Manifold reconstruction using linear approximations

Panchali Nag

Department of Mathematics, Duke University

April 22, 2020

Panchali Nag (Department of Mathematics, IManifold reconstruction using linear approxim

Tracks after Track finding, a few data points per particle

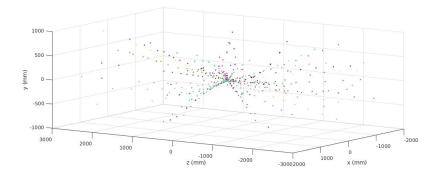
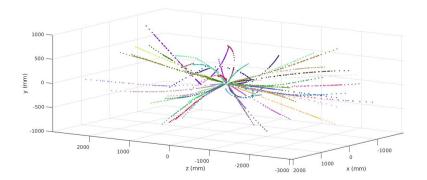
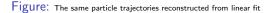


Figure: Particle trajectories from the TrackML dataset assuming track finding has been performed, different colors indicate different particles

April 22, 2020 2 / 13

Linear Track Fitting





April 22, 2020 3 / 13

▲□ > ▲圖 > ▲目 > ▲目 > □ = − の < @

Toy Example:

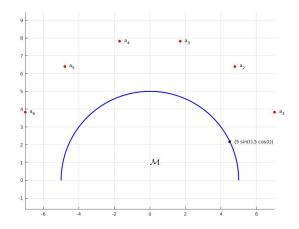


Figure: Semicircle and anchor points a_i

April 22, 2020 4 / 13

<ロ> (日) (日) (日) (日) (日)

Toy Example:

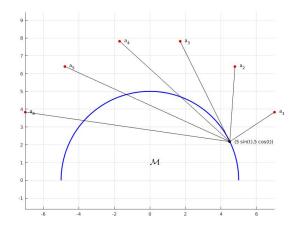
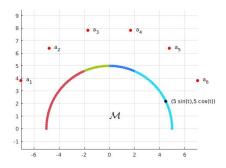
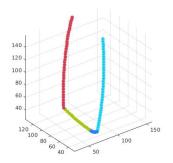


Figure: Compute the distances d_i

<ロ> (日) (日) (日) (日) (日)





consider the map $r\mapsto \left((d_1)^2,...,(d_6)^2
ight)$

Embedding of the semicircle by three max values of d_i

Panchali Nag (Department of Mathematics, IManifold reconstruction using linear approxim

April 22, 2020 6 / 13

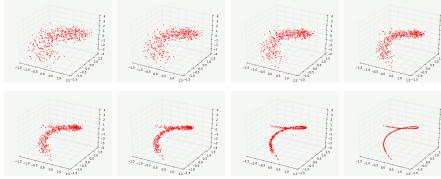
Some background of the theory

The linearity is established by proving that

- curves or manifold embedded in euclidean space when mapped to higher dimension by a function of the squared distance information with assumptions on the locations of a constellation of anchor points and assumptions on sectional curvature of *M*, can have their curvature lowered
- under certain sampling assumptions, most of the data obtained from the warped representation of the manifold can be well approximated by degree-1 regression that is by approximating the tangent (or tangent space)
- If the inverse of the map is unique and its output is smooth

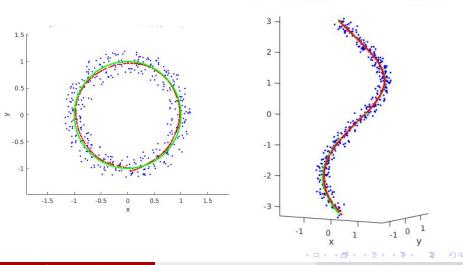
Manifold Moving Least Squares

• If the data is noisy or a smoothening step is required, there is a (polynomial regression) manifold learning algorithm (MMLS) by Barak Sober and David Levin.



 We can use the flattening strategy with degree-1 regression of MMLS to denoise

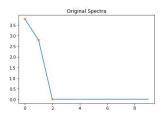
Denoising through linear regression (1 dim curve in 3 dim)



Panchali Nag (Department of Mathematics, Manifold reconstruction using linear approxim

Denoising through linear regression (2 dim manifold in 100 dim)

- 10-dim symmetric matrix UDU^T , where $UU^T = 1$ with 2 leading eigenvalues $\lambda_1 \in [2, 3], \lambda_2 \in [3, 4]$
- Each matrix is column stacked so that each matrix becomes an element in 10²-dim space
- Each coordinate is cubed
- We have a 2-dimensional non-linear (cubic) submanifold in R¹⁰⁰. With zero mean additive uniform noise of 0.5, below is the spectrum reconstruction



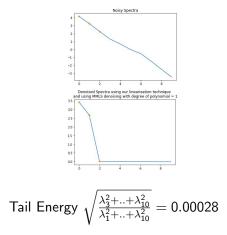


Image: A matrix

A B > A B >

Key points

() For certain collections of anchor points \mathbf{a}_i , the image under the map

$$\mathbf{r} \mapsto \left(f(|\mathbf{r} - \mathbf{a}_1|)^2, ..., f(|\mathbf{r} - \mathbf{a}_{\Gamma}|)^2 \right)$$
(1)

can have low curvature

Can find applications in denoising, reconstruction of curves and manifolds and generally to problems where the expression of the polynomial is not well known

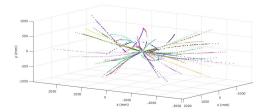
Key points

() For certain collections of anchor points \mathbf{a}_i , the image under the map

$$\mathbf{r} \mapsto \left(f(|\mathbf{r} - \mathbf{a}_1|)^2, ..., f(|\mathbf{r} - \mathbf{a}_{\Gamma}|)^2 \right)$$
(1)

can have low curvature

② Can find applications in denoising, reconstruction of curves and manifolds and generally to problems where the expression of the polynomial is not well known



References

[1] Nag, Panchali. "Manifold Denoising Using Distance Functions." 2019 New York Scientific Data Summit (NYSDS). IEEE, 2019.

[2] Sober, Barak, and David Levin. "Manifold approximation by moving least-squares projection (mmls)." Constructive Approximation (2019):

1-46, Sober, Barak PhD Thesis 2018

[3] Nag, Panchali. "Manifold Reconstruction using Linear Approximations" (in preparation)

- 本間 と えき と えき とうき

Thank You

・ロト ・四ト ・ヨト ・ヨト

3

13 / 13