

FRAS Motorized Axes Control System

P. PERONNARD

Review of HL-LHC Alignment and Internal Metrology (WP15.4)

Outline

- The control system requirements
- Solution proposed: SAMbuCa
- Development Timeline
- Conclusions

FRAS Motorized axes IP5 summary

Racks location	Racks names	Cable length up to the sensors / actuators (m)	Axes type	Axes number	Axes` groups to be synchronized
UL557	GYPOS_01 ÷ GYPOS_04	100	Motion (stepping motor + resolver)	60	30 +30
			Load cells(TBC)	36 ÷ 60	0
			Position sensors (TBC)	60	0
UR55	GYPOS_01_R ÷ GYPOS_06_R	300	Motion (stepping motor + resolver)	71	24+16+10+10+10
			Load cells(TBC)	31	0
			Position sensors (TBC)	31	0
UR55	GYPOS_01_L÷ GYPOS_06_L	300	Motion (stepping motor + resolver)	71	24+16+10+10+10
			Load cells(TBC)	31	0
			Position sensors (TBC)	31	0

FRAS Motorized axes IP1 summary

Racks location	Racks names	Cable length up to the sensors / actuators (m)	Axes type	Axes number	Axes` groups to be synchronized
UR15	GYPOS_01 ÷ GYPOS_04	100	Motion (stepping motor + resolver)	60	30 +30
			Load cells(TBC)	36 ÷ 60	0
			Position sensors (TBC)	60	0
US15	GYPOS_01_R ÷ GYPOS_06_R	300	Motion (stepping motor + resolver)	71	24+16+10+10+10
			Load cells(TBC)	31	0
			Position sensors (TBC)	31	0
US15	GYPOS_01_L ÷ GYPOS_06_L	300	Motion (stepping motor + resolver)	71	24+16+10+10+10
			Load cells(TBC)	31	0
			Position sensors (TBC)	31	0

FRAS Motorized axes summary

Axes type	Total Axes number
Motion (stepping motor + resolver)	400
Load cells (TBC)	194 ÷ 244
Position sensors (TBC)	244
Limits switches	1044

Control System Requirements

Sensors / Actuators			
Sensors / Actuators Total Integrated Dose (TID)	< 2 MGray		
Sensors / Actuators cable length from the electronics	300 m		
Maintenance	free		
Life time	Min 10 years		
Operation time	86 h		

Control System Requirements

Control system architecture & components

Axes positioning resolution	few μm	
Axes motion synchronization	1s per axes` groups (system can achieve 1 ms)	
Motion start trigger	Software trigger	
Modularity	Architecture scalable with number and axes` groups position in the racks	
Flexibility	Conditioning electronics proper designed for the project actuators / sensors	
Fields I/O connectivity	High Density / High robustness to avoid false contacts and oxidation	
Maintainability	Mean Time To Repair < 10min	
Long term investment	Full control of hw and sw for future upgrades / improvements	

Control system architecture

Complete In-house solution (i.e. hw and sw)

Architecture:

PXIe Front-ends in High Availability chassis

PXIe chosen as successor of the PXI standard that is getting obsolete - Platform fully standardized at CERN with BE-CO (i.e. Cent OS 7 and C++)

- a PXIe FPGA Carrier and a set of FMC cards to cover the interfacing requirements with the field sensors and actuators
- **EN-SMM** step driver (long cables, open/closed loop)
- Focus on connection reliability and re-configurability

- PXIe Controller
 - Based on COM-Express CPU modules
 - Computing power chosen according to user needs
- Will run Be/CO Linux and FESA class
- Software framework and Linux drivers to configure and control the peripheral cards
- Collaboration with BE/CO to ensure the compatibility with their ecosystem
 – Open Hardware
- Design in progress Outsourced to external company

PXIe FMC Carrier

- Based on Xilinx Zynq UltrasScale+
- PCIe Gen2x4
- 4GB DDR4 memory with ECC for processor
- 2GB DDR4 memory for programmable logic
- 64GB eMMC flash
- Remotely reconfigurable from PXIe controller
- White-Rabbit support for synchronization
- HPC FMC connector fully wired to FPGA
- Board layout in progress, prototype expected by Q4 2019
- Control algorithms executed either by ARM cores or programmable logic

Set of FMC cards

- 8-ch LVDT/Resolver/Potentiometer analog front-end
- 12-ch Thermocouple/PT100
- Digital IOs (limit switch, interlock, motor driver, ...)
- Strain gauge
- Force sensor
- Optical fiber card to connect an expansion chassis (CompactPCI serial from BE/CO)

- Expansion chassis with DIOT (WP18 HL-LHC)
 - https://wikis.cern.ch/display/DIOT/Distributed+IO+Tier +chassis
 - Possibility to connect up to 4x chassis to PXIe FMC carrier
 - Can be an option for slow application

Rack layout example

4 expansion chassis connected to PXIe FMC carrier via

optical links

PXIe Controller

Application FMC Card

Expansion System Controller with FMC carrier

PXIe Survey & Motion FMC carrier

PXIe Chassis (8 peripheral slots)

Expansion Chassis #1

Expansion Chassis #2

Expansion Chassis #3

Expansion Chassis #4

Development Timeline

- Proof of concept 2020
- FRAS control system validation on string tests
- Mass production and validation 2022-2023
- Operational software 2024
- Deployment and commissioning 2025-2026

Conclusions

- Design study shared with LHC collimator control system
- Building blocks profit of BE/CO developments foreseen in WP18 HL-LHC (expansion chassis)
- SAMBUCA will ensure with respect to commercial solutions
 - Full control on hardware and software components
 - High-availability ensured by 15-years past experience on motion control for critical missions (e.g. LHC collimator control system)

Thank you

