

FSI qualification for Internal monitoring

Alignment review 2019

<u>Outline</u>

Internal monitoring

Crab-Cavities in SPS accelerator

Crab-Cavities project

Dipole-test in SM18

 Dipole Test project (Test for HL-LHC quadrupole)

Internal monitoring

<u>Objective</u> : determine the position of inner component inside a vacuum vessel (Cryostat, Cryomodule)

Environment :

- Temperature : 1.9 K (Cryogenics conditions) \approx 271°C
- Vacuum : 10-6 mBar
- Radiation : 1 MGy / year

Accuracy :

• 0.1 mm w.r.t. vacuum vessel

FSI : Frequency Scanning Interferometry

Absolute distance measuring interferometric technique

Accuracy : 0.5 µm per meter

Crab-cavities project

Configuration

8 FSI distances by Cavity for 7 unknowns

beam

Validation at Warm condition

FSI (absolute distances)

BCAM (Angle measurements)

Laser Tracker (Angles and distances measurements)

Vivien RUDE

7

26.08.2019

Intercomparison between FSI / BCAM / Laser Tracker (Before cooling down)

L-LHC PROJEC

FSI, BCAM systems precision better than 50μm (1σ), crosschecked with AT401 laser tracker measurements

Cooling Down in SPS : From 293 K to 4K

Accuracy : $< 50 \ \mu m \ (1\sigma)$

HL-LHC PROJEC

Long term stability

Since April 2018, the monitoring of the Crabcavities worked correctly.

Parameter	Precision (1 σ)
Tx (radial)	+/- 25 μm
Ty (longitudinal)	+/- 45 μm
Tz (vertical)	+/- 10 μm
Rx (pitch)	+/- 30 µrad
Ry (roll)	+/- 150 µrad
Rz (yaw)	+/- 70 µrad
Scale	+/- 60 ppm

Redundancy :

- 8 observation for 7 unknowns \rightarrow 1 degree of freedom
- If some optical sight views are not possible \rightarrow Hypothesis (for example : Fixed Ry or Tx)

Objective

In order to validate the internal monitoring solution for the Low-Beta quadrupoles, a dipole has been used as test setup.

- Vacuum : 10⁻⁶ mbar
- Temperature : 1.9 K

Configuration

Long object (15 m) \rightarrow Cryostat and cold mass may not be considered as rigid body \rightarrow Measurement on 3 sections

Deformation up to 0.25 mm has been observed

Summary of first tests (2017 - 2018)

Cryo-condensation

 Cryo-condensation on the laser reflectors is a main showstopper for optical distance measurements in "dusty" cryostat

Insulated support

Test summary (end 2018)

26.08.2019

Cold mass

Acquisition system : FSI

Commercial : Etalon

Multi-Targets : CERN

FSI Head

Feedthrough (adjustable) Feedthrough (fixed) Window

Collimator

Parallel lens

Divergent collimator

Targets

Newport reflector (3 mirrors) Glass sphere without coating Glass sphere with coating

Target Support

Insulated target

Nothing

Schedule

3 Cooling-down

Conclusion

Acquisition system : FSI

Commercial : Etalon

Multi-Targets : CERN

Targets

Newport reflector (3 mirrors)

Glass sphere without coating

Glass sphere with coating

FSI Head

Feedthrough (adjustable)

Feedthrough (fixed)

Window

Collimator

Parallel lens

Divergent collimator

Target Support Insulated target Nothing

Internal monitoring

Crab-cavity

Parameter	Precision (1σ)	
Tx (radial)	+/- 25 μm	
Ty (longitudinal)	+/- 45 μm	
Tz (vertical)	+/- 10 μm	
Rx (pitch)	+/- 30 µrad	
Ry (roll)	+/- 150 µrad	
Rz (yaw)	+/- 70 µrad	
Scale	+/- 60 ppm	

Parameter	Precision (1σ)
Tx (radial)	+/- 50 μm
Ty (longitudinal)	+/- 55 μm
Tz (vertical)	+/- 15 μm
Rx (pitch)	+/- 5 µrad
Ry (roll)	+/- 1500 µrad
Rz (yaw)	+/- 5 µrad
Scale	+/- 10 ppm

Thank you for your attention

On behalf of :

- Mateusz Sosin
- Hélène Mainaud Durand
- Thibault Dijoud
- Mathieu Duquenne
- Anna Zemanek
- Kacper Widuck
- Jan Gabka

SPARE

Thermal contraction : From 293 K to 4 K

Y (mm) - Longitudinal position

determined with FSI measurements : RELATIVE (.K)

CONTRACTION	Cav 1		Cav 2	
	IN (mm)	OUT (mm)	IN (mm)	OUT (mm)
Simulation	1.097	0.678	1.097	0.678
SM18	1.321	0.843	1.295	0.832
SPS	1.310	0.834	1.320	0.835

Phase 4 : Results (Warm condition)

IL-LHC PROJEC

Etalon (convergent beam) + Window + Newport reflector Multi-targets (divergent beam) + Window + Newport reflector Multi-targets (divergent beam) + Window + Glass sphere High Multi-targets (divergent beam) + Window + Glass sphere Low Etalon (convergent beam)+ Window + Glass sphere with coating Multi-targets (divergent beam)+ Window + Glass sphere with coating Multi-targets (divergent beam)+ Feedthrought + Glass sphere with coating

4.2

4.3

4.3

4.2

4.3

Phase 4 : Results (Warm condition)

Etalon (convergent beam) + Window + Newport reflector Multi-targets (divergent beam) + Window + Newport reflector Multi-targets (divergent beam) + Window + Glass sphere High Multi-targets (divergent beam) + Window + Glass sphere Low Etalon (convergent beam) + Window + Glass sphere with coating Multi-targets (divergent beam) + Window + Glass sphere with coating Multi-targets (divergent beam) + Feedthrought + Glass sphere with coating

Phase 4 : Results (Cold condition)

Section 2

2.3

Radial [mm]

2.3

Radial [mm]

2.4

igodol

2.4

2.3

Radial [mm]

2.5

2.5

2.4

IL-LHC PROJEC

75.8 ⊾ 3.9

76.2

76

75.8 └ 3.9

4.1

Radial [mm]

•

4.1

Radial [mm]

4.2

4.3

4

4

4.2

4.3

Etalon (convergent beam) + Window + Newport reflector Multi-targets (divergent beam) + Window + Newport reflector Multi-targets (divergent beam) + Window + Glass sphere High Multi-targets (divergent beam) + Window + Glass sphere Low Etalon (convergent beam)+ Window + Glass sphere with coating Multi-targets (divergent beam)+ Window + Glass sphere with coating Multi-targets (divergent beam)+ Feedthrought + Glass sphere with coating

Phase 4 : Results (Cold condition)

Etalon (convergent beam) + Window + Newport reflector Multi-targets (divergent beam) + Window + Newport reflector Multi-targets (divergent beam) + Window + Glass sphere High Multi-targets (divergent beam) + Window + Glass sphere Low Etalon (convergent beam) + Window + Glass sphere with coating Multi-targets (divergent beam) + Window + Glass sphere with coating Multi-targets (divergent beam) + Feedthrought + Glass sphere with coating

