanding calibration: TPC Space Charge distortions:
- 2 Approaches combined: Track based calibration + Integrated digital currents.
- Tracking algorithm adapted to work with TPC distortions and continuous readout.
- TPC data needs to be compressed for 3.4 TB/s (uncompressed raw data) to O(70) GB/s (to disk buffer / permanent storage).
  - Improved version of Run 2 compression with online clusterization and entropy encoding, track model compression added.
  - In addition, clusters attached to tracks not used for physics are removed.
- Plan to process a full TF at once on the GPU.
  - Processing times scales linearly with input data size after a certain minimum size needed to fully exploit the GPU parallelism.
- GPU memory size a concern, need ~16 GB for 10 ms time frames, which comes with < 1% loss of statistics.
- Many GPU models evaluated, RTX 2080 Ti can replace ~56 Skylake CPU cores at 4.5 GHz.
  - Most promising candidates are RTX 2080 Ti, Quadro RTX 6000, Radeon 7, MI 50, will need < 2000 GPUs.</li>
  - Little performance difference between consumer / professional cards.
  - Stability is a concern, no guarantee for gaming cards but in the past also no problems with gaming cards at smaller scale.
  - Important features of professional cards are support, passive cooling, and to some extent memory size.

•