A novel reconstruction algorithm for an imaging calorimeter for HL-LHC e.g. HGCAL

- Great potential (rich set of info); yet big challenges: pileup, comp resources, ...
- The Iterative CLustering framework (TICL):
 - Modular fwk designed to fully exploit HGCAL potential
 - Goal: process the energy deposited by particles and return particle properties and probabilities
 - Main components of TICL:
 - Clustering: developed CLUE algorithm
 - using a concept of local energy density
 - Pattern recognition/3D object reconstruction:
 - based on cellular automaton

TICL components

- Tracks
- PID
- Denoising
- Rechits
- 2D Clusters
- Seeding Region
- Tracksters
- PFTICLProducer
- Timing
- Energy Regression
- Trackster Splitting
- MIP
- Tracksters

NB: CLUE and TICL designed to be GPU-friendly
- Suitable for the upcoming era of heterogeneous computing in HEP

CLUE: clusters almost all deposited En.
TICL: contain a large fraction of it
En. resolution: Very encouraging results

Energy response

<table>
<thead>
<tr>
<th>CMS Phase 2</th>
<th>Simulation Preliminary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-(\gamma)</td>
<td>(</td>
</tr>
<tr>
<td>PU=0</td>
<td></td>
</tr>
</tbody>
</table>

Energy resolution

<table>
<thead>
<tr>
<th>CMS Phase 2</th>
<th>Simulation Preliminary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-(\gamma)</td>
<td>(</td>
</tr>
<tr>
<td>PU=0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stochastic</th>
<th>Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rec/able</td>
<td>23%</td>
</tr>
<tr>
<td>TICL</td>
<td>25%</td>
</tr>
</tbody>
</table>

Connecting the dots (2020)

Loukas Gouskos