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Why new tracking techniques?

Tracking is the core of almost every particle physics experiment

Tracking at the High-Luminosity LHC means pile-up 200

Combinatorial reconstruction approaches explode

⇒ Better algorithms, better physics!
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Hashing?

A typical hash function

h(complex object) = unique number

used e.g. in hash maps (Python dict, std::unordered_map)
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Hashing?

A perfect tracking hash function

h(hit) = track number

does not exists.
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Hashing?
But, approximate grouping of hits

h(track 1 hit 0) = group x
h(track 1 hit 1) = group x
h(track 0 hit 1) = group x

. . .

can be constructed.
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Hashing as bucketing strategy
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Random projections to create
item hash

Groups similar items/ neighbors
for a given metric



General: approximate nearest neighbors

Our choice: https://github.com/spotify/annoy
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https://github.com/spotify/annoy
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1. Build ANN structure
2. Query hits for neighbors
3. Local reconstruction



Reconstruction quality
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TrackML dataset: tt̄, µ = 200

Select buckets/neighborhoods of
hits using randomly drawn hits
as query points

Efficiency =
trackable particles in buckets

total trackable particles

Find (almost) all tracks with
sufficient queries



Possible improvement: metric learning
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Ex.: initial space Ex.: learned space
Neighbor definition depends on
a metric
(so far: angular distance)

Learn metric/transformation
based on known grouping for
max. separability

⇒ Better metric, better buckets



Metric learning for tracks
Uses Local Fisher
Discriminant Analysis
Spatially close tracks (left)
separated in transformed
space (right)
Caveat: uses TrackML
dataset with additional hit
features
Not easily translatable to
other cases (yet)
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Can this run on accelerators?

(Approximate) nearest neighbor search is a general problem
Think: similar images, movies, people, ...

E.g. ”Billion-scale similarity search with GPUs”
arXiv:1702.08734 from Facebook, based on a different technique
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https://arxiv.org/abs/1702.08734


CPU/GPU comparison
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En
tr

ies

Leading particle size in bucket

TrackML dataset
tt̄, µ = 200

GPU NVidia Tesla K40m
12Gb RAM, 2880 CUDA Cores

Separate CPU/GPU implementations,
same input data, same algorithm

→ Consistent bucket definition



GPU performance
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TrackML dataset
tt̄, µ = 200

GPU NVidia Tesla K40m
12Gb RAM, 2880 CUDA Cores

Select buckets of hits using randomly
drawn hits as query points

Queries are fully paralellized



Running on ATLAS ITk

tt̄ with µ = 200 and ATLAS ITk geometry

Use initial method to select buckets of hits

Apply ATLAS reconstruction in buckets
As a proxy for (future, optimized) local reconstruction
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ATLAS-IDTR-2019-008

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2019-008/
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Reconstruction in bucket vs full event
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# clusters on tracks with full
event reconstruction versus
restricting the reconstruction to
a bucket of 50 hits.

Diagonal: fully matched tracks

Below: bucket track is missing
hit(s)

Above: bucket track contains
additional hit(s)

ATLAS-IDTR-2019-008

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2019-008/


Summary
Tracking via approximate-nearest-neighbor methods:
hashing and similarity learning

General, detector-independent techniques

Promising results on TrackML and ATLAS ITK upgrade
simulation dataset

Ongoing: work towards full reconstruction chain

(Virtual) CTD2020 Hashing and similarity learning for tracking 18



home.cern

http://home.cern


Reconstruction in extended buckets
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As before, but buckets extended
to contain all truth hits for
contained tracks to emulate
optimized track road.

Diagonal: fully matched tracks

Below: bucket track is missing
hit(s)

Above: bucket track contains
additional hit(s)

ATLAS-IDTR-2019-008

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2019-008/
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