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ABSTRACT

sPHENIX is a new experiment that is being constructed at the Relativistic Heavy
Ion Collider at Brookhaven National Laboratory. The primary physics goals of
sPHENIX are to measure jets, their substructure, and the upsilon resonances in
p+p, p+Au and Au+Au collisions. To realize these goals, a tracking system

composed of a time projection chamber and several silicon detectors will be used
to identify tracks that correspond to jets and upsilon decays. However, the
sPHENIX experiment will collect approximately 200 PB of data utilizing a

finite-sized computing center; thus, performing track reconstruction in a timely
manner is a challenge due to the large occupancy of heavy-ion collisions. The
sPHENIX experiment, its track reconstruction, and the need for implementing

faster track -fitting algorithms, such as that provided by the A Common Tracking
Software package, into the sPHENIX software stack are discussed.
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1 Introduction

The sPHENIX experiment is a next-generation jet and heavy flavor detector being constructed for operation
at the Relativstic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) [1]. The primary
physics goal for sPHENIX is to study strong force interactions by probing the inner workings of the quark-
gluon-plasma (QGP) created in heavy nucleus-nucleus collisions, as outlined in the 2015 Nuclear Physics
Long-Range Plan [2]. sPHENIX will also probe the structure of protons and nuclei in proton-proton and
proton-nucleus collisions [3]. To achieve these goals, the detector is designed as a precision jet and heavy-
flavor spectrometer. Jets, and their structure, can resolve strong force interactions at different scales when
parton flavor is selected due to the difference in mass between heavy and light quarks. Similarly, the
measurement of Υ(1S) and its first two excited states allow different screening temperatures of the QGP to
be accessed. To achieve these physics goals, precise tracking capabilities are required.

However, accomplishing the precision tracking that is required for these measurements in the environment
that RHIC will provide to sPHENIX will be a significant challenge. The accelerator will deliver Au+Au
nucleus collisions at

√
s
NN

= 200 GeV at a rate of up to ∼200 kHz, which means that sPHENIX will
experience between three to eight pileup events per bunch crossing. Central heavy ion collisions can produce
approximately 1,000 particles per event; therefore, the occupancy in the detector will be extremely high.
Over a 3 year running period, while sPHENIX collects data at a rate of 15 kHz, these conditions will lead
to an accumulation of nearly 250 PB of data. The data processing will also be performed on a finite-sized
computing center at BNL. Therefore, sPHENIX requires high-speed, efficient, and precise tracking in an
environment in which O(100,000) hits are expected within the tracking detector volume. To process and
analyze the data in a timely fashion given these constraints, the track reconstruction software must be able
to track an entire event within a 5 second budget on the 450,000 HS06 unit processing farm available at BNL.
To reach this goal, A Common Tracking Software (ACTS) [4, 5] is being implemented into the sPHENIX
software stack.

2 sPHENIX Detector and Physics Requirements

The sPHENIX spectrometer is a midrapidity barrel detector with full azimuthal and pseudorapidity |η| < 1.1
acceptance, and includes tracking and electromagnetic and hadronic calorimeters. An engineering drawing of
the detector is shown in Fig. 1. The primary tracking detectors are a monolothic active pixel sensor (MAPS)
based vertex detector (MVTX), the Intermediate Tracker (INTT), and a time projection chamber (TPC).
The MVTX has three layers of silicon staves that cover a radial distance of approximately 2 < r < 4 cm from
the beam pipe. The INTT has two layers of silicon strips and covers approximately 7 < r < 10 cm. The
TPC is the primary tracking detector within sPHENIX and is a compact, continuous readout gas electron
multiplier (GEM)-based TPC. These detectors are described in greater detail in the sPHENIX Technical
Design Report [6].

The physics requirements for tracking are largely driven by the goals to reconstruct the Υ(1S), (2S),
and (3S) states, measuring large transverse momentum jets, and jet substructure. To measure the three
upsilon states, e+e− pairs from upsilon decays must be resolved with a mass resolution of less than 100
MeV. Therefore, tracks with a momentum of 4-8 GeV must have a resolution of approximately 1.2%. To
resolve high momentum tracks for jet substructure measurements, the tracking must have a resolution at
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Figure 1: An engineering diagram of the sPHENIX detector design. The MVTX and INTT are two subde-
tectors that are composed of silicon staves, shown in orange and grey, respectively. The TPC is a continuous
readout GEM-based detector, and the TPC cage is shown in yellow.

high pT of approximately ∆p/p ' 0.2% · p. Figure 2 shows an example mass spectrum of the three upsilon
states as reconstructed in

√
s = 200 GeV p+p collisions. In addition to these requirements, the tracking

must be robust against large combinatoric background environments, particularly within the TPC. Since
the drift time is longer than the nominal bunch spacing provided by RHIC, there is potential for significant
out-of-time pileup sampled in the TPC.

Figure 2: An example invariant mass spectrum for upsilon mesons reconstructed in sPHENIX simulations.
The upsilon spectroscopy physics program largely drives the resolution requirements of the tracking.

Currently, sPHENIX uses Hough track seeding and the GenFit2 [7] package to perform track propagation
and track fitting. In particular, the Hough seeding takes O(100) seconds per event, which is too slow for
sPHENIX’s computing needs. The collaboration is actively exploring Cellular Automaton seeding using
RTrees, which is a geometric indexing that provides seeds based on nearest neighbors. The left panel in
Fig. 3 shows the seeding CPU time per minimum bias plus 100 kHz pileup event when using RTrees only;
this improves the seeding time by several orders of magnitude compared to the Hough seeding. Current
efforts to implement Cellular Automaton indicate further improvements. The right panel of Fig. 3 shows the
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total time to perform track fitting in GenFit with the RTree seeding implementation. The current tracking
algorithm gives approximately 9 seconds per event to perform the full track fit. Therefore, to meet the
desired goal of 5 seconds per event given the challenging experimental conditions in which sPHENIX will
operate, sPHENIX is exploring the ACTS software package.

Figure 3: The CPU time for RTree seeding (left). The total CPU time for the track fitting procedure in the
current sPHENIX tracking framework (right). Note the different scales of the x axes in the figures.

3 ACTS Implementation in sPHENIX

ACTS is a software package that is being developed by members of several different particle physics col-
laborations. ACTS is intended to be an experiment-independent set of track reconstruction tools written
in modern C++ that is performant yet customizable. The toolkit development was largely motivated by the
High-Luminosity Large Hadron Collider (HL-LHC) that will begin data taking in 2027. At the HL-LHC,
ATLAS and CMS expect environments in which roughly 200 p+p collisions per bunch crossing occur [8].
Therefore, the speed at which data are processed must be dramatically improved to accommodate the signif-
icantly larger data rates. This, in addition to modernizing certain tracking code, prompted the development
of ACTS. sPHENIX expects roughly comparable hit occupancies with three to eight heavy ion collisions per
bunch crossing as what is expected at the HL-LHC; thus, ACTS is a natural candidate for tracking in the
types of environments expected at sPHENIX.

The first step for implementing ACTS into the sPHENIX software stack is to properly translate the
tracking detector geometry into the expected ACTS geometry. The main detector element used for track
fitting is the Acts::Surface. ACTS has an available ROOT TGeometry plugin that can take the relevant
active TGeo objects and convert them into Acts::Surfaces. Since sPHENIX already has a detailed and well-
tested GEANT4 geometry description that uses the ROOT TGeoManager, this plugin was a natural choice.
Figure 4 shows the MVTX and INTT active silicon surfaces as implemented within ACTS. The geometry
is imported directly from the TGeoManager, so any changes in the sPHENIX GEANT4 description will be
automatically propagated to the Acts::Surface description.

The TPC implementation is not as straightforward because, at the time of writing, ACTS does not
support continuous volume geometries for tracking. This is because track fitting is performed measurement-
by-measurement on the local surfaces; this is not possible for a TPC since clusters can be formed anywhere
within the continuous TPC volume. The implementation of global track fitting is an ongoing effort within
ACTS to allow the use of drift chamber and TPC geometries. In the meantime, the sPHENIX TPC is
modeled as a set of layered surfaces that correspond to the TPC readout layers. This models the TPC as
a set of concentric cylindrical layers in which each cylinder is divided into surfaces that span half the TPC
length in z and 10◦ in azimuthal angle. Figure 5 shows this current TPC implementation within ACTS.

To provide ACTS with the information necessary for performing the track fitting, the sPHENIX software
maps the relevant sPHENIX tracking objects to the analogous ACTS tracking objects. These maps are
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Figure 4: The sPHENIX MVTX and INTT silicon detectors as implemented within ACTS.

Figure 5: The sPHENIX TPC as currently implemented within ACTS. The TPC surfaces are shown in red,
and the MVTX and INTT surfaces are shown in yellow and blue, respectively.

maintained so that the sPHENIX objects can be passed to ACTS, and then the returned ACTS objects can
be mapped back to their corresponding sPHENIX counterparts. For example, the primary class responsible
for cluster or hit information is the Acts::SourceLink. Therefore, a map is created that links a sPHENIX
cluster, or TrkrCluster, to the corresponding Acts::SourceLink with the same hit and surface information.
The software is written in a modular way so that each step of data preparation for ACTS is contained within
its own sPHENIX module. This allows for flexibility in the track fitting process so that any of the various
seeding, propagating, or fitting algorithms can be swapped in and out to test the functionality of various
combinations.

4 Conclusions

The sPHENIX experiment is a dedicated jet and heavy-flavor experiment that is being constructed at RHIC.
sPHENIX will measure a variety of strong force interaction physics in proton-proton, proton-nucleus, and
nucleus-nucleus collisions. To achieve the physics goals, precise tracking must be implemented that can
withstand large backgrounds from out-of-time pileup collisions in all three collision systems. Additionally,
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the data must be reconstructed in a timely manner on a fixed computational center available at BNL. To
reach the current tracking budget of 5 seconds per event in minimum bias heavy ion collisions with 100 kHz
pileup, sPHENIX is implementing the ACTS tracking reconstruction toolkit. The sPHENIX geometry has
been appropriately implemented, and the the track fitter performance is being studied. Future results will
identify whether ACTS will meet the computational goals and physics requirements for sPHENIX.
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