
PARALLELIZING THE UNPACKING AND CLUSTERING
OF DETECTOR DATA FOR RECONSTRUCTION OF

CHARGED PARTICLE TRACKS ON MULTI-CORE CPUS
AND MANY-CORE GPUS

Giuseppe Cerati2, Peter Elmer3, Brian Gravelle5, Matti Kortelainen2, Vyacheslav
Krutelyov4, Steven Lantz1, Mario Masciovecchio4, Kevin McDermott1, Boyana Norris5,

Allison Reinsvold Hall2, Micheal Reid1, Daniel Riley1, Matevž Tadel4, Peter Wittich1, Bei
Wang3, Frank Wu ̈rthwein4, and Avraham Yagil4

1Cornell University, 2Fermi National Accelerator Laboratory, 3Princeton University,
4UC San Diego, 5University of Oregon

Connecting The Dots Workshop, April 22, 2020

Overview

• Motivation
• Towards mkFit at High Level Trigger (HLT)

• Unpacking of raw data format from CMS Silicon Strip Tracker (CMS SST)
• Structure-of-array (SoA) format

• Parallel “Three Threshold” Clustering Algorithm
• Enabling Multi-event Processing
• OpenMP nested parallelism in multicore CPU
• CUDA streams in GPU

• Performance Results
• Single event
• Throughput

• Summary and plans

Motivation

• Exponential growth in reconstruction time at increasing pile-up (PU). Tracking is by far the
most time-consuming step of CMS reconstruction
• Thus, tracking codes are a clear target for moving to GPU

• Current target: deploy as much as possible into the HLT for Run3 (2021-2024)
• Major CMS efforts include the Patatrack project (pixel reconstruction and tracking)

and mkFit (Kalman filter tracking)

Towards mkFit at HLT

• Tracking on GPUs enables new trigger capabilities and thereby physics reach of CMS
• Global tracking instead of regions-of-interest driven
• Tracking on a much larger fraction of Level-1 triggered events

• To avoid I/O and memory bottlenecks, the full tracking chain starting from the RAW
data needs to be included

• This presentation considers the unpacking, clustering and transformation of the silicon
strip tracker data as needed for tracking
• Memory bandwidth limited, so not well suited to GPU
• Currently CMS uses a serial algorithm. We investigated a parallelized and vectorized

implementation for CPU and GPU

Raw Data Format from CMS SST

• Event-by-event raw SST data are organized by Front End Driver (FED), in total 440
• Each FED has 96 optical channels and 256 strips per channel
• Each event has ~10M strips, 5% occupancy (for PU50)

• ADC values in a channel are usually compressed via zero suppression
• Think of each FED’s ADCs as a sparse matrix: channel = row, strips = column
• Zero suppression scheme is a variant of CSR (compressed spare row)

• Pre-measured calibration data are available for each detector strip. This incudes:
• Good or bad; gain value (i.e., the ratio of ADC value to charge); noise (in ADC units)

Channel
length Additional info in channel header

Start
strip # Count ADC ADC ADC

Start
strip # Count ADC ADC …

2 bytes 5 bytes 1 byte 1 byte 1 byte

to next channel to next cluster to next cluster

Unpacking Raw to SoA Data Format

• SoA data format is more efficient on CPU SIMD register and with coalesced memory
access on GPU

• Unpacking transforms all event-by-event raw data and calibration data in SoA format

Channel
length Additional info in channel header

Start
strip # Count ADC ADC ADC

Start
strip # Count ADC ADC …

Channel
length Additional info in channel header

Start
strip # Count ADC ADC ADC

Start
strip # Count ADC ADC …

strip #:

ADC: 0

0

N-1

N-1

N (~500k) is the number of active
strips in the tracker

M (~40k) is the
number of
channels in the
tracker

Channel 0

Channel M

Parallel “Three Threshold” Clustering

• Find seed strips (operations parallel
over all ADCs read out):
• Make a mask for seed candidates that

exceed the “seed threshold”
• Remove neighboring seed candidates
• Make an array of the indices of seed

candidates
• Form clusters (operations parallel

over clusters):
• Determine the left and right

boundaries by scanning for
consecutive strips above the channel
threshold

• Compute the cluster charge, centroid
and check against “cluster threshold”

Enabling Multi-event Processing

• GPU: CUDA streams (https://github.com/beiwang2003/strip_clustering_gpu/wiki)

• Use CUDA streams to launch multiple events concurrently on the same device
• Maximize GPU utilization
• Reduce data transfer overhead by overlapping communication and computation

• Use some of the PATATRACK GPU infrastructure (https://github.com/cms-patatrack/cmssw), especially
caching memory allocator

• CPU: Nested Parallelism in OpenMP
• Two levels of parallel-for loops: an outer level to handle different events, and an inner level to handle sets of

strips within a single event
• Vectorization via the OpenMP simd clause in the inner loop
• Ensure the right numbers of threads with proper thread affinities are given at each level

export OMP_NESTED=TRUE
export OMP_NUM_THREADS=n,m
export OMP_PLACES=cores
export OMP_PROC_BIND=spread, close
export KMP_HOT_TEAMS_MODE=1 (Intel only)
export KMP_HOT_TEAMS_MAX_LEVEL=2 (Intel only)

• Use first touch policy for NUMA aware memory placement

https://github.com/beiwang2003/strip_clustering_gpu/wiki
https://github.com/cms-patatrack/cmssw

Throughput

• We use the same TTBar PU70 event data to mimic the performance behavior of
running 840 total events

• Throughput: Total events #/time
• Each CPU test uses all nxm=28 cores with nested parallelism. For example 2(14) means

we have 2 concurrent events, where each event is processed by 14 threads.
• CPU throughput: 400-560 (events/s), GPU throughput: 546-649 (events/s)

Events
Currency n
(parallelization
within one
event m)

Iterations Total
Events

CPU Time
(seconds)

CPU
Throughput
(events/s)

GPU Time
(seconds)

GPU
Throughput
(events/s)

1 (28) 840 840 1.70 492 1.36 615

2 (14) 420 840 2.10 400 1.29 649
4 (7) 210 840 1.67 502 1.41 595
7 (4) 120 840 1.57 532 1.46 574

14 (2) 60 840 1.50 560 1.53 548

28 (1) 30 840 2.10 400 1.54 546

• Code version: ae35b56 committed
on Apr 6, 2020 at
https://github.com/beiwang2003/
strip_clustering_gpu/tree/debug

• System: Tigergpu at Princeton
Research Computing
• CPU: 2.4 GHz Xeon Broadwell

E5-2680 v4, 2x14 cores
• GPU: 1329 MHz P100, 56

multiprocessors

https://github.com/beiwang2003/strip_clustering_gpu/tree/debug

Summary and Plans

• Summary
• Enables parallelization and vectorization of the CMS strip tracker clustering algorithm
• Demonstrates very encouraging performance results on both multicore CPU and GPU

• Plans
• Integration with CMSSW
• GPU kernels should be reusable with minimal changes
• Use the PATATRACK infrastructure where possible

• Validation: expect to produce the identical results to the original CMSSW algorithm
• mkFit hit producer
• Convert clusters to global hit coordinates

• Also investigating feasibility of OpenCL implementation for FPGA

BACKUP

Flow Chart

Event 1 Event 2 Event n

