

Internal metrology and fiducialisation WP15.4.1

Review of HL-LHC alignment and Internal Metrology

Outline

- Definitions & Scope
- Internal metrology
- General Fiducialisation strategy
- Results, data storage & documentation
- Measurements by equipment type
- Tolerances
- Summary
- Next steps

Internal Metrology & Fiducialisation

- Internal metrology
 - All metrology measurements needed for the assembly of magnets, coldmasses and Cryo-assemblies....
- Fiducialisation
 - Transfer of the mechanical axis to the external fiducials on the vacuum vessel
 - Baseline is a best fitting mechanical axis for aperture optimisation
 - Done with a Laser Tracker and a self centering beam tube probe
 - Often combined with geometrical conformity control of extremities
 - Transfer of the magnetic axis measured by streched wire is also possible

Internal Metrology

Fiducialisation

Assemblymetrology

Assembly-Metrology

Parts & Tools metrology

Metrology

Extremity flanges

Metrology

Construction metrology

- Coldbore alignment for QEP connection cryostat
- Flange adjustment
- Control after welding

Cryostating control for 11T Dipole

Fiducialisation strategy

- Measurement of coldbore mechanical axis from both extremities for redundancy
- Laser Tracker & self centering probe pulled by a steel wire inside the coldbore
- Best fit on theoretical shape for the axis system definition
- Measurement of extremitivy lines
- Data aquisition with SpatialAnalyzer and scripts
- Calculation & Data analysis with CGC software

Fiducialisation strategy

- 6 AT930 Instrument stations
- 12 Network points
- 66 Points in each coldbore
- 15 Extremity flanges
- Internal precison of 30µm RMS

RST system definition by Best Fit on nominal geometry

Fiducialisation results

LHC part ID							
HCLBB_	000-CF	R002377					
- Fiducial F	RST Paramet	ers					
ID	R [mm]	S [mm]	T [mm]	RMS R	RMSS	RMS T	Total RMS
FiducialE	267.501	1771.838	418.040	0.018	0.016	0.019	0.031
FiducialM	267.439	7171.999	416.475	0.008	0.005	0.006	0.012
FiducialS	266.618	12571.613	420.125	0.020	0.017	0.021	0.033
FiducialT	-264.907	12571.167	419.596	0.020	0.016	0.019	0.032
	Tilt (mrad)						
Cold mass:	_ 0						
Fiducials:	0.994						

Documentation

Raw measurement files and Excel reports are stored in MTF

	_	X (mm)				Z (mm)				
ID	Measured X	Nominal X	Delta X	Tolerance X	Measured Z	Nominal Z	Delta Z	Tolerance:		
E	-269.43	-270.00	0.57	2	-289.70	-290.00	0.30	2		
M1	-139.80	-140.00	0.20	1.15	145.00	145.00	0.00	1.15		
M2	140.35	140.00	0.35	1.15	145.06	145.00	0.06	1.15		
M3	-144.82	-145.00	0.18	1.15	-144.96	-145.00	0.04	1.15		
N	309.85	310.00	-0.15	2	-70.67	-70.00	-0.67	2		
x	0.61	0.00	0.61	1.15	180.58	180.00	0.58	1.15		
w	2.03	0.80	1.23	2	-79.81	-80.00	0.19	2		
- Lyra side (Valu	es expressed in loc	al coordina	te system)						
		X (mm)			Z (mm)					
	Measured X	Nominal X	Delta X	Tolerance X	Measured Z	Nominal Z	Delta Z	Tolerance		
ID				2	-289.33	-290.00	0.67	2		
ID E	-269.30	-270.00	0.70							
E		-270.00 -140.00	0.70	1.15	145.07	145.00	0.07	1.15		
	-269.30				145.07 144.67	145.00 145.00	0.07	1.15		
E M1	-269.30 -139.56	-140.00	0.44	1.15			0.01			
E M1 M2	-269.30 -139.56 140.10	-140.00 140.00	0.44	1.15	144.67	145.00	-0.33	1.15		

- Automatic comparison with tolerances
- Geometrical Non-Conformities are created
- Fiducial parameters will also be stored in the MTF database for an automatic dataflow towards the survey Database

Measurements by Type

- Triplet Magnets Q1,Q2,Q3
- CP, D1, D2
- 11T Dipole
- LEP Connection cryostat
- QEN Cryobypass & Collimator

Triplet Magnets

Q1 & Q3

Coldmass metrology made by FNAL

Vacuum vessel controls at CERN

Delivered cryostated & fiducialised to CERN

Full fiducialisation after transport at CERN

Vacuum Vessel: Coldmass: Fiducialisation:

Available Procedures

https://edms.cern.ch/document/2168890/1 https://edms.cern.ch/document/2168888/1

https://edms.cern.ch/document/2168886/1

Extended control needs for FSI integration

- Coldmass build at CERN
- Assembly metrology by MSC with support from 15.4
- Full fiducialisation at CERN

Triplet Magnets

- Discussions with FNAL colleagues converging to final procedure
- First measurements at FNAL will be made with CERN assistance
- CERN will provide:
 - The methodology (defined and agreed on)
 - The procedures (under approval)
 - The beam tube probe (drawings under approval)
 - Metric reflector supports (to be purchased)
- Mechanical coldbore axis is measured with large diameter probe
- Best fit axis calculation, but field direction is needed for the orientation
 - Obligatory from previous magnetic measurements via endcover references
- All extremity flanges will be measured and controlled as well

136.7mm beam tube probe https://edms.cern.ch/document/2141786/1

D1 Magnets

- First contact & discussions with KEK colleagues
- Very well defined production procedure
- Fully compatible with planned metrology measurements
- Access to lamination until last moment for field direction

Endcover with References

D1 Fiducialisation

- Mechanical coldbore axis is measured with large diameter probe
- Best fit axis calculation, but field direction is needed for the orientation
 - either from lamination plane also via endcover references
 - or from previous magnetic measurements via endcover references
- All extremity flanges will be measured and controlled as well

D2 Fiducalisation

- Build at CERN by MSC
- Assembly measurements are made by MSC
- Mechanical coldbore axis is measured with large diameter probe
- Best fit axis calculation, but field direction is needed for the orientation
 - Obligatory from previous magnetic measurements via endcover references
- All extremity flanges will be measured and controlled as well

94mm beam tube probe https://edms.cern.ch/document/2141794/1

11T + LEP Fiducialisation

- Very similar to standard LHC Dipole process
- Procedure to be finalized
- Mechanical coldbore axis is measured with probe
- Best fit on theoretical shape for the axis system definition
- Measurement of extremitive lines
- Standard dataflow

Cryo-bypass & Collimator

QEN Bypass

- Alignment of cold-warm transitions
- Fiducialisation with 4 extremity flanges only
- After cold-warm transition and beam screen installation.
- The reference plane is defined by the 4 points
- The axis as a best fit axis
- Procedure to be prepared

TCLD Collimators

- Standard Collimator Fiducialisation
- Procedure is ready

Best Fit axis

Fiducialisation summary

- All procedures in preparation or control state
- Measurement hardware is ready
- Waiting for more inputs from the Workpackages concerning acceptance criteria, tolerances & naming conventions

Fiducialisation summary

- All magnets will be fiducialised after cold test at CERN
 - By definition for magnets produced at CERN (LEP, 11T, D2 and Q2)
 - Produced by the collaboration as check for movements and integrity
- Procedures are derived from existing LHC Cryomagnet procedure
 - LHC-G-IP-0015 v.1.2
 - In order to be as universal as possible the naming conventions are extremly important
 - Introduction of a universal report template
- Need to clarify magnetic measurement needs
 - Will be defined with the assembly workflows by the WP
 - During constructions, cold test and final Fiducialisation
 - Transfer measurements are done by Survey

Tolerances

- We need to separate position tolerances of extremity flanges and coldbore from the fiducialisation
- There is no tolerance for a fiducialisation!
- At the present state of the project the evaluation of conformity of a given magnet shape for a particular slot is the responibility of the MEB
- There is a document specifying the geometrical tolerances for the qualification of the LHC magnets from 2007 http://cds.cern.ch/record/1038087/files/lhc-project-report-1007.pdf
- Additional documents are under preparation covering the HL-LHC aspects
 - Tolerances are different along the assembly process and the WP will define those tables for the different elements
 - A common specification for the interfaces with tolerances will be approved

Further Metrology

- The assembly procedures are being compiled at the moment
- There is some need for further metrology after the fiducialisation
 - Beam screen alignment & control after welding
 - Beam Position Monitor alignment & control after welding

Cold WarmTransition alignment & control after welding

So far nothing exceptional, but we need a full picture

Need to approve the references & tolerances

Next steps

- Need to finally approve baseline mechanical fiducialisation strategy
- Define needs of additional magnetic axis & field direction transfert
- Define and approve cold warm correlations for all assemblies
- Tolerances
 - Need to have approved tolerance tables for each assembly type
- Some survey procedures are to be finalized
- Dataflow & exchange with colleagues
 - The detailled workflows are being defined right now, we need to ensure
 - Uniform reference frame definition
 - Uniform naming conventions
 - Standard templates
 - MTF as common platform
- Documentation
 - As usual, all measurements are documented with raw data, reports and travellers in MTF
 - Implementation of a new approach to store fiducial paramater data in MTF for an automatic dataflow towards the survey Database is ongoing

