Performance of Belle II Tracking on Collision Data

Connecting The Dots

Simon Kurz on behalf of the Belle II Tracking Group April 22-24, 2020

SuperKEKB

B-Factory for the Belle II Experiment

Current challenges:Increase inst. luminosity

Reduce beam backgrounds

Asymmetric e⁺e⁻ *B*-factory to study CP-violation and rare decays

- Boost of $\beta \gamma = 0.28$
- $E_{cm} = m(\Upsilon(4S)) = 10.58 \text{ GeV}$

Peak luminosity 40x higher than KEKB, up to $L = 8 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$

- Reduction of beam size ('nano beam')
- Higher beam current (x2)

The Belle II Detector New detector design A significant upgrade motivated by high inst. luminosity and its challenges **EM Calorimeter** K_L-Muon Detector 150° 17° **e**⁻ (7 GeV) (4 GeV) solenoid @ 1.5T Central Drift Vertex Detectors **Barrel and Forward** Chamber **Particle ID Detector** taken from C. Marinas

Belle II Tracking Detectors

Vertex Detectors (VXD) and Drift Chamber (CDC)

Pixel Detector: PXD (2 layers, currently only 2 ladders of 2nd layer) \Rightarrow Precision measurement of impact parameter (First layer at r = 1.4 cm) Based on DEPFET Pixel Technology Low material budget ($\approx 0.2\% \cdot X_0$) Silicon Vertex Detector: SVD (4 layers)
→ Robust tracking despite backgrounds (also for standalone tracking)
Double Sided Silicon Strip Detector
Low material budget (≈ 0.7% ⋅ X₀)
Excellent hit time resolution (σ ≈ 3 ns)

Central Drift Chamber: CDC (56 layers) \Rightarrow Excellent momentum resolution Alternating superlayers of axial and stereo wires Covers volume of $l \times r = 2.3 \text{ m} \times 2.2 \text{ m}$

Event Properties and Tracking Challenges

...at a **B-Factory**

Typical $\Upsilon(4S)$ event:

- 11 charged tracks with soft momentum spectrum
- High machine background: Number of background hits about <u>2 orders of magnitude</u> larger than signal hits

Analysis requirements:

- Precise measurement of primary and secondary vertices
- Often using full event reconstruction:
 - Find all tracks $(p_T \gtrsim 50 \text{ MeV})$
 - No fakes or duplicates

hundred of microns

Background Suppression

Example: CDC - Machine Background and Cross Talk

Necessary to reject background hits as much as possible while preserving signal hits

• Classical approach: require minimum of deposited charge, time over threshold

Observed significant amount of 'cross talk'

- Neighbouring channels in ASIC light up
- Small charge, peculiar time structure
- Implement a designated filter targeting expected topology

The Tracking Algorithms

A Modular Approach

The modular system allows for different track finding sequences in case it's needed

- Can be adapted to background conditions, degradation of detector performance, etc.
- CDC track finding used as baseline
- PXD currently not used for standalone track finding
- Extension with SVD to CDC CKF (4) new (more later)
- Novel approaches can be added (see ECL seeded tracking, later)

The Tracking Algorithms

A Modular Approach

Track Finding at Belle II

Belle II Tracking Group, Valerio Bertacchi^a, Tadeas Bilka^b, Nils Braun^c, Giulia Casarosa^d, Luigi Corona^d, Sam Cunliffe^e, Filippo Dattola^e, Gaetano De Marino^f, Michael De Nuccio^e, Giacomo De Pietro^g, Thanh Van Dong^h, Giulio Dujanyⁱ, Patrick Ecker^c, Michael Eliachevitch^j, Tristan Fillingerⁱ, Oliver Frost^e, Rudolf Frühwirth^k, Uwe Gebauer¹, Sasha Glazov^e, Nicolas Gosling^m, Aiqiang Guo^{e,n}, Thomas Hauth^c, Martin Heck^c, Mateusz Kaleta^o, Jakub Kandra^b, Claus Kleinwort^e, Thomas Kuhr^m, Simon Kurz^e, Peter Kvasnicka^b, Jakob Lettenbichler^k, Thomas Lueck^m, Alberto Martini^g, Felix Metzner^c, Dmitrii Neverov^p, Carsten Niebuhr^e, Eugenio Paoloni^d, Sourav Patra^q, Leo Piilonen^r, Cyrille Praz^e, Markus Tobias Prim^c, Christian Pulvermacher^c, Sebastian Racs^c, Navid Rad^e, Petar Rados^e, Martin Ritter^m, Giuliana Rizzo^d, Armine Rostomyan^e, Bianca Scavino^s, Tobias Schlüter^t, Benjamin Schwenker¹, Stefano Spataro^u, Björn Spruck^s, Henrikas Svidras^e, Francesco Tenchini^e, Yuma Uematsu^v, James Webb^w, Christian Wessel^j, Laura Zani^d

Belle II Tracking Paper submitted! arXiv:2003.12466

Find a detailed description of our tracking algorithms in the *Belle II Tracking Paper* that has just been submitted

 Only brief overview on the following slides

CDC Track Finding

Legendre Track Finder (Global TF)

- Start with axial wires $(r-\phi \text{ plane})$
- Add *z* information in the end using hits in the stereo layers
- Hit positions are approximated by drift circles

- circular trajectory → straight line
- drift circle \rightarrow circle
- Simplified problem: find common tangent for set of circles

- Use Legendre Parameters to describe drift circles: $\rho = x_o \cos \theta + y_o \sin \theta + R_{dr}^*$
- Determine point of maximum density (→ 2D binary search)
- <u>Efficient implementation:</u> dedicated quadtree structure, 'sliding bins'

CDC Track Finding

Cellular Automaton Track Finder (Local TF)

Use local TF for short and displaced tracks based on a Cellular Automaton

- Find triplets of hits in neighbouring layers assuming a certain right-left-passage
- **2.** Connect triplets that share two hits and assign weights based on common fit to 'segments'
- **3.** Combine overlapping segments and calculate weight based on common fit

Currently not used as a standalone algorithm due to non-negligible fake rate

- Found segments added to tracks reconstructed by global TF using multivariate methods
- In the end, several further MVA-based filters to improve fake/clone rate, as well as purity and track parameter resolution

Additional quality indicator^{*)} is being studied to reduce fake rate of local TF

*) Belle software usually based on <u>FastBDT: arXiv:1609.06119</u>

Combinatorial Kalman Filter (I)

CDC to SVD CKF

Extrapolate CDC track inwards and try to attach SVD hits

- Algorithm may skip detector layers to account for inefficiencies
- Consider hits within a certain $\phi \times \theta$ window and pick best candidates using MVA based filters
- Define new paths based on all selected candidates and repeat procedure for each of them
- In the end, select best candidate for each CDC track seed

Highly configurable implementation (template-based)

- Filters used for selection of best hit and path candidates can be modified/tuned easily
- Same code used in the last step for the extrapolation of tracks to the PXD

Material interactions currently disabled during CKF as many extrapolations are done \rightarrow Ongoing studies to replace GENFIT2 tracking toolkit with ACTS (faster)

GENFIT2: arXiv:1902.04405

ACTS: arXiv:1910.03128

SVD Standalone Track Finding

VXDTF2

Train a 'sector map' that stores friendship relations between sensors (sensors split in 3x3 sectors)

- Friendship defined by consecutive hits of simulated tracks (+ filters)
- Greatly reduces complexity of track finding problem by lowering potential combinations of hit points
- Granularity of sectors can be tuned for high efficiency and low fake rate

Use a cellular automaton based on pairs of space points with friend relation

- Use filters to reject bad combinations (angle, timing etc.)
- Train MVA to reject fake and clone tracks

Combinatorial Kalman Filter (II)

SVD to CDC CKF

- Forward tracks are sometimes not reconstructed in the CDC
 - Low number of hits
 - Higher than expected background levels
- VXDTF2 finds a significant fraction of these tracks
 - SVD has larger acceptance
 - More robust against background
 - Momentum resolution can be improved by adding CDC hits to the tracks

Additional CKF from SVD to CDC increases tracking performance

 Basic code is the same as for the other CKFs but necessary to take effects like drift time, left/right passage etc. into account

> *) describes slope: $\tan \lambda = 0 \rightarrow \operatorname{track} \bot \operatorname{beam}$

2 track events (data)

Performance on Simulated Events

Benchmark

Track finding efficiency quite robust against beam background

- Performance acceptable with twice the expected background level
- Still room for improvements as no optimisation done for higher than expected background levels

Excellent track parameter resolution

- d_0 resolution dominated by PXD hits and basically independent of background levels
- p_T resolution degrades slightly for low momentum particles at higher background levels

Background level at nominal luminosity

Further Developments

Example: ECL seeded CKF

 Electron track finding efficiency about 5% lower due to material effects (Bremsstrahlung)

Idea to use ECL showers as seed for CKF

- Expected to increase tracking efficiency especially in forward regions
- Easy code development (template-based implementation of CKF)
- Do helix extrapolation for both charge assumptions from shower to center of detector and try to find track
- Implementation done, currently optimising parameters of CKF and validation on data
- Room for improvements: add Bremsstrahlung photons to track, find vertex from pair production,...

Performance on High Level Trigger (HLT)

Running Stable

As expected, tracking most time-consuming process

- About 1s/per event needed for tracking
- CDC track finding, track fitting and vertexing take most of the time
- Not critical at current conditions but for higher background levels computing time will rise

Room for improvement:

- Replace GENFIT2 with ACTS for faster fitting
- Restructure track finding chain (modularity)

Tracking Efficiency Studies

Comparison of Data and Simulation

Track finding efficiency is a key performance driver for Belle II physics: Several tag-and-probe studies used to validate efficiency for different momentum ranges

Tracking Efficiency Studies

Example: Tau-Pair Study

Method

- tag = 3 good quality tracks with $\sum q = \pm 1$
- probe = look for 4th track that passes loose selections, and conserves charge (∑q = 0)
- Count number of events where the probe track is found (N₄) and not found (N₃): $\varepsilon \cdot A = \frac{N_4}{N_3 + N_4}$ e⁺ where: • ϵ is tracking efficiency • A is geometric acceptance e⁺ $\bar{\nu}_e$

Study shows high level of agreement between data and simulation

Beam Spot Width and Alignment

Monitoring and Performance

Beam profile strongly squeezed in vertical direction

- Vertical beam spot size much smaller than d₀ resolution
- Length of the beam $\sigma_z \approx 350\,\mu{\rm m}$

As expected, PXD significantly increases impact parameter resolution

• $\sigma(d_0) \approx 12 \,\mu{\rm m} \, [10 \mu{\rm m} \, {\rm expected}]$

Good alignment is key ingredient to a high tracking performance

 Tracker alignment done with the Millipede-II framework

Beam Spot Width and Alignment

Monitoring and Performance

Measurement of d₀ distribution provides direct feedback to simulation

- Beam profile depends on $\phi_0 (\sigma_y < \sigma_x)$
- Simulation slightly underestimates d₀ distribution
- Unfolding shows good simulation of beam profile

Excellent performance of tracking and alignment

Measurement of D⁰ Lifetime

A Track-based Analysis

Excellent exercise to test vertexing and alignment (apart from physics aspect)

- Select a very pure sample of $D^{*+} \rightarrow D^0 \pi^+$ candidates, with the D^0 reconstructed in three different final states
- Largest systematic uncertainties expected from residual misalignment and beam spot measurements
 - \rightarrow under control

First (preliminary) results compatible with expectations, illustrating good performance of tracking detectors and algorithms

Summary

- Excellent performance of Belle II tracking detectors and algorithms
- High flexibility of modular approach proves to be advantageous to adjust tracking to background conditions and performance requirements, as well as future extensions of algorithms
- Many studies going on trying to exploit MVA-based approaches for all kinds of use cases (background rejection, track quality, etc.)
- Promising results of first tracking-focused studies and analyses

Further Developments

Track Quality Indicators and CDC Local Track Finder

Use MVA-based methods to reduce fake and duplicated tracks

 3 track quality indicators are being developed, which are applied at different stages of the track finding

As previously mentioned, local CDC TF not used as standalone algorithm due to high fake rate

- Interested in adding this algorithm as currently no tracks with vertices within the CDC can be found
- MVA based track quality indicators can be trained to reduce fake rate
- Still in development, more work has to be done

