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ABSTRACT

The Kalman Filter approach to fitting charged particle trajectories is widespread
in modern complex tracking systems. At the same time, the global fit of the
detector geometry using Newton-Raphson fitted tracks remains the baseline

method to achieve efficient and reliable track-based alignment which is free from
weak-mode biases affecting physics measurements. A brief reminder of the global
least squares formalism for track-based alignment and how Kalman Filter fitted

tracks can be equivalently used for the global fit as well as potential
computational benefits and use of additional constraints are reviewed.
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1 Introduction

Contemporary high energy physics experiments are equipped with high precision semiconductor tracking
systems of high complexity. In order to exploit their full potential an accurate determination of their geometry
is indispensable. This is usually achieved using so-called track-based alignment, whereby reconstructed tracks
are used as survey (gauge) tools for the detector elements.

The Global χ2 fit of the detector geometry using least squares-fitted (LS) tracks remains the baseline
method to achieve efficient and reliable track-based alignment which is free from weak-mode biases affecting
physics measurements. However, the Kalman Filter (KF) approach to fitting charged particle trajectories
is widespread in modern complex tracking systems. The natural question arises: Can KF-fitted tracks be
used for the the Global χ2 alignment, and at what cost? In the following we recall the basic formalism and
illustrate it with some very simplistic examples in order to gain better insight into the mechanism, in hope
of adding a pedagogical value.

2 Track models

There is a number of different fitting methods and corresponding track models. They generally split into
global, usually iterative, fit approaches and sequential update ones. From physics point of view, the only
relevant information returned by the fit are track parameters and their covariance at its origin, usually the
point of closest approach to the production vertex. In case of tracks used for alignment, however, these
are rather track parameters at subsequent measurement planes together with their full covariance, notably
the off-diagonal elements representing correlations between measurements in different tracking elements. An
alignment fit additionally uses derivatives of track residuals∗ w.r.t. the track parameters which may take
very different form depending on the track model.

2.1 The Least Squares track model

In the LS global approach track fit is based on the minimization of the χ2 defined as:

χ2 = ρTV −1ρ, with ρ ≡
(
r
θ

)
, V ≡

(
Ω 0
0 Θ

)
, (1)

where r represents a vector of residuals of measurements associated along the trajectory and θ is a vector
of trajectory deflection angles due to multiple Coulomb scattering (MCS) on the subsequent measurement
planes. V is an explicitly diagonal matrix representing measurement uncertainties and MCS standard
deviations, hence is of size nr + 2n, with n being the number of measurement planes and nr the number of
measurements† Tracks are parameterized by a single set of global parameters and two deflection angles per
material surface (≈ measurement plane):

π ≡
(
τ
θ

)
, τ = (d0, z0, φ, θ,Q/p) (2)

corresponding to a vector of 5 + 2n parameters.
Track parameter covariance matrix is given by:

C = Cov(π) =
(
HTV −1H

)
with H ≡ ∂ρ

∂π
. (3)

The crucial matrix H of size (nr + 2n)× (5 + 2n) is dense and generally highly nontrivial.

∗A residual is defined as a distance between the position of the signal cluster and the track intersection with the sensitive
detector element, usually measured in its local reference frame.
†It may, in general, be larger than n if a single plane provides more than one measurement, e,g, pixel detectors.
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2.2 The Kalman Filter track model

The Kalman Filter track fitting is based on sequential update of the state vector during the forward filtering
and backward smooting processes [1]. A track is represented by n state vectors and their corresponding
covariance matrices:

xk ≡ (l1, l2, φ, θ,Q/p)k, Ck (4)

resulting in 5n track parameters:
π ≡ (x1, ....,xn) . (5)

Residuals and their covariance are reduced to the measurement ones only:

ρ ≡ r = m− h(x), V ≡ Ω, (6)

while the scattering Θ contributes as the process random noise w in the update of the state vector:

xk+1 = Fkxk +wk, Ckk+1 = FkC
k
kF

T
k +Qk, (7)

where Fk is the state propagator and Qk = Cov(wk). The derivatives H ≡ ∂ρ
∂π , although given by a large

(nr + 2n) × 5n matrix are usually trivial and sparse. The full covariance matrix of the track parameters
appears large (5n× 5n):

C = Cov(π) =


C1 C1,2 . . . C1,n

C2,1 C2 . . . C2,n

. . . . . . . . . . . .
Cn,1 Cn,2 . . . Cn

 (8)

and is never fully constructed in the normal KF process. Only the diagonal sub-matrices Ck (5 × 5) are
obtained in:

filtering : Ckk = (1−KkHk)Ck−1k , Kk = Ck−1k HT
k

(
Vk +HkC

k−1
k HT

k

)−1
smoothing : Ck = Ckk + Sk(Ck+1 − Ckk+1)STk , Sk = (Fk)−1(Ckk+1 −Qk)(Ckk+1)−1,

(9)

where, Kk is the Kalman gain matrix while Sk is the commonly called the smoother gain matrix. The
smoothing step is necessary to propagate the full information about all measurements on the track back to
its origin.

3 The Global χ2 alignment

The track-based alignment of the tracking system relies on the minimization of the χ2 summed over all
considered tracks [2]:

χ2
global =

∑
i

χ2
i ,

dχ2
global

dα
= 0, ρ ≡ ρ(π(α),α), (10)

where both the the fitted tracks and the position detector measurements explicitly depend on alignment
parameters α. The full derivative with respect to the alignment parameters is then given by:

d

dα
=

∂

∂α
+

dπ

dα

∂

∂π
=

∂

∂α
−ATV −1HC ∂

∂π
, where A ≡ ∂ρ

∂α
. (11)

In the limit of small corrections, the χ2
global minimization problem can be solved using a linear expansion‡:

∆α = −
(
M−1

)︸ ︷︷ ︸
Cov(α)

R (12)

‡In practice this condition is sufficiently well satisfied. Nonetheless, alignment usually allows for a few iterations in order to
mitigate residual nonlinearities.
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with
R = 1

2
dχ2

dα
=
∑

tracksA
TV −1RV −1ρ,

M = 1
2

d2
χ2

dα2
=
∑

tracksA
TV −1RV −1A.

(13)

R = V − HCHT is the full covariance of the residuals of the track fit, the cornerstone of the alignment
principle. Any track model that is capable of returning this information is suitable to provide input for
alignment.

4 The Kalman Filter tracks for alignment

In order to use KF-fitted tracks for alignment one needs to recover the off-diagonal elements of the C matrix.
It has been shown that these can be obtained recursively using the already known smoother gain matrix [3]:

Ck,l = SkCk+1,l. (14)

The procedure requires 125n(n− 1) multiplications, provided Sk are known from the track fit. Calculation
of R = V −HCHT appears faster for the KF than LS tracks thanks to the sparse nature of H.

Constraints on KF track parameters can be introduced just as in the LS fit [2] by adding pseudo-
measurements in the filtering. It can be thought of as providing a meaningful prior.

If several tracks have been fitted to a common vertex, the covariance of each track at the vertex position

C
(i)
0 gets modified by the additional measurement [4]. This can be propagated forward to the states at

subsequent measurement planes to yield their full covariance:

C̃
(i)
k,l = C

(i)
k,l + C

(i)
k,0

(
C

(i)
0

)−1
(C̃

(i)
0 − C

(i)
0 )

(
C

(i)
0

)−1
C

(i)
0,l (15)

Even more importantly, the vertex introduces precious correlations between any two states in any two
tracks:

C̃
(i,j)
k,l = 0 + C

(i)
k,0

(
C

(i)
0

)−1
(C̃

(i,j)
0 − 0)

(
C

(j)
0

)−1
C

(j)
0,l (16)

All above additional constraints allow to mitigate weak modes of alignment which lead to systematic
deformations and can bias reconstructed track parameters.

5 Super-simple examples

In the following we illustrate solutions to alignment problem using the simplest possible setups and ignoring
process noise (MCS) which in real case always has to be included.

5.1 LS track fit

Let us consider a LS fit of a straight line through three equidistant vertical planes providing measurements
with a common uncertainty σ, as schematically illustrated in Fig.1a. The measurement covariance, derivative
matrix and the resulting covariance matrix of the fitted parameters π = (a0, b0) are given by:

V =

 σ2 0 0
0 σ2 0
0 0 σ2

 , H =
∂ρ

∂π
=

 d 1
2d 1
3d 1

 , C = (HTV −1H)−1 =

(
σ2

2d2
−σ2

d
−σ2

d
7σ2

3

)

Hence, we get the full covariance of the fitted residuals:

R = V −HCHT =

 σ2

6
−2σ2

6
σ2

6
−2σ2

6
4/σ2

6
−2σ2

6
σ2

6
−2σ2

6
σ2

6

 .
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d 2d 3d

p=(a0,b0)

0

(a)

d 2d 3d

x1=(a1,b1)

x3=(a3,b3)

x2=(a2,b2)

0

(b)

Figure 1: A fit of a straight line through three equidistant measurements (in the vertical direction) with
common uncertainties. (a) the LS fit, (b) the KF fit.

5.2 KF track fit

Now, let us perform a KF fit through the same three equidistant measurements with a common uncertainty
σ, as illustrated in Fig.1b. The derivative matrix takes a particularly simple, sparse form as track parameters
are defined in the local reference frame of the measurement plane. The track parameter§ covariance matrix
is obtained by the filtering and smoothing to get the block-diagonal elements, as shown black in Eq. 9. The
remaining off-diagonal ones (in blue) are recovered recursively using Eq. 14:

H =
∂ρ

∂π
=

 0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 , C =



σ2

2d2
−σ2

2d
σ2

2d2
−σ2

2d
σ2

2d2
−σ2

2d
−σ2

2d
5σ2

6 0 σ2

3
σ2

2d
σ2

6
σ2

2d2 0 σ2

2d2 0 σ2

2d2 0
−σ2

2d
σ2

3 0 σ2

3
σ2

2d
σ2

3
σ2

2d2
σ2

2d
σ2

2d2
σ2

2d
σ2

2d2
σ2

2d
−σ2

2d
σ2

6 0 σ2

3
σ2

2d
5σ2

6


Despite very different form of the derivatives and track covariance, the resulting full covariance of the fitted
residuals is exactly identical to the one obtained with the LS fit:

R = V −HCHT =

 σ2

6
−2σ2

6
σ2

6
−2σ2

6
4/σ2

6
−2σ2

6
σ2

6
−2σ2

6
σ2

6

 ,

which is the sought after result.

5.3 The Global χ2 alignment solution

As a next step we find solution to the alignment, or rather the alignment parameter weight matrixM, which
after inversion gives the covariance of the alignment parameters. For sake of simplicity, let us assume that
each measurement belongs to a vertical measurement plane with just a single degree of freedom (DoF), i.e.
can move in the measurement direction, as shown in Fig. 2.

The derivatives of the residuals w.r.t. alignment parameters are trivially obtained and give us the system
of linear equations for the alignment problem:

A ≡ ∂ρ

∂α
=

 1 0 0
0 1 0
0 0 1

 , M = ATV −1RV −1A =

 1
6σ2

−2
6σ2

1
6σ2

−2
6σ2

4
6σ2

−2
6σ2

1
6σ2

−2
6σ2

1
6σ2

 , R =

 r1−2r2+r3
6σ2

−2r1+4r2−2r3
6σ2

r1−2r2+r3
6σ2

 .

§Recall, that in the KF model tracks are parameterized at each measurement plane, in our case by three pairs of local track
parameter (ai, bi); π = (a1, b1, a2, b2, a3, b3).
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d 2d 3d

X1

0

X2

X3

shift

skew

sagitta

Figure 2: Alignment of three measurement planes with one DoF (vertical translation) each. X1, X2, X3 show
the three eigenmodes of the solution. The modes marked in red are singular in the unconstrained solution.

The matrix M is singular leading to two weak modes¶ of the alignment solution:

λ1 = 0, X1 =

 1
1
1

 , λ2 = 0, X2 =

 −1
0
1

 , λ3 =
1

σ2
, X3 =

 1
−2

1

 .

5.4 Adding constraints on the Global χ2 alignment solution

The free-flying solution obtained in the previous section does not represent a meaningful solution in practical
terms. In order for it to be so, one needs to impose additional, well motivated constraints in order to mitigate
the weak (singular) modes. In alignment problems there are three types of such constraints: on alignment
parameters (or their linear combinations), on individual track parameters and on common vertices of several
tracks‖. The first one is straightforward and not discussed here. The latter two enter the alignment solution
via the covariance of the fitted track parameters.

In our simple example let us assume a perfect knowledge of the a0 parameter. In the KF process this
is equivalent to using a prior for a0 with an infinitesimally small uncertainty. The constraint results in
removing one of the two weak modes, the skew:

λ1 = 0, X1 =

 1
1
1

 , λ2 =
1

σ2
, X2 =

 −1
0
1

 , λ3 =
1

σ2
, X3 =

 1
−2

1

 .

The resulting M matrix is still singular due to the remaining global translation, though. This one could be
removed by either introducing an arbitrary constraint on the motion of any of the measurement planes or
imposing a constraint on the b0 track parameter.

Another and very powerful constraint comes with the requirement of a common vertex of two or more
tracks. In order to illustrate this, let us consider the setup shown in Fig. 3. Two tracks (A and B) are
fitted through three detector elements. For the sake of maximal simplicity only the two elements at position
d are free to move in the vertical direction, while the measurement plane at 2d remains frozen. The two
eigenmodes of the solution, X1 and X2 would both be singular without any further constraints.

Imposing a requirement of the common vertex (yA(0) = yB(0) = b0) correlates parameters of the two
tracks. At the vertex position (x = 0) the joint covariance matrix of the two track parameters (aA0 , b

A
0 , a

B
0 , b

B
0 )

¶In alignment problems, it is customary to use the term weak mode for both strictly singular eigenmodes of the solution as
well as the eigenmodes with unacceptably large uncertainties. Here, we are dealing with explicitly singular solutions, of course.
‖Other methods of mitigating weak modes are known, e.g. using tracks with different topology, notably cosmic muons.

However, this does not require any special treatment from the formal point of view and as such is not discussed here.
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d 2d

X1

0

X2

b0
B

A

Figure 3: Alignment of two measurement planes with one DoF (vertical translation) each and using two
tracks. X1, X2 show the eigenmodes of the solution. The mode marked in blue looses its singularity after
imposing the common vertex constraint.

reads:

CAB
0 =


11σ2

10d2
−15σ2

10d
9σ2

10d2
−15σ2

10d
−15σ2

10d
25σ2

10
−15σ2

10d
25σ2

10
9σ2

10d2
−15σ2

10d
11σ2

10d2
−15σ2

10d
−15σ2

10d
25σ2

10
−15σ2

10d
25σ2

10


The matrixM is singular due to the unconstrained vertex position. However, the other singularity is removed
via correlation between A and B:

λ1 = 0, X1 =

(
1
1

)
, λ2 =

4

5σ2
, X2 =

(
−1

1

)
.

As a result, such geometry is free from deformation which would otherwise compromise vertexing capability
of the detector.

5.5 Conclusions

In track-based alignment problems tracks are merely tools providing correlations between measurements
recorded by detector elements. Kalman Filter provides a track fit which is equivalent to the least squares
one but represented in a different model. The off-diagonal elements of the covariance matrix of the track
parameters, i.e. correlations between different track Kalman states, can be recovered recursively using the
smoother gain matrix. The full calculation does not appear computationally more intense than in the
LS case. It may, however, be more numerically stable thanks to very simple structure of the H matrix,
hence democratic treatment of all measurements. In turn, H matrix of the LS track fit is dense and highly
nontrivial. Constraints on track parameters can be introduced as in the LS by adding pseudo-measurements
in the filtering process. Other constraints, such as common vertex or invariant mass of several tracks, etc. can
be equally introduced with full propagation to Kalman states which does not involve large matrix inversions.
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