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Neutrino physics
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• Convolutional neural networks show 
great promise in image classification 
over the past decade. 

• Most neutrino detector technologies 
naturally provide pixel maps which can 
be classified using CNNs. 

• Examples: NOvA, MicroBooNE, DUNE.

• Issues with this approach: 
• Dense representation of sparse data. 
• Operate over mostly empty space! 
• Need to transform 3D representation into 

voxels. 
• GNNs can work with reconstructed 

spacepoints natively.

arXiv:1604.01444
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Liquid Argon Time Projection Chambers
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• Liquid Argon Time Projection Chambers (LArTPCs) are currently a very 
important detector technology for neutrino physics. 
• At FNAL: MicroBooNE, Icarus, SBND. 
• Future: DUNE (70kT LArTPC deep underground, plus near detector).

• Charged particles ionize liquid 
argon as they travel. 

• Ionisation electrons drift due to 
HV electrode field, and are 
collected by anode wires. 

• Wire spacing ~3mm – produce 
high-resolution images.
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DUNE far detector
• 70 kt LArTPC, 1.5km underground. 
• High exposure in low-background 

environment. 
• Modular design:  

• Four large detector modules. 
• Each consists of 200 individual TPCs. 
• Transformations necessary to combine 

data across multiple modules in 2D.
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Standard reconstruction chain

• Raw TPC output is wire waveforms. 
• Waveforms are then deconvolved and hit-finding is applied to produce Gaussian hits. 
• Each wire plane forms a 2D image in the space of wire vs readout time. 
• Three wire planes angled at -36°, 0°, 36° provide three 2D representations of the 

event. 
• These 2D representations can be used to construct a 3D representation of the event.
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ArgoNeuT data eventT. Yang (ICHEP 2016)



GNNs for Reconstruction in LArTPCs – J. Hewes – Connecting the Dots 2020

Graph neural networks
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• Describe information structure as a graph represented by nodes and edges.

• Nodes are generalised as 
quantised objects with some 
arbitrary set of features. 

• Edges describe the 
relationships between nodes. 

• Perform convolutions on nodes 
and edges to learn relationships 
within the graph. 

• Output is user-defined: 
• Classify nodes or edges. 
• Classify full graph. 
• Regression outputs.
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Graph networks in HEP
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• Investigating the use of Graph Neural Networks (GNNs) as an alternative to Convolutional 
Neural Networks (CNNs). 

• Building on promising results from the HEP.TrkX collaboration using such methods for track 
reconstruction in the LHC world. 
• See talks by Daniel Murnane & Nicholas Choma in yesterdays session. 

• Promising results from using GNNs in late-stage processing of segmentation CNNs. 
• See poster talk by Francois Drielsma later in this session.



GNNs for Reconstruction in LArTPCs – J. Hewes – Connecting the Dots 2020

Simulation

• Utilising two sets of simulation for these 
studies: 
• Atmospheric neutrino interactions 

• Higher in primary neutrino energy 
(typically ~tens of GeV). 

• Broad angular distribution. 
• Higher occupancy events. 

• CCQE beam neutrino interactions 
• Few-GeV energy. 
• Neutrinos travel along beam direction. 
• Typically “clean” interactions – primary 

lepton (e,μ) and minimal hadronic activity.
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Clustering

• First approach: cluster reconstructed spacepoints in 3D. 
• Draw potential connections between 3D spacepoints. 
• Classify edges as true or false based on whether the same underlying simulated 

particle was responsible for producing them.
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Message-passing networks

�10

• Message-passing network aggregates information from neighbouring nodes across edges to form new 
features on each node, utilising an attention mechanism to weight up useful edges. 

• Repeat the same network multiple times in order for information to travel further across the graph over multiple 
iterations (the “message passing”). 

• Edge classifier: 
• Input for each node is the features of incoming and outgoing nodes. 
• Two multi-layer perceptrons, using Tanh and sigmoid activations. 
• Outputs sigmoid score on each edge. 

• Node classifier: 
• Uses edge score to aggregate each node’s features with incoming & outgoing edges as input. 
• Two multi-layer perceptrons with Tanh activation. 
• Produces new features for each node.

arxiv:1810.06111

�10



GNNs for Reconstruction in LArTPCs – J. Hewes – Connecting the Dots 2020

Spacepoint reconstruction

• Moving from three 2D representations of an energy deposition to one 3D 
representation is a noisy procedure. 

• Early attempt: utilise graph node classification to retain good 3D 
representations and remove spurious ones. 

• Construct graph edges using k-nearest-neighbour (kNN) technique.
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Spacepoint clustering
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• Investigated use of PointNet++ spacepoint graph network (arxiv:1706.02413). 
• This network is specifically designed to operate on point clouds. 
• Utilises set abstraction to aggregate local features, similar to a U-net for CNNs. 

• PyTorch implementation of up & down-sampling too slow for large point clouds.
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2D approaches

• The 3D approaches explored were not found to be effective. 
• Only learn marginally above noise level. 

• Next step: investigate reconstruction of interactions in 2D representations. 
• Conceptually closer to LHC approach. 
• Can leverage structure of detector to sparsify number of edges and reduce graph size.
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Total accuracy Correctly identified 
false edges

Correctly identified 
true edges
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2D reconstruction

• Alternate approach: start with 2D 
representation and build up using graph 
network. 

• Colour coded according to true simulated 
particle. 

• Three 2D representations of the same 3D 
interaction.
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Induction 1

Induction 2 Collection
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νμ graph construction
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• Connect hits that are adjacent in wire and time with potential edges. 
• Potential edges drawn in grey between nodes.

1.3 GeV νμ -> μ- + p
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νμ graph construction
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• Potential graph edges formed for hits in close proximity (5 wires & 50 
time ticks). 

• Potential edges then classified as true or false as an objective for learning.

• Edges are classified as 
true if the same particle 
was responsible for the 
two hits in the 
underlying simulation. 

• Colour coding: 
• False edges 
• True edges
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• Connect hits that are adjacent in wire and time with potential edges. 
• Potential edges drawn in grey between nodes.
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νe graph construction

3.4 GeV νe -> e- + p
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• Potential graph edges formed for hits in close proximity (5 wires & 50 
time ticks). 

• Potential edges then classified as true or false as an objective for learning.
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• Edges are classified as 
true if the same particle 
was responsible for the 
two hits in the 
underlying simulation. 

• Colour coding: 
• False edges 
• True edges

νe graph construction
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2D hit matching
• In addition to reconstruction within each wire plane, can also consider 3D representations by 

matching 2D energy depositions between planes. 
• Work backwards from 2D hits to trajectory of underlying 3D simulated particle to draw true 

associations. 
• Benefit of this approach: utilise heterogeneous graph nodes (ie. LArTPC optical detectors) to 

match between different detector technologies. 
• Message-passing between planes may aid with clustering within each plane.
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Summary

�20

• Investigating development of GNNs for low-level reconstruction in LArTPCs. 

• Graph approaches efficient on sparse data in its native form. 

• 3D reconstruction applications (clustering, spacepoint reconstruction) not 
found to be effective. 
• Message-passing is not optimal for densely connected 3D graph. 
• Point cloud-based techniques are not computationally efficient for large 

point clouds. 

• Developing 2D reconstruction: 
• Particle clustering in 2D views. 
• Clustering between 2D views & construction of higher-level objects.


