

Strategy concerning magnetic measurements both at "warm" and at "cold"

Lucio Fiscarelli
TE/MSC/MM and WP3

Review of HL-LHC Alignment and Internal Metrology– 26th-29th August 2019

Outline

- Quantities to be measured and related requirements
- Measurement techniques and systems
 - Rotating-coil scanner (so called "mole")
 - Rotating-coil chain (so called "long shaft")
 - Single stretched wire
- Magnetic-measurement tests for alignment
 - Magnet
 - Cold-mass
 - Cryo-assembly
 - Final test at operating conditions
- Conclusions

Quantities to be measured and required accuracy

Example for Q1/Q3 and Q2

Integral quantities [1]

Integrated field	±1·10 ⁻⁴ of nominal
------------------------------------	--------------------------------

 Magnetic length <±1 mr 	nm
---	----

Longitudinal magnetic center <±1 mm

Local quantities (longitudinal scan)

■ Gradient ±1·10 ⁻²	⁴ of nominal
--------------------------------	-------------------------

Magnetic center ±0.2 mm

Magnetic angle
 <0.5 mrad

Measurement techniques

- There are several measurement techniques
 - can be classified according to:
 - Integral or local measurement
 - At ambient ("warm") or at cryogenic temperature ("cold")
- We will mainly focus on:
 - a) Rotating-coil scanner
 - Continuous rotation in DC mode
 - Stepwise in AC mode
 - b) Long rotating-coil chains
 - Many segments in series covering the full length of the magnet
 - c) Stretched wire
 - Different operation modes

Rotating-coil scanner

- A suitable set of search coils is positioned into the magnet aperture
- The coils are rigidly rotated around an axis parallel to the longitudinal axis of the magnet
- The angular position of the coil in the transverse plane is measured by means of a rotary encoder and a tilt sensor
- The flux intercepted by the coils between two angular positions is measured by means of an integrator (~10⁻⁵)
- Combination of signals from different coils can improve the precision
- The harmonic coefficients are extracted by processing the flux measurements and by applying the sensitivity factors (calibration)
- The tilt angle (phase of main harmonic) and magnetic center offset wrt to rotation axis (feed-down) can be retrieved from the harmonics
- The rotation axis can be measured by tracking two rotating targets by means of a laser tracker, and then referenced to external points

Rotating coil scanner: accuracy

Gradient 1*10⁻³ of nominal (limited by calibration)
 new development 1*10⁻⁴ with accurate PCB

Magnetic center ~50 μm [3]

• Field angle <0.1 mrad [6]

Longitudinal magnetic center 2-3 mm [5]
 new development ~1 mm if retroreflector on PCB

[3] L. Bottura, M. Buzio, S. Pauletta and N. Smirnov, "Measurement of magnetic axis in accelerator magnets: critical comparison of methods and instruments," IEEE Instrumentation and Measurement Technology Conference Proceedings, Sorrento, 2006, pp. 765-770

[5] J. DiMarco et al., "Alignment of production quadrupole magnets for the LHC interaction regions," in IEEE Transactions on Applied Superconductivity, vol. 13, no. 2, pp. 1325-1328, June 2003.

[6] A. Jain, "Overview of Magnetic Measurement Techniques", US Particle Accelerator School on Superconducting Accelerator Magnets Santa Barbara, California, June 23-27, 2003

Rotating-coil scanner: PCB

	Equivalent surfaces [m²]				
	Coil A	Coil B	Coil C	Coil D	Coil E
PCB 1	1.87298	1.87291	1.87285	1.87278	1.87302
PCB 2	1.87303	1.87288	1.87292	1.87276	1.87299
PCB 3	1.87307	1.87293	1.87284	1.87284	1.87297
Design	1.8727				

	Relative diff wrt design value [10 ⁻⁴]					
	Coil A Coil B Coil C Coil D Coil E					
PCB 1	1.49	1.11	0.81	0.44	1.7	
PCB 2	1.77	0.95	1.19	0.34	1.55	
PCB 3	2	1.23	0.75	0.75	1.44	
Average			1.17			

PCB alignment holes:

Precisely machined with a special tool for placing them at an accurate distance from the coil windings. A retroreflector can be positioned there.

Coil surfaces:

Accurate at 1·10⁻⁴ level, no calibration needed. We will check if these results will be confirmed on PCB from other production batches

Rotating-coil scanner – rotating target

Tracking of the rotating target by using the Leica LTD 500

Rotating-coil scanner: status

- The prototype system has been fully validated
- The final system is under test on the MQXFBP1
- Other systems will be procured according to needs

Rotating-coil scanner: validation

Prototype system on our reference quadrupole

Local (3-σ repeatability)					
Type Quantity	Single measurement	Repeated instertions			
Harmonics ^{2,3}	0.01	0.01	[units]		
Gradient ³	0.6 ¹	0.6 ¹	[units]		
Angle	0.05	0.08	[mrad]		
Axis location	0.02	0.05	[mm]		

Integral				
Type Quantity	Combination of multiple measurements			
Harmonics ^{2,3}	0.01	[units]		
Gradient ³	2 1,4 (cross check wrt wire - accuracy)	[units]		
Angle	~0.1 (under evaluation for long magnets)	[mrad]		
Axis location	~0.1 (under evaluation for long magnets)	[mm]		

¹ With gradient coil (difference of two external coils)

 $^{^{2}}$ R_{ref} = R_{meas} = 42.7 mm

 $^{^{3}}$ Relative to main field @ R_{meas} = 0.16 T

⁴ Influenced by coil positioning

Rotating-coil scanner: validation

Prototype system on our reference quadrupole

Axis position (x/y vs z component)

Rotating-coil chains

- 15-m-long "shafts" have been used for LHC dipoles
- Al₂O₃ tubes with 3 rectangular pick up coils
- Titanium bellows for absorbing the bending by keeping the torsional stiffness
- Accuracy: 10⁻⁴ central field

Rotating-coil chains: new development

Carbon fiber shell

Total weight 4 kg

PCB

- 5 radial coils
- 90-mm width
- 1.3-m length

- Tilt angle <0.35 mrad
- Dipole bucking ~800
- Quadrupole bucking ~600

surface (m2):	1.44749	1.44720	1.44738	1.44722	1.44731
ecart (%0)	0.0	-0.2	-0.1	-0.2	-0.1
radius(mm)	40.075	20.031	0.000	-20.031	-40.075

- It is the "first brick" for a long multi-segment shaft for full-length HL-LHC magnets
- In-situ calibration of relative angles [7]
- Retroreflectors on each PCB
- The last segment is visible from outside

Rotating-coil chains: new development

- The measurement shafts have been designed
 - First 10 modules are under procurement (shells are the most critical component)
 - The anti-cryostat is under production (prototype for Q2 proto)

Rotating coils – scanner vs chain

Scanner

- Compact instrument (easy transport, can be used where the magnet is assembled)
- Small number of search coils to be produced and calibrated
- Translation and positioning system needed
- On-board encoder and tilt sensor
- Slow: a complete scanning of a long magnet requires several hours (single field level)
- → Tests at ambient temperature

Long chains

- Longer than the magnet under test
- Complementary tools required for insertion/removal/holding
- Large number of search coils to be fabricated and calibrated
- Diameter, length and position of segments are specific to a magnet family
- Fast: once installed they provide central field, integral field, tilt angle, harmonics at ~1 Hz
- The rotation axis of inner segments cannot be referenced to external points
- → Tests at cryogenic temperature

Stretched wire

- A conducting wire is stretched along the magnet aperture and displaced with high accuracy (~1 µm)
- The flux intercepted by the wire between two positions (~30 mm) is measured by means of an integrator (~10⁻⁵)
- The wire can be positioned on the magnetic axis by imposing symmetries
- The position of the wire can be precisely measured by a laser tracker and then related to the fiducials
- The wire sag is not negligible on long quadrupoles. Its effect can be corrected (extrapolation at infinite tension)
- Co-directional and counter-directional displacements are possible
- At ambient temperature, the magnet can be powered with AC current for improving the sensitivity

Stretched wire: modes

Co-directional displacements

- Integrated gradient
- Magnetic axis
- Average field (roll) angle

Counter-directional displacements

- Pitch and yaw angles
- Longitudinal magnetic center

Stretched wire: accuracy

Integrated gradient ~1⋅10⁻⁴ of nominal [2], [4]

Magnetic axis50-100 μm [3]

Average field angle
 <0.1 mrad
 [4]

Longitudinal magnetic center 2-3 mm [5]

[2] L. Walckiers, "Magnetic measurement with coils and wires", CERN Accelerator School CAS 2009: Specialised Course on Magnets, Bruges, 16-25 June 2009, CERN-2010-004, pp. 357-385

[3] L. Bottura, M. Buzio, S. Pauletta and N. Smirnov, "Measurement of magnetic axis in accelerator magnets: critical comparison of methods and instruments," IEEE Instrumentation and Measurement Technology Conference Proceedings, Sorrento, 2006, pp. 765-770

[4] G. Deferne, M. Buzio, N. Smirnov, J. DiMarco, "Results of magnetic measurements with the Single Stretched Wire (SSW) System on a LHC prototype main lattice quadrupole and LHC preseries dipoles", 13th International Magnetic Measurement Workshop, May 19-22, 2003, Stanford, California

[5] J. DiMarco et al., "Alignment of production quadrupole magnets for the LHC interaction regions," in IEEE Transactions on Applied Superconductivity, vol. 13, no. 2, pp. 1325-1328, June 2003.

Stretched wire: status

- Two systems are available for general use
- For HL-LHC
 - 2 systems have been procured (under assembling)

MQXFBP1 at warm on the assembly bench

First test 17.12.2018					
Qua	ntity		1-σ		
Gx (Tm)	0.6282	0.0003	5	units	
Gy (Tm)	0.6304	0.0015	24	units	
X (mm)	0.053	0.030		mm	
Y (mm)	0.005	0.024		mm	
	Second test 01.04.2019				
Quantity 1-σ					
Gx (Tm)	0.6193	0.0003	5	units	
Gy (Tm)	0.6184	0.0010	16	units	
X (mm)	0.052	0.011		mm	
Y (mm)	-0.037	0.022		mm	

In this setup the extra length of the wire outside the magnet reduces the precision

MM tests for alignment

1. Magnet

- Single magnet on the assembly bench
 - Rotating-coil scanner
 - Example for MQXF
 - Coil-pack assembly: local field quality
 - After centering: local field quality
 - After loading: integral field, local and integral angle, local and integral field quality
 - Temporary reference points on the two ends will be used for transferring the angle measurement from the magnet assembly bench to the cold-mass assembly bench

2. Cold-mass

- Main magnet + corrector(s) on the assembly bench
 - Each magnet already measured and angles referred to the temporary reference points
 - Discussion on-going for D2 (double aperture magnets and double aperture correctors)
 - Intermediate measurement on a sub set of magnets before welding the end cover (rotating-coil scanner or wire TBD)

3. Cryo-assembly

- Cold-mass in the vessel
 - No adjustments → no measurements during the assembling
 - Measurement of axis and angle after completion at warm on all assemblies
 - Stretched wire should be enough

4. Final test in SM18

- Cryo-asembly at operating conditions (cold, nominal field)
 - All cryo-assemblies will be tested
 - Aperture equipped with anti-cryostats
 - Measurement by using stretched wire
 - integrated gradient
 - axis
 - angle
 - Measurement by using rotating-coil chains
 - magnetic length
 - longitudinal center

Documentation

- MTF
 - Equipment folder
 - Manufacturing step
 - Excel measurement report

- INFOR
 - "MM request"
 - Work order equipment
 - Results in a EDMS document

Conclusions

- We have identified the techniques according to requirements
- New development has been carried out to cope with specific needs
- Readiness of systems
 - Stretched wire systems are available
 - Tests ongoing
 - Rotating-coil scanner ready
 - First unit under test on MQXFBP1
 - Other systems for other magnet families will be procured
 - Rotating-coil shaft chains
 - Under procurement
- Work flow for each magnet family is under development
 - Some aspects will be clarified with the construction of the prototypes
- Collaboration and information exchange between MM-survey is important
 - WGA meetings

