Strategy concerning magnetic measurements
 both at "warm" and at "cold"

Lucio Fiscarelli
TE/MSC/MM and WP3

Outline

- Quantities to be measured and related requirements
- Measurement techniques and systems
- Rotating-coil scanner (so called "mole")
- Rotating-coil chain (so called "long shaft")
- Single stretched wire
- Magnetic-measurement tests for alignment
- Magnet
- Cold-mass
- Cryo-assembly
- Final test at operating conditions
- Conclusions

Quantities to be measured and required accuracy

Example for Q1/Q3 and Q2

Integral quantities [1]

- Integrated field
- Magnetic length
- Average field angle
- Magnetic axis
- Longitudinal magnetic center

Local quantities (longitudinal scan)

- Gradient
- Magnetic center
- Magnetic angle
$\pm 1 \cdot 10^{-4}$ of nominal
$< \pm 1 \mathrm{~mm}$
$<0.5 \mathrm{mrad}$
$\pm 0.2 \mathrm{~mm}$
$< \pm 1 \mathrm{~mm}$
$\pm 1 \cdot 10^{-4}$ of nominal
$\pm 0.2 \mathrm{~mm}$
<0.5 mrad

Measurement techniques

- There are several measurement techniques
- can be classified according to:
- Integral or local measurement
- At ambient ("warm") or at cryogenic temperature ("cold")
- We will mainly focus on:
a) Rotating-coil scanner
- Continuous rotation in DC mode
- Stepwise in AC mode
b) Long rotating-coil chains
- Many segments in series covering the full length of the magnet
c) Stretched wire
- Different operation modes

Rotating-coil scanner

- A suitable set of search coils is positioned into the magnet aperture
- The coils are rigidly rotated around an axis parallel to the longitudinal axis of the magnet
- The angular position of the coil in the transverse plane is measured by means of a rotary encoder and a tilt sensor
- The flux intercepted by the coils between two angular positions is measured by means of an integrator ($\sim 10^{-5}$)
- Combination of signals from different coils can improve the precision
- The harmonic coefficients are extracted by processing the flux measurements and by applying the sensitivity factors (calibration)
- The tilt angle (phase of main harmonic) and magnetic center offset wrt to rotation axis (feed-down) can be retrieved from the harmonics
- The rotation axis can be measured by tracking two rotating targets by means of a laser tracker, and then referenced to external points

Rotating coil scanner: accuracy

- Gradient
new development
- Magnetic center
- Field angle
- Longitudinal magnetic center new development
$1^{*} 10^{-3}$ of nominal (limited by calibration)
1*10-4 with accurate PCB
[3]
<0.1 mrad

2-3 mm
$\sim 1 \mathrm{~mm}$

[5]

if retroreflector on PCB
[3] L. Bottura, M. Buzio, S. Pauletta and N. Smirnov, "Measurement of magnetic axis in accelerator magnets: critical comparison of methods and instruments," IEEE Instrumentation and Measurement Technology Conference Proceedings, Sorrento, 2006, pp. 765770
[5] J. DiMarco et al., "Alignment of production quadrupole magnets for the LHC interaction regions," in IEEE Transactions on Applied Superconductivity, vol. 13, no. 2, pp. 1325-1328, June 2003.
[6] A. Jain, "Overview of Magnetic Measurement Techniques", US Particle Accelerator School on Superconducting Accelerator Magnets Santa Barbara, California, June 23-27, 2003

Rotating-coil scanner: PCB

	Equivalent surfaces [m²]				
	Coil A	Coil B	Coil C	Coil D	Coil E
PCB 1	1.87298	1.87291	1.87285	1.87278	1.87302
PCB 2	1.87303	1.87288	1.87292	1.87276	1.87299
PCB 3	1.87307	1.87293	1.87284	1.87284	1.87297
Design	1.8727				

PCB alignment holes:

Precisely machined with a special tool for placing them at an accurate distance from the coil windings. A retroreflector can be positioned there.

Coil surfaces:

Accurate at $1 \cdot 10^{-4}$ level, no calibration needed. We will check if these results will be confirmed on PCB from other production batches

Rotating-coil scanner - rotating target

Tracking of the rotating target by using the Leica LTD 500

Rotating-coil scanner: status

- The prototype system has been fully validated
- The final system is under test on the MQXFBP1
- Other systems will be procured according to needs

Rotating-coil scanner: validation Prototype system on our reference quadrupole

Local (3-б repeatability)

Type Quantity	Single measurement	Repeated instertions	
Harmonics 2,3	0.01	0.01	[units]
Gradient ${ }^{3}$	0.61	$0.6{ }^{1}$	[units]
Angle	0.05	0.08	[mrad]
Axis location	0.02	0.05	[mm]

	Integral	
Type		Combination of multiple measurements
Quantity		
Harmonics ${ }^{2,3}$	0.01	$[$ units]
Gradient 3	$2^{1,4}$ (cross check wrt wire - accuracy)	$[$ units $]$
Angle	~ 0.1 (under evaluation for long magnets)	$[\mathrm{mrad}]$
Axis location	~ 0.1 (under evaluation for long magnets)	$[\mathrm{mm}]$

[^0]
Rotating-coil scanner: validation

Prototype system on our reference quadrupole

Axis position (x / y vs z component)

Rotating-coil chains

" 15-m-long "shafts" have been used for LHC dipoles

- $\mathrm{Al}_{2} \mathrm{O}_{3}$ tubes with 3 rectangular pick up coils
- Titanium bellows for absorbing the bending by keeping the torsional stiffness
- Accuracy: 10^{-4} central field

Micro-cable

HiLUMi

Rotating-coil chains: new development

Carbon fiber shell

- Total weight 4 kg

PCB

- 5 radial coils
- $90-\mathrm{mm}$ width
- 1.3-m length

- Tilt angle <0.35 mrad
- Dipole bucking ~800
- Quadrupole bucking ~600

surface $(\mathrm{m} 2):$	1.44749	1.44720	1.44738	1.44722	1.44731
ecart $(\% 0)$	0.0	-0.2	-0.1	-0.2	-0.1
radius (mm)	40.075	20.031	0.000	-20.031	-40.075

- It is the "first brick" for a long multi-segment shaft for full-length HL-LHC magnets

- In-situ calibration of relative angles [7]
- Retroreflectors on each PCB
- The last segment is visible from outside

Rotating-coil chains: new development

- Modules with length of 1.4 m (1.3 m active)
- Carbon-fiber shells for stiffness and low weight
- Pickup coils made from printed circuit boards (PCB)
- Retroreflectors on each module directly linked to the PCBs (best accuracy)
- One retroreflectors is always visible outside the anti-cryostat
- The measurement shafts have been designed
- First 10 modules are under procurement (shells are the most critical component)
- The anti-cryostat is under production (prototype for Q2 proto)

Rotating coils - scanner vs chain

- Scanner
- Compact instrument (easy transport, can be used where the magnet is assembled)
- Small number of search coils to be produced and calibrated
- Translation and positioning system needed
- On-board encoder and tilt sensor
- Slow: a complete scanning of a long magnet requires several hours (single field level)
\rightarrow Tests at ambient temperature
- Long chains
- Longer than the magnet under test
- Complementary tools required for insertion/removal/holding
- Large number of search coils to be fabricated and calibrated
- Diameter, length and position of segments are specific to a magnet family
- Fast: once installed they provide central field, integral field, tilt angle, harmonics at $\sim 1 \mathrm{~Hz}$
- The rotation axis of inner segments cannot be referenced to external points
\longrightarrow Tests at cryogenic temperature

Stretched wire

- A conducting wire is stretched along the magnet aperture and displaced with high accuracy ($\sim 1 \mu \mathrm{~m}$)
- The flux intercepted by the wire between two positions ($\sim 30 \mathrm{~mm}$) is measured by means of an integrator ($\sim 10^{-5}$)
- The wire can be positioned on the magnetic axis by imposing symmetries
- The position of the wire can be precisely measured by a laser tracker and then related to the fiducials
- The wire sag is not negligible on long quadrupoles. Its effect can be corrected (extrapolation at infinite tension)

- Co-directional and counter-directional displacements are possible
- At ambient temperature, the magnet can be powered with AC current for improving the sensitivity

Stretched wire: modes

Co-directional displacements

- Integrated gradient
- Magnetic axis
- Average field (roll) angle

Counter-directional displacements

- Pitch and yaw angles
- Longitudinal magnetic center

Stretched wire: accuracy

- Integrated gradient
- Magnetic axis
- Average field angle
- Longitudinal magnetic center
$\sim 1 \cdot 10^{-4}$ of nominal

50-100 $\mu \mathrm{m}$
$<0.1 \mathrm{mrad}$

2-3 mm
[2], [4]

[3]

[4]
[5]
[2] L. Walckiers , "Magnetic measurement with coils and wires", CERN Accelerator School CAS 2009: Specialised Course on Magnets, Bruges, 16-25 June 2009, CERN-2010-004, pp. 357-385
[3] L. Bottura, M. Buzio, S. Pauletta and N. Smirnov, "Measurement of magnetic axis in accelerator magnets: critical comparison of methods and instruments," IEEE Instrumentation and Measurement Technology Conference Proceedings, Sorrento, 2006, pp. 765-770
[4] G. Deferne, M. Buzio, N. Smirnov, J. DiMarco, "Results of magnetic measurements with the Single Stretched Wire (SSW) System on a LHC prototype main lattice quadrupole and LHC preseries dipoles", 13th International Magnetic Measurement Workshop, May 19-22, 2003, Stanford, California
[5] J. DiMarco et al., "Alignment of production quadrupole magnets for the LHC interaction regions," in IEEE Transactions on Applied Superconductivity, vol. 13, no. 2, pp. 1325-1328, June 2003.

Stretched wire: status

- Two systems are available for general use
- For HL-LHC
- 2 systems have been procured (under assembling)

MQXFBP1 at warm on the assembly bench

First test 17.12.2018				
Quantity		1-б		
Gx (Tm)	0.6282	0.0003	5	units
Gy (Tm)	0.6304	0.0015	24	units
$X(\mathrm{~mm})$	0.053	0.030		mm
$Y(m m)$	0.005	0.024		mm
Second test 01.04.2019				
Quantity		1-б		
Gx (Tm)	0.6193	0.0003	5	units
Gy (Tm)	0.6184	0.0010	16	units
$X(\mathrm{~mm})$	0.052	0.011		mm
Y (mm)	-0.037	0.022		mm

In this setup the extra length of the wire outside the magnet reduces the precision

MM tests for alignment

1. Magnet

- Single magnet on the assembly bench
- Rotating-coil scanner
- Example for MQXF
- Coil-pack assembly: local field quality
- After centering: local field quality
- After loading: integral field, local and integral angle, local and integral field quality
- Temporary reference points on the two ends will be used for transferring the angle measurement from the magnet assembly bench to the cold-mass assembly bench

2. Cold-mass

- Main magnet + corrector(s) on the assembly bench
- Each magnet already measured and angles referred to the temporary reference points
- Discussion on-going for D2 (double aperture magnets and double aperture correctors)
- Intermediate measurement on a sub set of magnets before welding the end cover (rotating-coil scanner or wire TBD)
- Measurement after the cold-mass completion on all assemblies

3. Cryo-assembly

- Cold-mass in the vessel
- No adjustments \rightarrow no measurements during the assembling
- Measurement of axis and angle after completion at warm on all assemblies
- Stretched wire should be enough

4. Final test in SM18

- Cryo-asembly at operating conditions (cold, nominal field)
- All cryo-assemblies will be tested
- Aperture equipped with anti-cryostats
- Measurement by using stretched wire
- integrated gradient
- axis
- angle
- Measurement by using rotating-coil chains
- magnetic length
- longitudinal center

Documentation

Equipment Folder: Manufacturing Step Details

- MTF
- Equipment folder
- Manufacturing step
- Excel measurement report

Equipment Identifier: HCMQXFBPO1-CR000001 Other Identifier: Nome
Description: MQXFB MAGNET V7 - ASSEMBLY

- INFOR
- "MM request"
- Work order - equipment
- Results in a EDMS document

Conclusions

- We have identified the techniques according to requirements
- New development has been carried out to cope with specific needs
- Readiness of systems
- Stretched wire systems are available
- Tests ongoing
- Rotating-coil scanner ready
- First unit under test on MQXFBP1
- Other systems for other magnet families will be procured
- Rotating-coil shaft chains
- Under procurement
- Work flow for each magnet family is under development
- Some aspects will be clarified with the construction of the prototypes
- Collaboration and information exchange between MM-survey is important
- WGA meetings

[^0]: ${ }^{1}$ With gradient coil (difference of two external coils)
 ${ }^{2} \mathrm{R}_{\text {ref }}=\mathrm{R}_{\text {meas }}=42.7 \mathrm{~mm}$
 ${ }^{3}$ Relative to main field @ $\mathrm{R}_{\text {meas }}=0.16 \mathrm{~T}$
 ${ }^{4}$ Influenced by coil positioning

