

Continuous position determination: concept and status of integration

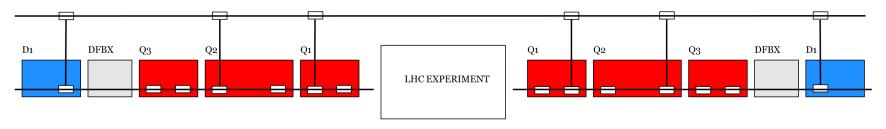
Andreas Herty

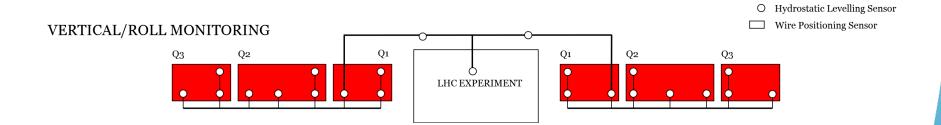
overview

- LHC: layout, measurement concept and experience
- HL-LHC: layout and continuous position determination
- Sensors and components: LHC vs HL-LHC
- Status of integration

HL-LHC: continuing the LHC monitoring and alignment concept

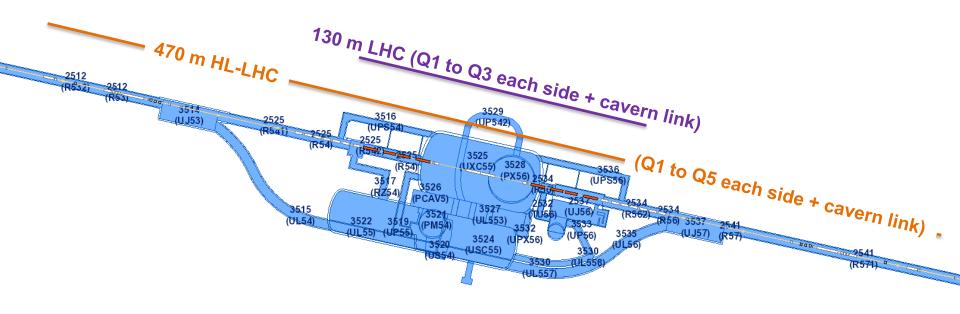
- Continue monitoring concept based on
 - Hydrostatic levelling sensors (HLS) for vertical and roll measurements Wire positioning sensors (WPS) for radial and vertical measurements
- Reuse existing infrastructure
 - Survey galleries (UPS14, UPS16, UPS54 and UPS56) providing link to experimental caverns of ATLAS and CMS + left to right side
- Experience gained from LHC
 - Operation of LHC system over 20 years
 - Consolidation of P2 and P8 during Long Shutdown 2
 - Remote validation concepts introduced in LHC
 - Calibration of sensors at CERN





LHC measurement concept

RADIAL MONITORING

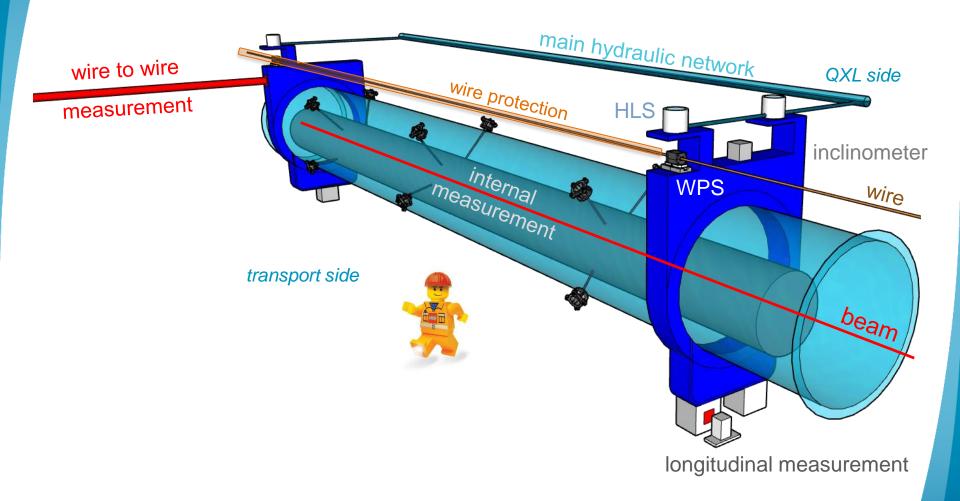


HL-LHC layout compared to LHC

	WPS	INC	HLS	LON	INT	W2W
PER IP	48	12	48	18	48	3
TOTAL	192	48	192	72	192	12

WPS	capacitive	Wire Positioning Sensor		
INC	MT-FSI	Inclination Sensor		
HLS	MT-FSI	Hydrostatic Levelling Sensor		
LON	MT-FSI	Longitudinal measurements		
INT	MT-FSI	Internal measurements		
W2W	MT-FSI	wire to wire measurements		

Not taking into account, environmental sensors and actuator equipment.


In addition to the sensors:

- . 4 wire stretching devices
- . approx. 1 km of wire and wire protection
- . approx. 1 km of hydraulic network
- . remote diagnostic tools for sensors and systems

continuous position determination systems

Radial and vertical measurement solutions

Hydrostatic Levelling Sensors

Manufacturer FOGALE nanotech

with CERN added value: absolute determination within 10 μm

. in-situ check methods

HLS sensor

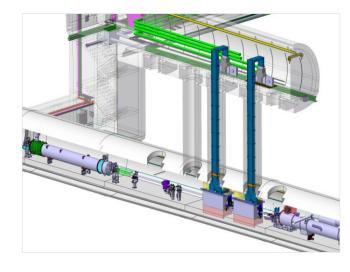
Wire Positioning Sensors

Manufacturer FOGALE nanotech

with CERN added value: absolute determination within 5 µm

- . use of twisted pair cables
- . in-situ recalibration
- . application of methods of calibration developed in the CLIC project

WPS sensor

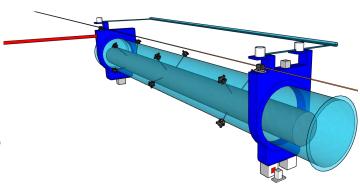


Radial and vertical measurement solutions

FOGALE nanotech sensor measurement chain

Drawbacks

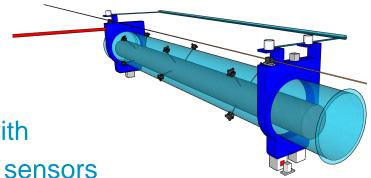
- . Very expensive
- . Dependent on one manufacturer
- . Electronics is a «black box»
- . Limited signal cable length
- . Choice of components not guaranteed from one manufacturing batch to the other
- . Same technologies are impacted by the same environmental factors
- . HLS and the associated piping system is difficult to integrate on a platform system


Developments

- . interferometric HLS: iHLS and HLS-LINES
- . in-house WPS
- . in-house remote electronics: digital signal, components traceability, remote diagnostics
- . inclinometer
- . Acquisition systems compatible to CERN DAQ protocol

Longitudinal measurement solutions

- Distance Offset Measurement Sensors
 - . Manufacturer FOGALE nanotech
 - . Limited range by manufacturer, range extension by CERN


DOMS sensor

- Drawbacks
 - . Very expensive
 - . Very sensitive to electrical ground
- Developments
 - . Alternative under study: short range MT-FSI (< 10 cm)

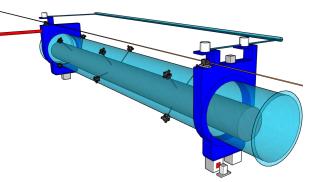
Wire to Wire (W2W) measurement solutions

- Combination of invar rods equipped with targets plus two DOMS and two WPS sensors
 - . Manufacturer of sensors FOGALE nanotech
 - . Invar rods are CERN development

Drawbacks

- . Four sensors to establish one measurement
- . Complicated support of invar rods
- . Calibration was very fastidious
- . Invar is sensitive to magnetic field (of experiments)
- . Invar bars were damaged several times due to very limited space available
- . Air tightness between experimental cavern and tunnel difficult to establish
- . costs

Developments


. Alternative under study: long range MT-FSI (11 m to 15 m)

Wire protection

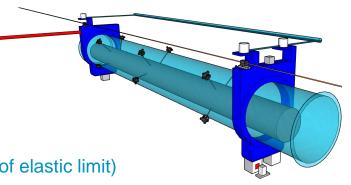
CERN designed solution for wire protection

Drawbacks

- . Current solution too fragile
- . LS2 consolidation solution good stability, but too expensive
- . Both cases: based on manual installation and replacement of wire

HL-LHC requirements

- . Due to radiation levels, necessity to develop a **semi-automatic solution**
 - . Install wire from area with little radiation (typically beyond Q5)
 - . Wire is pulled from Q5 to Q1 in an automated way, with no intervention from personnel
 - . Old wire is cleared during the same operation by the system
- . The wire protection system has to be **modular** in order to be only partially dismounted in case of replacement of a component



Measurement wire

Carbon-PEEK wire

- . Manufacturer FOGALE nanotech
- . Conductive
- . High tension over linear mass, stretched at 15 kg (2/3 of elastic limit)

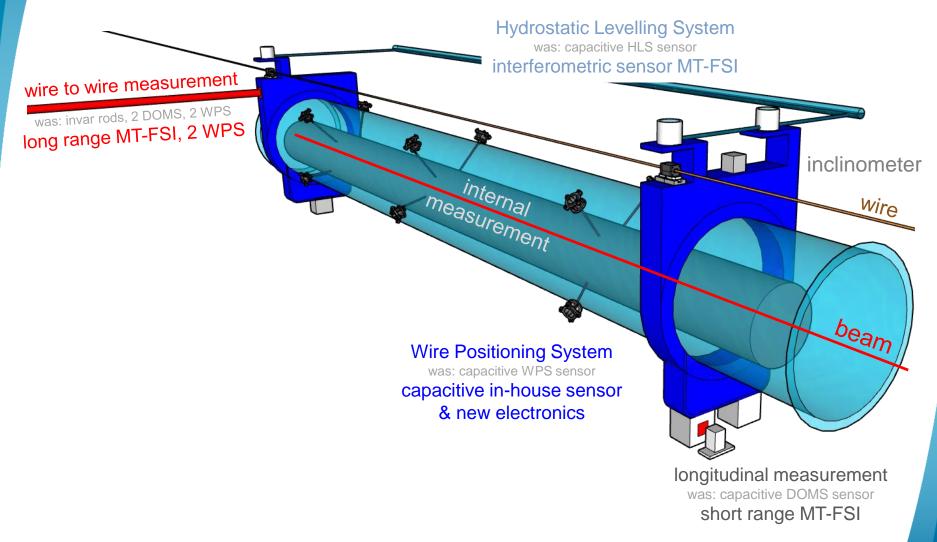
Drawbacks

. Manufacturing issues to have an homogenous wire; scale factors between reels

Solutions

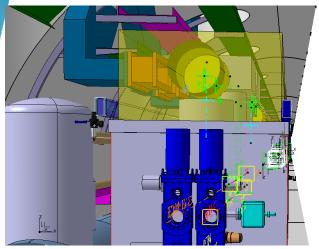
- . Short term: carbon-Kevlar wire, stretched at 20 kg
 - . Wire sag is more important
 - . Huge influence of humidity over 200 m
- . HL-LHC: new wire under development with EMPA*

examples Carbon-PEEK wire

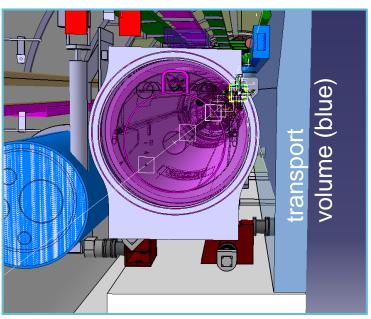

HL-LHC: introducing additional features

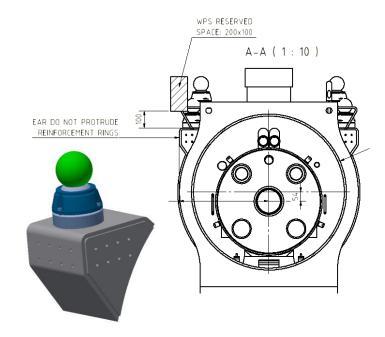
- Longitudinal monitoring
 concept as already installed for cryostats in LHC since YETS 2017/18 and LS2
- Internal cold mass monitoring
 request to determine the cold mass position and not only cryostat position
 testing and validation of concept for crab cavities and dipole measurements
- Permanently monitored reference points
 deep references (GITL) for vertical network to be installed
- Inclination sensors
 additional concept either for HLS redundancy or where no HLS can be diploid
- Different measurement technologies
 capacitive sensors and Multi Target Frequency Scanning Interferometry

continuous position determination systems


Integration: key points WP15.4

- Accessibility of the reference points during complete lifecycle of components (installation, operation, dismounting)
 - Compatibility with standard geodetic measurements
 - Provide interfaces for linking LSS to the arc sections of LHC
- Little as possible «interruption» of measurements in case of component exchange
 - Main hydraulic network behind the components
 - Wire protection system to be modular per component
- Installation and operation environment
 - Influence of adjacent equipment or infrastructure
 - Bake-out of beamline / gas line components
 - Temperature and humidity in the tunnel
 - Dust protection of the measurement systems
 - Different air pressure systems: tunnel vs. cavern




Integration: transport volume

Wire protection

is a single, straight volume Crab cavities define position

sensor supports

some cannot be installed an thus not fiducialised before transport fiducialisation measurements on site

Integration: WP15.4 systems

The HL-LHC is a very crowded machine in a lot of places!

- completed
 - . space reservation for systems and infrastructure (thank you Marian!)

- next steps
 - . design of supports and detailed layout of sensor support
 - . design will be related to system consolidation during LS2 (copy and improve)
 - . all «additional» equipment, such as supporting structures
 - Wire stretching devices
 - Borehole covers
 - Routing of hydraulic network
 - Remote validation systems

Summary

Measurements

- 3 axis measurement system
- from pseudo absolute to true absolute measurement system
- Q1-Q3 & CC: from cryosat monitoring to cold mass measurements

Sensors and Systems

- Individual sensors and components are tested as prototypes
- Volumes compatible with «currently used sensors»
- Concepts for measurements during installation to be refined

Integration

- next: from space reservation to design
- Full Remote Alignment approved integration and design
- Define interfaces on components, e.g. inclinometer,
 supports for W2W system, supports for wire protection

