

Specific Case: Crab-cavities

Alignment review 2019

Vivien RUDE *2019-08-26*

Context

Assembly measurements of the DQW prototype

- Measurement on the associated infrastructures
- Workflow (Assembly of the Crab-cavities)
- Installation of FSI system
- Validation at warm and cold conditions
- Installation of the DQW prototype in SPS tunnel

Extrapolate to the next Crab-cavities

- Extrapolate to the RFD prototype
- Extrapolate to the 10 Crab-cavities assembled through in kind contribution (from UK and Canada)

Objective of this presentation:

To give you an idea review of the different steps activities for the assembly measurements of the DQW prototype.

→ Review of the activities linked with crab-cavities in the chronological order

Outline

- Assembly measurements of the DQW prototype
 - Measurement on the associated infrastructures
 - Workflow (Assembly of the Crab-cavities)
 - Installation of FSI system
 - Validation at warm and cold conditions
 - Installation of the DQW prototype in SPS tunnel
- Extrapolate to the next Crab-cavities
 - Extrapolate to the RFD prototype
 - Extrapolate to the 10 Crab-cavities assembled through in kind contribution (from UK and Canada)

- Trolley
- Gantry crane

- Trolley
- Gantry crane

ISO 5

Vanne 1

Cav.1

Cav.2

Vanne 2

Trolley

Path of the component (Trajectory):

< 0.1 mm for 1 m of displacement

ISO 4

- Trolley
- Gantry crane

Objective:
Path of the component (Trajectory):

< 0.1 mm for 1 m of displacement

26.08.2019

Vivien RUDE

- Trolley
- Gantry crane

Objective : Path of the crane (Trajectory) :

< 1 mm for 1 m of displacement

- Trolley
- Gantry crane

Objective : Path of the crane (Trajectory) :

< 1 mm for 1 m of displacement

Outline

- Assembly measurements of the DQW prototype
 - Measurement on the associated infrastructures
 - Workflow (Assembly of the Crab-cavities)
 - Installation of FSI system
 - Validation at warm and cold conditions
 - Installation of the DQW prototype in SPS tunnel
- Extrapolate to the next Crab-cavities
 - Extrapolate to the RFD prototype
 - Extrapolate to the 10 Crab-cavities assembled through in kind contribution (from UK and Canada)

- Determination of the mechanical axis → Capacitive plate of the cavities
- Fiducialisation of the Dressed Cavities
- String line assembly in clean room
- Installation of the others components on the string line
- Final alignment of the string line
- Installation of the top plate (supporting plate of the string line)
- Insertion of string line in the cryomodule

- Determination of the mechanical axis → Capacitive plate of the cavities
- Fiducialisation of the Dressed Cavities
- String line assembly in clean room
- Installation of the others components on the string line
- Final alignment of the string line
- Installation of the top plate (supporting plate of the string line)
- Insertion of string line in the cryomodule

Metrology step	Cavity 1	Cavity 2
Before treatment	-0.691	-0.291
After treatment	-0.673	No metrology
After tunning	-0.661	-0.165
Capacitive plate : Pins check	-0.553	No metrology
After tank welding	-0.557	-0.040

- Determination of the mechanical axis → Capacitive plate of the cavities
- Fiducialisation of the Dressed Cavities
- String line assembly in clean room
- Installation of the others components on the string line
- Final alignment of the string line
- Installation of the top plate (supporting plate of the string line)
- Insertion of string line in the cryomodule

12

3D measurement of :

- Mechanical axis
- Position of FPC, Coupler, Tuner, ...
- FSI targets
- BCAM targets
- Laser Tracker targets

- Determination of the mechanical axis → Capacitive plate of the cavities
- Fiducialisation of the Dressed Cavities
- String line assembly in clean room
- Installation of the others components on the string line
- Final alignment of the string line
- Installation of the top plate (supporting plate of the string line)
- Insertion of string line in the cryomodule

Objective / Results:

- Alignment before the assembly : < 0.1 mm (regression line)
- Control the alignment after the assembly : < 0.2 mm (regression line)
- Impact of vacuum on the string line: < 0.1 mm

Vane 1

Vertical displacement between : Without vacuum and under vacuum

- Determination of the mechanical axis → Capacitive plate of the cavities
- Fiducialisation of the Dressed Cavities
- String line assembly in clean room
- Installation of the others components on the string line
- Final alignment of the string line
- Installation of the top plate (supporting plate of the string line)
- Insertion of string line in the cryomodule

Objective / Results :

- Cryogenic line : at 1 mm
- Oblong bellows plate : at 1 mm
- ٠..

14

Y=- 2217.84 [-2218.5]

- Determination of the mechanical axis → Capacitive plate of the cavities
- Fiducialisation of the Dressed Cavities
- String line assembly in clean room
- Installation of the others components on the string line
- Final alignment of the string line
- Installation of the top plate (supporting plate of the string line)
- Insertion of string line in the cryomodule

Objective / Results:

Alignment : < 0.1 mm

- Determination of the mechanical axis → Capacitive plate of the cavities
- Fiducialisation of the Dressed Cavities
- String line assembly in clean room
- Installation of the others components on the string line
- Final alignment of the string line
- Installation of the top plate (supporting plate of the string line)
- Insertion of string line in the cryomodule

Objective / Results:

- Installation of the top plate: at 0.2 mm
- Installation of the string line : at 0.2 mm
- → Taking into account the trajectory of the gantry crane

Z = 524.88

[525.13

Z = 524.99

[525.13]

X = -137.42

[-137.5]

Y= -2067.794

X = -137.47

[-137.5]

[525.13]

X = -137.38

[-137.5]

Z = 524.96

[525.13], D=275.04 [275]

Z = 524.9

[525.13]

[525.13]

X = -137.59

[-137.5]

- Determination of the mechanical axis → Capacitive plate of the cavities
- Fiducialisation of the Dressed Cavities
- String line assembly in clean room
- Installation of the others components on the string line
- Final alignment of the string line
- Installation of the top plate (supporting plate of the string line)
- Insertion of string line in the cryomodule

17

- Determination of the mechanical axis → Capacitive plate of the cavities
- Fiducialisation of the Dressed Cavities
- String line assembly in clean room
- Installation of the others components on the string line
- Final alignment of the string line
- Installation of the top plate (supporting plate of the string line)
- Insertion of string line in the cryomodule

Objective / Results:

- Installation of the cryomodule: at 0.2 mm
- → Taking into account the trajectory of the gantry crane

18

Outline

Assembly measurements of the DQW prototype

- Measurement on the associated infrastructures
- Workflow (Assembly of the Crab-cavities)
- Installation of FSI system
- Validation at warm and cold conditions
- Installation of the DQW prototype in SPS tunnel
- Extrapolate to the next Crab-cavities
 - Extrapolate to the RFD prototype
 - Extrapolate to the 10 Crab-cavities assembled through in kind contribution (from UK and Canada)

26.08.2019 Vivien RUDE

19

Installation of FSI system

- Calibration of FSI feedthrough
- Installation of FSI feedthrough on the cryomodule
- Installation of FSI targets

Objective / Results:

• Calibration : < 0.01 mm

[C-Ki]: Measured distance with FSI

$$\begin{pmatrix} X_{K_i} \\ Y_{K_i} \\ Z_{K_i} \end{pmatrix} = \begin{pmatrix} X_C \\ Y_C \\ Z_C \end{pmatrix} + \begin{pmatrix} U_X \\ U_Y \\ U_Z \end{pmatrix} * Dist_i$$

Installation of FSI system

- Calibration of FSI feedthrough
- Installation of FSI feedthrough on the cryomodule
- Installation of FSI targets

Objective / Results:

21

• Accuracy : < 0.02 mm

3D measurement of :

- Cryomodule
- FSI feedtrough

Installation of FSI system

- Calibration of FSI feedthrough
- Installation of FSI feedthrough on the cryomodule
- Installation of FSI targets

Objective / Results:

• Accuracy : < 0.02 mm

3D measurement of :

- Dressed cavities
- FSI targets

Outline

- Assembly measurements of the DQW prototype
 - Measurement on the associated infrastructures
 - Workflow (Assembly of the Crab-cavities)
 - Installation of FSI system
 - Validation at warm and cold conditions
 - Installation of the DQW prototype in SPS tunnel
- Extrapolate to the next Crab-cavities
 - Extrapolate to the RFD prototype
 - Extrapolate to the 10 Crab-cavities assembled through in kind contribution (from UK and Canada)

26.08.2019 Vivien RUDE

23

• Installation of an alternative monitoring system (BCAM system) → For Cross-checking measurement

- Validation at warm
- Impact of vacuum on the string line
- Impact of transport on the string line
- Validation at cold condition

Objective / Results:

- 3D measurement of the supporting plate for the BCAM : < 0.02 mm
- Installation of the supporting plate on the cryomodule : < 0.02 mm
- Installation of BCAM targets
- Installation of BCAM window

- Installation of an alternative monitoring system (BCAM system) → For Cross-checking measurement
- Validation at warm
- Impact of vacuum on the string line
- Impact of transport on the string line
- Validation at cold condition

Objective / Results :

Intercomparison : < 0.05 mm

Radial position (relatif with respected to AT401 measurement)

- **■** Installation of an alternative monitoring system (BCAM system) → For Cross-checking measurement
- Validation at warm
- Impact of vacuum on the string line
- Impact of transport on the string line
- Validation at cold condition

Objective / Results:

- Impact of vacuum on the jumper : up to 0.3 mm
- Impact of vacuum on the Cryomodule : up to 0.7 mm
- Impact of vacuum on the Couplers : up to 0.2 mm
- Impact of vacuum on the dressed cavities : up to 0.2 mm

26

- Installation of an alternative monitoring system (BCAM system)
- Validation at warm
- Impact of vacuum on the string line
- Impact of transport on the string line
- Validation at cold condition

Objective / Results:

Impact of transport : < 0.05 mm

BEFORE TRANSPORT

AFTER TRANSPORT

Nominal position (300K)

Nominal position (2K)

determined with FSI measurements
determined with BCAM measurements

- Installation of an alternative monitoring system (BCAM system)
- Validation at warm
- Impact of vacuum on the string line
- Impact of transport on the string line
- Validation at cold condition

Nominal position (300K)

Nominal position (2K)

determined with FSI measurements

determined with BCAM measurements

Objective / Results:

• Intercomparison : < 0.05 mm

Outline

- Assembly measurements of the DQW prototype
 - Measurement on the associated infrastructures
 - Workflow (Assembly of the Crab-cavities)
 - Installation of FSI system
 - Validation at warm and cold conditions
 - Installation of the DQW prototype in SPS tunnel
- Extrapolate to the next Crab-cavities
 - Extrapolate to the RFD prototype
 - Extrapolate to the 10 Crab-cavities assembled through in kind contribution (from UK and Canada)

26.08.2019 Vivien RUDE

29

- Definition and determination of a local network
- Implantation and marking
- Validation and installation of the SPS tunnel table
- Installation of cryomodule
- Long term folow up (using FSI measurement)

Objective / Results :

• Accuracy: < 0.15 mm

- Definition and determination of a local network
- Implantation and marking
- Validation and installation of the SPS tunnel table
- Installation of cryomodule
- Long term folow up (using FSI measurement)

Objective / Results:

Accuracy : few mm

31

- Definition and determination of a local network
- Implantation and marking
- Validation and installation of the SPS tunnel table
- Installation of cryomodule
- Long term folow up (using FSI measurement)

Objective / Results:

Installation of SPS tunnel table : few mm

32

- Definition and determination of a local network
- Implantation and marking
- Validation and installation of the SPS tunnel table
- Installation of cryomodule
- Long term follow up (using FSI measurement)

Y = 5018.40 mm[5018.50 mm] **Z (mm)**

→-0.10 mm

Z = 535.12 mm

[535.09 mm]

Z = 534.96 mm

[534.85 mm]

- Definition and determination of a local network
- Implantation and marking
- Validation and installation of the SPS tunnel table
- Installation of cryomodule
- Long term folow up (using FSI measurement)

Objective / Results:

• Repeatability: < 0.02 mm

34

Outline

- Assembly measurements of the DQW prototype
 - Measurement on the associated infrastructures
 - Workflow (Assembly of the Crab-cavities)
 - Installation of FSI system
 - Validation at warm and cold conditions
 - Installation of the DQW prototype in SPS tunnel
- Extrapolate to the next Crab-cavities
 - Extrapolate to the RFD prototype
 - Extrapolate to the 10 Crab-cavities assembled through in kind contribution (from UK and Canada)
 - For the assembly of the RFD prototype and the 10 series, the same assembly steps will have to be followed
 - In the LHC, no installation of translation table is forseseen
 - All measurements were documented.
 - Procedures for transfer knowledge are under preparation and we will assist the collaborators for the keys steps

Thank you for your attention

