

HL-LHC alignment: Preliminary RP considerations

A. Infantino, C. Adorisio HSE-RP-AS

EDMS 2220425

Context and Aim

"Scope of the review:

The scope of this review is:

- •
- To put in evidence possible integration issues and safety aspects."

(https://indico.cern.ch/event/831552/overview)

- > This presentation summaries the data reported in EDMS 2168987
- ➤ Based on **FLUKA** Monte Carlo simulations (HL-LHC v1.3)
- ▶ Preliminary RP overview → (!SPOILER!) new estimation needed considering HL-LHC v1.5
- > As we saw yesterday (Oliver's talk) a significant number of elements in the IR must be replaced
 - → (!SPOILER!) a **detailed planning** of the activities is required also from the RP point of view.

ALARA

Primary criteria

Secondary criteria

CRITERION OF THE INDIVIDUAL DOSE

100 μSv

1 mSv

LEVEL 1

LEVEL 2

LEVEL 3

CRITERION OF THE COLLECTIVE DOSE

500 man.μSv

5 man.mSv

LEVEL 1

LEVEL 2

LEVEL 3

CRITERION OF THE DOSE RATE

50 μSvh⁻¹ 2 mSvh⁻¹

LEVEL 1 LEVEL 2 LEVEL 3

CRITERION OF AIRBORNE CONTAMINATION

5 CA 200 CA

LEVEL 1 LEVEL 2 LEVEL 3

CRITERION FOR SURFACE CONTAMINATION

10 CS 100 CS

LEVEL 1 LEVEL 2 LEVEL 3

EDMS 1751123

- Operation
 - → dose equivalent to personnel by stray radiation in accessible areas
 - → activation of water and air and their release into the environment as well as the resulting annual dose to the reference groups of the population
 - → dose equivalent to personnel and environment in case of abnormal operation or accidents
- Shutdown
 - → induced radioactivity in accelerator components and related residual dose equivalent rate
 - → individual and collective doses to personnel during interventions in radiation areas
- Decommissioning
 - → waste minimization
 - → radionuclide inventory for waste disposal

Optimization = Iterative process

1. Calculation of residual dose rate maps

- → for cooling times typical of interventions scenarios
- → based on (nominal) operational parameters
- → definition of geometry and materials as detailed as needed (and available)

2. Calculation of individual and collective intervention doses

- → based on a realistic work scenarios, including locations, duration, number of persons involved,...
- → identification of cooling times below which work will be impossible
- → communication of results and constraints to equipment groups

3. Revision of design and/or work scenario

- → start with conservative scenarios that give highest individual or collective doses
- → consider optimization measures (distance, tooling, material choices, etc.)
- → identify if remote handling is possible

1. Calculation of RDR maps

- ✓ Maps available for IR1 and IR5 (LHC & HL-LHC v1.3) and for LS2/LS3/LS4 at different cooling times (1h-1yr)
- ✓ Shared models with the FLUKA/R2E team (see Giuseppe's talk)
- ✓ Maps used to estimate the individual/collective doses

2. Calculation of individual and collective dose:

an example

LHC's procedure

- ☐ First estimation done considering the current procedure (elements from D1 up to cell 6).
- □ vertical measurements, 2 workers, 10 minutes next to each element, ~2 hours work.
- ☐ measurements have to be done "as soon" the machine stops.
- □ alignment, if needed, can be done at longer cooling time.
- □ Very high individual and collective doses even at long cooling time.

		LSS5 (one side only)							
		residual dose rate (uSv/h)				10 minutes dose (uSv)			
	distance from IP (cm)	1 week	1 month	4 month	1 year	1 week	1 month	month	1 year
D1	7442	800	410	140	55	133		23	9
	8450	350	150	50	20			8	3
TAXN	12626	900	450	150				5	9
	13047	400	220	00	,	(emi))		5
TCL4	13511	2500	450 220 1550 For exament	mpl	s.	ig tillig	•		42
D2	13779	650	er e	Xall.	K COO!!.			,	11
	15224		For	11 Mee	,,		tin	ne)	1
crabs	15600-150		ment	(,			aling "		1
Q4 mask		-cill	Sille		-	aths CU	O,		1
Q4	m	egan			v wo	lin.	SV		1
	,,,			ار)), "	an.		1	1
TCL5			van	Jenis ,	46	Mice	83	36	12
Q5 mask		ا د	all ele.	. ce		22	11	5	3
Q5		meni '		, 902,	10	21	11	4	2
	align	111.	ctiv	3	5	3	2	1	1
TCL6	and a	Col	100	140	50	85	52	23	8
Q6 mask	13779 15224 15600-159 M		40	20	10	12	7	3	2
Q6	22	50	30	10	5	8	5	2	1
	23205	10	5	5	5	2	1	1	1
						1239	703	291	112
						2 hours (μSv)			
aisle	-	50	25	10	5	100	50	20	10

C. Adorisio, EDMS 2168987 | Collective Dose (man. µSv) **753** 1339 311

3. Review of design and/or intervention scenario

HL-LHC's procedure

- ☐ Full Remote Alignment (FRA)
- ☐ Permanent **remote** monitoring system for the equipment up to Q5
- Motorized jacks for the main components (D1, TAXN, D2, crab cavities, Q4, Q5)
- ☐ Fast adjustment system made of plug-in motors to perform **remote alignment** (estimated time to plug it in and out: 2 minutes)
- □ Access for measurement and alignment needed only on cell 6 elements (TCL6, mask and Q6), as it is done today

C. Adorisio, EDMS 2168987 Collective Dose (man. μ Sv)

157 89 71 28

Conclusions

- ✓ The preliminary estimation was performed considering the first LS in the HL era (ultimate conditions) → nominal conditions ~ 30% less (EDMS 2168987).
- ✓ Secondary elements measurement and alignment not taken into account in these examples (e.g. vacuum equipment, BPMs...) → more detailed list of actions would give a more accurate estimation.
- ✓ This preliminary evaluation clearly shows the benefit of an optimized (& remoted) procedure.
- ✓ Time is mature to perform a **new estimation** since HL-LHC v1.5 optics now available.

HSE
Occupational Health & Safety
and Environmental Protection unit

ANGELO INFANTINO

CERN HSE-RP-AS

