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Motivation

• Exponential growth in reconstruction time at increasing pile-up (PU). Tracking is by far the 
most time-consuming step of CMS reconstruction
• Thus, tracking codes are a clear target for moving to GPU 

• Current target: deploy as much as possible into the HLT for Run3 (2021-2024)
• Major CMS efforts include the Patatrack project (pixel reconstruction and tracking) 

and mkFit (Kalman filter tracking) 



Towards mkFit at HLT

• Tracking on GPUs enables new trigger capabilities and thereby physics reach of CMS
• Global tracking instead of regions-of-interest driven
• Tracking on a much larger fraction of Level-1 triggered events

• To avoid I/O and memory bottlenecks, the full tracking chain starting from the RAW 
data needs to be included

• This presentation considers the unpacking, clustering and transformation of the silicon 
strip tracker data as needed for tracking
• Memory bandwidth limited, so not well suited to GPU
• Currently CMS uses a serial algorithm. We investigated a parallelized and vectorized 

implementation for CPU and GPU



Raw Data Format from CMS SST

• Event-by-event raw SST data are organized by Front End Driver (FED), in total 440
• Each FED has 96 optical channels and 256 strips per channel
• Each event has ~10M strips, 5% occupancy (for PU50)

• ADC values in a channel are usually compressed via zero suppression 
• Think of each FED’s ADCs as a sparse matrix: channel = row, strips = column
• Zero suppression scheme is a variant of CSR (compressed spare row)

• Pre-measured calibration data are available for each detector strip. This incudes:
• Good or bad; gain value (i.e., the ratio of ADC value to charge); noise (in ADC units)

Channel 
length Additional info in channel header 

Start 
strip # Count ADC ADC ADC

Start 
strip # Count ADC ADC …

2 bytes                               5 bytes                           1 byte  1 byte  1 byte         

to next channel to next cluster to next cluster



Unpacking Raw to SoA Data Format

• SoA data format is more efficient on CPU SIMD register and with coalesced memory 
access on GPU 

• Unpacking transforms all event-by-event raw data and calibration data in SoA format

Channel 
length  Additional info in channel header 

Start 
strip # Count ADC ADC ADC

Start 
strip # Count ADC ADC …

Channel 
length Additional info in channel header 

Start 
strip # Count ADC ADC ADC

Start 
strip # Count ADC ADC …

strip #:

ADC: 0

0

N-1

N-1

N (~500k) is the number of active 
strips in the tracker  

M (~40k) is the 
number of 
channels in the 
tracker 

Channel 0

Channel M



Parallel “Three Threshold” Clustering

• Find seed strips (operations parallel 
over all ADCs read out):
• Make a mask for seed candidates that 

exceed the “seed threshold”
• Remove neighboring seed candidates 
• Make an array of the indices of seed 

candidates 
• Form clusters (operations parallel 

over clusters):
• Determine the left and right 

boundaries by scanning for 
consecutive strips above the channel 
threshold

• Compute the cluster charge, centroid 
and check against “cluster threshold” 



Enabling Multi-event Processing 

• GPU: CUDA streams (https://github.com/beiwang2003/strip_clustering_gpu/wiki)

• Use CUDA streams to launch multiple events concurrently on the same device
• Maximize GPU utilization
• Reduce data transfer overhead by overlapping communication and computation

• Use some of the PATATRACK GPU infrastructure (https://github.com/cms-patatrack/cmssw), especially 
caching memory allocator

• CPU: Nested Parallelism in OpenMP 
• Two levels of parallel-for loops: an outer level to handle different events, and an inner level to handle sets of 

strips within a single event
• Vectorization via the OpenMP simd clause in the inner loop
• Ensure the right numbers of threads with proper thread affinities are given at each level

export OMP_NESTED=TRUE
export OMP_NUM_THREADS=n,m
export OMP_PLACES=cores
export OMP_PROC_BIND=spread, close
export KMP_HOT_TEAMS_MODE=1 (Intel only)
export KMP_HOT_TEAMS_MAX_LEVEL=2 (Intel only)

• Use first touch policy for NUMA aware memory placement

https://github.com/beiwang2003/strip_clustering_gpu/wiki
https://github.com/cms-patatrack/cmssw


Throughput 

• We use the same TTBar PU70 event data to mimic the performance behavior of 
running 840 total events

• Throughput: Total events #/time
• Each CPU test uses all nxm=28 cores with nested parallelism. For example 2(14) means 

we have 2 concurrent events, where each event is processed by 14 threads.
• CPU throughput: 400-560 (events/s), GPU throughput:  546-649 (events/s)

Events 
Currency n
(parallelization 
within one 
event m)

Iterations Total  
Events 

CPU Time 
(seconds)

CPU 
Throughput 
(events/s)

GPU Time 
(seconds)

GPU 
Throughput 
(events/s) 

1 (28) 840 840 1.70 492 1.36 615

2 (14) 420 840 2.10 400 1.29 649
4 (7) 210 840 1.67 502 1.41 595
7 (4) 120 840 1.57 532 1.46 574

14 (2) 60 840 1.50 560 1.53 548

28 (1) 30 840 2.10 400 1.54 546

• Code version: ae35b56 committed 
on Apr 6, 2020 at 
https://github.com/beiwang2003/
strip_clustering_gpu/tree/debug

• System: Tigergpu at Princeton 
Research Computing
• CPU: 2.4 GHz Xeon Broadwell 

E5-2680 v4, 2x14 cores
• GPU: 1329 MHz P100, 56 

multiprocessors

https://github.com/beiwang2003/strip_clustering_gpu/tree/debug


Summary and Plans

• Summary
• Enables parallelization and vectorization of the CMS strip tracker clustering algorithm 
• Demonstrates very encouraging performance results on both multicore CPU and GPU

• Plans
• Integration with CMSSW 
• GPU kernels should be reusable with minimal changes
• Use the PATATRACK infrastructure where possible

• Validation: expect to produce the identical results to the original CMSSW algorithm
• mkFit hit producer 
• Convert clusters to global hit coordinates 

• Also investigating feasibility of OpenCL implementation for FPGA
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