Summary

H. Mainaud Durand

Review of HL-LHC Alignment and Internal Metrology (WP15.4)

Outline

- Schedule
- Procurement strategy
- Resource strategy
- Potential issues raised during the review

Schedule

Schedule

Schedule

Towards installation (sensors)

Qualification tests
\checkmark Repeatability
\checkmark Accuracy
\checkmark Long-term stability
\checkmark Impact of humidity
\checkmark Impact of temperature
\checkmark Irradiation tests
\checkmark Impact of vibrations

Summary of tests setups

Test setup	Description	Scheduled
TT1	Long term validation of in-house WPS, iHLS, ilnclino Validation of new wire Validation of new stretching device + automatized wire stretching	July-Dec. 19
FSI lab	Cross-comparison tests (iHLS, cHLS, ilnclino)	July-Oct. 19
Climatic	Climatic chamber to control the impact of T humidity	and
Dipole test	FSI configuration for IT and CC	Sept-Oct. 19
Irradiation tests	Qualification at Franhoffer institute // other irradiation facilities	June-Aug. 19 Jan-March 20

Sensors qualification plan

	kWPS	iHLS	HLSLines	Inclin.	Acq. syst.	Remote elec.	Long range FSI																																																																													
Repeatability				FSI lab																																																																																
Accuracy				FSI lab																																																																																
Long-term stability	TT1																																																																																			
To impact	Climatic	Climatic		Climatic	Climatic	Climatic																																																																														
Humidity impact	Climatic	Climatic			Climatic	Climatic																																																																														
Irradiations tests	\|																		\|																\|															\|														\|																	\|		\mid \| \mid \|	

Cross-comparison tests

- Between Inclinometer / cHLS and iHLS

- FSI long distance / laser tracker / interferometer
- kWPS and cWPS

Towards installation (all other systems)

Integration of all alignment systems	Technical Study of coll specification for all systems design \rightarrowupgrade of solutio
Installation	- Sensors support - Hydraulic network \& supports - Wire protection \& supports
Preparation of installation drawings and procedures	- Remote diagnostic devices - Stretching devices - Wire to wire meas. system

Storage of all data in MTF \& EDMS

Assembly and test of series

Order of series

Insertion of series in 3D

Design of a prototype

Manufacture \& assembly of a prototype

Validation of a prototype

Design of series

Towards installation (motors assembly for jacks)

Upgrade of jacks design

Mech. Interface design

Development of control/command (Sambuca project)

- Jacks (WP3, WP4, WP8)
- Motors
- Associated sensors (resolver, load cell)
- Gearbox
- Control/command system

Validation on the string test

Procurement of series

Reception

Towards installation (motors assembly for UAP platform)

Manufacture of joints \& jigs

Validation of UAP concept

Adaptation to the equipment

Validation on the string test

Procurement of preseries for test

Development of Motorized version

Series procurement

Development of control/command (Sambuca project)

- UAP platform (WP5, WP13)
- Motors
- Associated sensors (resolver, load cell)
- Gearbox

Procurement strategy

Validation of concepts and prototypes

Development of pre-series

Towards industrialization

External

manufacturing/assembly

- Motors
- Sensors: WPS, HLS, resolvers, load cells
- Associated supports

In-house assembly In-kind contribution

- Diagnostics tools
- FSI acquisition
- Motors assembly
- Inclinometers
- Acquisition electronics
- Wire stretchers
- Feedthrough

Resources

- WP15.4.1 and WP15.4.3:
- Staff;
- During LS2 or YETS contract services (for series components or scan activities for example)
- WP15.4.2:
- Staff + MPA (fellows, PJAS)
- WP15.4.4:
- Staff + MPA (fellows, PJAS) + FSU

Resources (MPA)

Very difficult to find persons knowing already our techniques:

- We absolutely need overlaps between persons
- We plan to extend one PJAS as fellow to keep the knowledge

Resources (MPA)

Very difficult to find persons knowing already our techniques:

- We absolutely need overlaps between persons
- We plan to extend one PJAS as fellow to keep the knowledge

Resources

- MPA: Collaborations: past, current \& future
- CNAM (France) [past]
- AGH (Poland) [current]
- ? [future]
- Other resources (FSU, contract services, design office): what is foreseen.

	2019	2020	2021	2022	2023	2024	2025
FSU (kCHF)	110	110	110	110	110	110	110
Design office (kCHF)	30	100	100	100	50	10	10
Contract services (kCHF)	0	60	60	60	60	60	60

Resources

- Use of the multi-disciplinarity of the group

Resources

- No staff at 100% on the project
- High work load during LS2 where the same persons involved in FSI and FRAS are also in charge of the LHC low beta consolidation and maintenance of the alignment systems, but also a lot of experience gained!
- Same situation concerning the persons in charge of fiducialisation, geodesy and standard alignment
- One key person still on a Limited Duration contract.

FROM EHL-LHC needs - EN manpower meeting. Sept 18.

FTE per WP	2019	2020	2021	2022	2023	2024	2025	2026
15.4 .1	0.4	0.5	0.5	0.5	0.5	0.5	0.4	0.2
15.4 .2	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
15.4 .3	0.8	0.9	0.8	0.8	0.8	0.8	0.8	0.8
15.4 .4	2.0	1.6	2.1	2	2.7	2.7	3	2.3
$\mathbf{1 5 . 4}$	4.1	3.9	4.3	4.2	4.9	4.9	$\mathbf{5 . 2}$	$\mathbf{4 . 2}$

Material budget status

Material budget status per sub-sub WP

Summary

- FSI system for the internal monitoring of IT quadrupoles and CC:
- Very satisfactory results obtained on the crab cavities prototype in SPS
- Two FSI systems evaluated through tests on a dipole.
- Cryo-condensation problem met on targets inside the dipole, a solution was found (with the help of TE/MSC)
- CERN MT-FSI chosen, with coated glass spheres, insulated support for targets and simplified feedthrough
- A final validation plan is defined and scheduled
- Procedures / workflow on the installation and measurements of FSI targets under finalisation

Summary

- Internal monitoring:
- All magnets will be fiducialised after cold test at CERN
- Procedures are derived from existing LHC cryomagnet procedure
- Assembly workflow for all the components under definition in the frame of the WGA
- Measurement workflow defined for the crab cavities metrology assembly
- FRAS:
- Allows to save radiations to the personal, a reduction of correctors strength, a gain in aperture for several components
- Opens the possibility to optimize the MS section and to important budget savings.
- All strategy/requirements/solutions/interfaces defined in the functional specification, to be endorsed by the TCC next month.
- Still a few cases under discussion (vacuum valves in front of D2, BPM after D1, BBMR not considered as not in the baseline)

Summary

- Solutions for adjustment
- Preliminary results from the 181 string test show that operational issues on present LHC jacks are understood; they could be used for HL-LHC, considering small improvements to be compatible with space requirements
- Their re-engineering is targeted this Autumn; procurement strategy: in-kind contribution from Serbia
- Small UAP platform fully validated; design of big UAP under way.
- Standardization of the motors control/command system via SAMbuCA project
- Solutions for position determination:
- Volume integrated for all alignment systems and their diagnostic tools in the 3D models
- Alignment sensors under validation, final choice next year.

Thank you very much

