Graph Neural Networks for Reconstruction in Liquid Argon Time Projection Chambers

Jeremy Hewes
Connecting the Dots workshop
April 22nd 2020
Convolutional neural networks show great promise in image classification over the past decade. Most neutrino detector technologies naturally provide pixel maps which can be classified using CNNs. Examples: NOvA, MicroBooNE, DUNE.

Issues with this approach:
- Dense representation of sparse data.
- Operate over mostly empty space!
- Need to transform 3D representation into voxels.

GNNs can work with reconstructed spacepoints natively.

arXiv:1604.01444
Liquid Argon Time Projection Chambers

- Liquid Argon Time Projection Chambers (LArTPCs) are currently a very important detector technology for neutrino physics.
 - At FNAL: MicroBooNE, Icarus, SBND.
 - Future: DUNE (70kT LArTPC deep underground, plus near detector).

- Charged particles ionize liquid argon as they travel.
- Ionisation electrons drift due to HV electrode field, and are collected by anode wires.
- Wire spacing ~3mm – produce high-resolution images.
DUNE far detector

- **70 kt** LArTPC, **1.5km** underground.
- High exposure in low-background environment.

Modular design:
- Four large detector modules.
- Each consists of 200 individual TPCs.
- Transformations necessary to combine data across multiple modules in 2D.
Standard reconstruction chain

- Raw TPC output is wire waveforms.
- Waveforms are then deconvolved and hit-finding is applied to produce Gaussian hits.
- Each wire plane forms a 2D image in the space of wire vs readout time.
- Three wire planes angled at -36°, 0°, 36° provide three 2D representations of the event.
- These 2D representations can be used to construct a 3D representation of the event.
Graph neural networks

- Describe information structure as a graph represented by nodes and edges.

- **Nodes** are generalised as quantised objects with some arbitrary set of features.

- **Edges** describe the relationships between nodes.

- Perform convolutions on nodes and edges to learn relationships within the graph.

- Output is user-defined:
 - Classify nodes or edges.
 - Classify full graph.
 - Regression outputs.
Graph networks in HEP

- Investigating the use of **Graph Neural Networks (GNNs)** as an alternative to Convolutional Neural Networks (CNNs).

- Building on promising results from the **HEP.TrkX** collaboration using such methods for track reconstruction in the LHC world.
 - See talks by Daniel Murnane & Nicholas Choma in yesterdays session.

- Promising results from using GNNs in late-stage processing of segmentation CNNs.
 - See poster talk by Francois Drielsma later in this session.
Simulation

• Utilising two sets of simulation for these studies:

 • **Atmospheric neutrino interactions**
 • Higher in primary neutrino energy (typically ~tens of GeV).
 • Broad angular distribution.
 • Higher occupancy events.

 • **CCQE beam neutrino interactions**
 • Few-GeV energy.
 • Neutrinos travel along beam direction.
 • Typically “clean” interactions – primary lepton (e,μ) and minimal hadronic activity.
Clustering

- First approach: cluster reconstructed spacepoints in 3D.
- Draw potential connections between 3D spacepoints.
- Classify edges as true or false based on whether the same underlying simulated particle was responsible for producing them.
Message-passing networks

- Message-passing network aggregates information from neighbouring nodes across edges to form new features on each node, utilising an attention mechanism to weight up useful edges.
- Repeat the same network multiple times in order for information to travel further across the graph over multiple iterations (the “message passing”).

Edge classifier:
- Input for each node is the features of incoming and outgoing nodes.
- Two multi-layer perceptrons, using Tanh and sigmoid activations.
- Outputs sigmoid score on each edge.

Node classifier:
- Uses edge score to aggregate each node’s features with incoming & outgoing edges as input.
- Two multi-layer perceptrons with Tanh activation.
- Produces new features for each node.
Spacepoint reconstruction

- Moving from three 2D representations of an energy deposition to one 3D representation is a noisy procedure.
- Early attempt: utilise **graph node** classification to retain good 3D representations and remove spurious ones.
- Construct graph edges using k-nearest-neighbour (kNN) technique.
Spacepoint clustering

- Investigated use of **PointNet++** spacepoint graph network (arxiv:1706.02413).
 - This network is specifically designed to operate on point clouds.
 - Utilises **set abstraction** to aggregate local features, similar to a U-net for CNNs.
- PyTorch implementation of up & down-sampling too slow for large point clouds.
2D approaches

- The 3D approaches explored were not found to be effective.
 - Only learn marginally above noise level.

- Next step: investigate reconstruction of interactions in 2D representations.
 - Conceptually closer to LHC approach.
 - Can leverage structure of detector to sparsify number of edges and reduce graph size.
2D reconstruction

- Alternate approach: start with 2D representation and build up using graph network.
- Colour coded according to true simulated particle.
- Three 2D representations of the same 3D interaction.
ν_μ graph construction

- Connect hits that are adjacent in wire and time with potential edges.
- Potential edges drawn in grey between nodes.

$1.3 \text{ GeV } \nu_\mu \rightarrow \mu^- + p$
\(\nu_\mu \) graph construction

- Potential graph edges formed for **hits in close proximity** (5 wires & 50 time ticks).
- Potential edges then classified as **true** or **false** as an objective for learning.

- Edges are classified as true if the same particle was responsible for the two hits in the underlying simulation.
- Colour coding:
 - False edges
 - True edges
v_e graph construction

- Connect hits that are adjacent in wire and time with potential edges.
- Potential edges drawn in grey between nodes.

3.4 GeV $v_e \rightarrow e^- + p$
\(\nu_e \) graph construction

- Potential graph edges formed for hits in close proximity (5 wires & 50 time ticks).
- Potential edges then classified as true or false as an objective for learning.

- Edges are classified as true if the same particle was responsible for the two hits in the underlying simulation.
- Colour coding:
 - False edges
 - True edges
2D hit matching

- In addition to reconstruction within each wire plane, can also consider 3D representations by matching 2D energy depositions between planes.
 - Work backwards from 2D hits to trajectory of underlying 3D simulated particle to draw true associations.
- Benefit of this approach: utilise heterogeneous graph nodes (ie. LArTPC optical detectors) to match between different detector technologies.
- Message-passing *between* planes may aid with clustering *within* each plane.
Summary

- Investigating development of GNNs for low-level reconstruction in LArTPCs.
- Graph approaches efficient on sparse data in its native form.
- 3D reconstruction applications (clustering, spacepoint reconstruction) not found to be effective.
 - Message-passing is not optimal for densely connected 3D graph.
 - Point cloud-based techniques are not computationally efficient for large point clouds.
- Developing 2D reconstruction:
 - Particle clustering in 2D views.
 - Clustering between 2D views & construction of higher-level objects.