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THE EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (“CERN”), an Intergovernmental
Organization having its seat at Geneva, Switzerland, duly represented by Fabiola Gianotti,
Director-General,

and

Google Switzerland GmbH (Google), Brandschenkestrasse 110, 8002 Zurich, Switzerland , duly
represented by [LEGAL REPRESENTATIVE]

Hereinafter each a “Party” and collectively the “Parties”,

CONSIDERING THAT:

The Parties have signed the CERN openlab VI Framework Agreement on November 1st, 2018
(“Framework Agreement”) which establishes the framework for collaboration between the Parties
in CERN openlab phase VI (“openlab VI”) from 1 January 2018 until 31 December 2020 and which
sets out the principles for all collaborations under CERN openlab VI,

Google Switzerland GmbH (Google) is an industrial Member of openlab VI in accordance with the
Framework Agreement;

Acrticle 3 of the Framework Agreement establishes that all collaborations in CERN openlab VI shall
be established in specific Projects on a bilateral or multilateral basis and in specific agreements
(each a “Project Agreement”);

The Parties wish to collaborate in the “exploration of applications of Google products and
technologies to High Energy Physics ICT problems related to the collection, storage and analysis
of the data coming from the Experiments” under CERN openlab VI (hereinafter “Exploration of
Google technologies for HEP”);

AGREE AS FOLLOWS:

Article 1
Purpose and scope

1. This Project Agreement establishes the collaboration of the Parties in Exploration of Google
technologies for HEP, hereinafter the “Project”). The detailed tasks and responsibilities of the
Parties for this Project are described in the Statement of Work, contained in Annex 1 of this
Project Agreement.
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2. The Parties’ collaboration under this Project Agreement is subject to the terms and conditions
set forth in the Framework Agreement, unless otherwise specified in this Project Agreement.

Article 2
Contributions

The Parties shall make the following contributions to the Project:

1. Google Switzerland GmbH (Google) contributions:

» Deployment of technical experts to the Project;

« Secondment of or grants for recruiting dedicated researchers (at the master and doctoral
level) at CERN for the execution of the projects;

»  Credits towards the use of cloud technologies
Google Switzerland GmbH (Google) shall make the above contributions and issue the credit

memos, as applicable, to CERN within ninety working days of receipt of the corresponding invoice
from CERN.

2. CERN contributions:

»  Deployment of technical experts to the Project;

» Supervision of personnel funded by Google Switzerland GmbH (Google);

»  Deployment of interns for the CERN Summer Student 2019-2020 program to work on
activities related to the Project;

* Access to CERN'’s technical environment (hardware, software) as required for the
Project;

» Support to public relations and communications activities in accordance with Annex 1 of
the Framework Agreement and based on Google Switzerland GmbH (Google)’s openlab
VI membership status.

Article 3
Contact points

The contact persons for the Project shall be:

For Google Switzerland GmbH (Google):
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XXXXXXX

For CERN:
Federico Carminati, CERN openlab
Maria Girone, CERN openlab

For the individual use cases

Use case 1.1 Tim Bell, Ricardo Rocha (IT-CM)

Use case 1.2 Felice Pantaleo, Andrea Bocci (CMS)

Use case 2.1 Sofia Vallecorsa (CERN openlab)

Use case 2.2 Jennifer Ngadiuba, Maurizio Pierini (CMS)

Use case 2.3 Luca Canali (IT-DB), Viktor Khristenko (CERN openlab)

Use case 2.4 Sofia Vallecorsa, Taghi Aliyev (CERN openlab), xxxxx (UNOSAT)
Use Case 2.5 LHCb

Use case 3.1 Federico Carminati, Sofia Vallecorsa (CERN openlab)

Use case 3.2 Federico Carminati, Sofia Vallecorsa (CERN openlab)

CERN
1 Esplanade des Particules
CH 1211 Geneva 23, Switzerland

Article 4
Entry into force, duration and termination

1. This Project Agreement shall enter into force on the date of signature by the last Party to sign
with effect of June 1st, 2019. It shall remain in force for as long as necessary to give effect to
the Parties’ respective rights and obligations under this Project Agreement.

2. Except in case of force majeure, each Party may only terminate this Project Agreement in the
event that the other Party fails to honour any of its obligations thereunder.
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Signedon ............

The European Organization for Nuclear Research (CERN)

(Email address)
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(Email address)
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Annex 1:

Project Statement of Work
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OVERVIEW

Start date June 1st, 2019

Duration 12 months with option for renewal upon mutual agreement
Members CERN, ATLAS, Google

Total effort
Total cash
contributions
Total in-kind
contributions

SUMMARY OF RESOURCE CONTRIBUTIONS

FTEs Facilities® Hardware Software Other Cash
(Summer | (FTE+travel,
students, other, etc.)
events)

CERN

Google
Switzerland

GmbH

(Google)
Total?

PROJECT DESCRIPTION

The following Programme of Work is organized in three main areas with specific use cases
of interest. Section 1 describes explorations in data center and computing infrastructures
technologies (storage, workflow managements, containers, hybrid infrastructures
integration, etc.). Section 2 focuses on application of machine learning/deep learning tools
and algorithms. Finally Section 3 deals with quantum computing explorations.

1. Data Center technologies

L Office space, rack space, access to infrastructure or facilities, etc.
2 provide estimated values for facilities, hardware and software contributions
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Kubernetes performance and scalability (use case 1.1)

Large computing environments require high levels of automation for both resource and workload
management, as well as careful resource planning to meet the needs of daily operations and periodic
spikes on resource requests while minimizing cost. Balancing the two can often be challenging.

Looking forward to the upcoming challenges of the High Luminosity LHC and its significant
increase in the amount of data to be processed, this use case will explore technologies with potential
to ease this task while improving resource usage. In addition to the more traditional scale out
options using well established network and compute provisioning methods, it will focus on the
Kubernetes project and ecosystem, where Google and more recently CERN have been investing
significantly along a much larger community.

The main focus will be on extending the ongoing efforts to scale out the CERN data center to the
Google Cloud Platform (GCP) (already done at scale for one time demos like Kubecon Barcelona
2019), exploring Kubernetes federation and service mesh technologies (lIstio). The Batch use case
can be taken as the primary use case to offer a larger CPU capacity to CERN users. Another
interesting area of collaboration are accelerators, and how we can offer GPUs (currently available
in a very limited amount at CERN) and TPUs transparently to our users building on top of the same
Kubernetes layer. The final result should include a detailed report on the technologies used as well
as cost models and efficiency in the areas of compute, networking and storage.

The current CERN capacity is in the order of 300.000 hardware hyper-threads (cores) and 100s of
Petabytes of storage. For a successful evaluation of this model’s viability we expect to have a
significant fraction of these resources available in GCP at least for a short period of time.

Additional areas of interest include research on serverless models to simplify the LHC computing
workflows. The existing workflows launched by data arriving from the detectors are a good match
for pipelines triggered by the storage systems, with each step executed as an independent function.
Technologies like Knative (the backend of Google’s Cloud Run service offering) should allow us
to again build on the same Kubernetes layer, allowing experiment users to focus more on their
computing tasks and less on resource management. It should also allow Google to get a large use
case being deployed in this new cloud service offering. The end result is expected to be a prototype
of one of the experiment’s data reconstruction relying on a single pipeline backed by GCS/S3 and
Knative.

Milestone | Duration H/W | S/W | Approx. Criteria Outcome
effort (FTE)
M1 6 months | x X 1 Working CERN Batch system

prototype running on Kubernetes,
with resources both at
CERN and in the Google
Cloud Platform (GCP)
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M2 6 month 0.5 - Report on cost models
and service efficiency for
resources running on
GCP

M3 6 months X 1 - Experiment data
reconstruction deployed
using a serverless
pipeline

Composable data centers for efficient HEP computing workflows (use case 1.2)

This use-case deals, in a novel way, with event processing, pushing back the frontiers of
technologies that can find application in many other areas of science and technology. At High
Luminosity LHC and FCC, the higher proton-proton interaction rate, pileup and event processing
rate present an unprecedented challenge to the real-time and offline event reconstruction, requiring
a processing power orders of magnitude larger than today. This exceeds by far the expected increase
in processing power for conventional CPUs (at a fixed cost), demanding an alternative approach.
This use-case will study the feasibility of allowing HEP applications to run at heterogeneous data
centers, with the goal of demonstrating that they can achieve higher throughput and better energy
efficiency by running each step of a computing job on the architecture that best matches its
characteristics. General purpose nodes will accelerate applications leveraging the specialised nodes
available within the data center. It will also investigate source-to-source code translators to improve
performance portability and will quantify the benefits of this novel approach with respect to
existing ones, in terms of overall cost savings, energy efficiency, throughput, flexibility and
scalability.

To fully exploit the physics reach of the High Luminosity Large Hadron Collider, the LHC
experiments are planning substantial upgrades of their detector technologies and increases of their
data acquisition rates. Studies are ongoing to develop the Future Circular Collider (FCC) trigger
and data acquisition infrastructure, which will have even higher requirements.

This use-case deals with event processing, pushing back the frontiers of technologies that can find
application in many other areas of science and technology that could benefit the European scientific
infrastructure. At HL-LHC and FCC many hundreds of (pileup) events are superposed on the one
of interest. The event of interest has to be disentangled from all the others. The higher proton-
proton interaction rate, pileup and event processing rate present an unprecedented challenge to the
real-time and offline event reconstruction, requiring a processing power orders of magnitude larger
than today. This exceeds by far the expected increase in processing power for conventional CPUs
(at a fixed cost), demanding an alternative approach.

We will study the feasibility of allowing applications to run on heterogeneous data centers, with
the goal of demonstrating that they can achieve higher throughput and better energy efficiency by
running each step of a computing job on the architecture that best matches its characteristics.
General purpose nodes will accelerate applications leveraging the specialised nodes available
within the data center. A source-to-source code translator will also be investigated, in order to avoid
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code duplication when programming different accelerators and conventional CPUs. The project
will quantify the benefits of this novel approach with respect to existing ones, in terms of over
hall cost savings, energy efficiency, throughput, flexibility and scalability.

Substantial improvements to the current experiments at the LHC are underway, and new
experiments are being proposed or discussed at future energy-frontier accelerators to answer
fundamental questions in particle physics. At HL-LHC and FCC highly granular calorimeters and
complex silicon vertex trackers must operate in an unprecedentedly challenging experimental
environment; moreover, the real-time event selection will pose even greater challenges.
Heterogeneous computing architectures, in which general purpose and specialized processors work
cooperatively, hold tremendous potential for solving these issues, accelerating applications beyond
what one can expect from general purpose processors, while overcoming many of the barriers that
limit the application of less conventional architectures.

To achieve processing speeds orders of magnitude beyond what is available through general
purpose processors, industry leaders and the HPC community are developing new strategies and
exploring innovative architectures that can work around the limitations of conventional systems,
leveraging specialized processors or “accelerators” that deliver enhanced performance in areas
where general purpose processors fare poorly. Examples include:

e vector processors, such as the GPUs, that increase computational performance by efficiently
computing identical calculations on large streams of data;

e Tensor Processing Units for Machine Learning applications, that can deliver orders of magnitude
improvements over conventional processors for very specialised workflows.

The main limitation of these accelerators is that, although they provide excellent acceleration for
some well-defined workflows and largely parallel operations, they have very poor performance for
scalar code and control flow structures, and are often unable to run general purpose software.
Heterogeneous computing is the strategy of deploying multiple types of processing elements within
a single workflow, and allowing each to perform the tasks to which it is best suited. This approach
can expand the scope of conventional microprocessor architectures, taking advantage of their
flexibility to run serial algorithms and control flow structures, while leveraging specialized
processors to accelerate the most complex operations hundreds of times faster than what general
purpose processors can achieve. Since many applications include both code that could benefit from
acceleration and code that is better suited for conventional processing, no one type of processor is
best for all computations: heterogeneous processing allows exploiting the best processor type for
each operation within a given application, provided that the underlying reconstruction framework
is able to support them.

The workflows that will run on these heterogeneous platforms (simulation, reconstruction,
analysis) have very different resource demands, requiring a flexible computing farm architecture
that supports all the aforementioned kind of accelerator nodes, alongside traditional ones; the
composition of the farm shall be dynamically adjusted to match the requirements in term of
resources used by the different workflows. A heterogenous scheduler will be able to offload data
and algorithms from the traditional nodes to the various accelerator nodes, aiming to use the most
efficient resources for each task, but being able to fall back to any available one. The integration of
heterogeneous computing in High Energy Physics software frameworks depends on improvements
to the framework and scheduling themselves, coupled with a tailoring of the reconstruction
algorithms to the different architectures.
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This use-case aims to develop a solution with improved physics performance at an overall lower
cost. This will allow the upgraded LHC experiments, future experiments, , and experiments at the
cosmic frontier (SKA, etc.) to achieve unprecedented performance, especially in the real-time
reconstruction step, which is critical to fully exploit their potential. While the diverse experiments
will face different problems, they will share the overall challenge of reconstructing and analysing
a large data throughput - which can be efficiently addressed with a heterogeneous computing
approach.

On-demand application acceleration through remote heterogeneous computing could potentially
lead to leaps in performance in cases in which:

e the results are required with small latency;

e the time needed to transfer data is Small with respect to the time of the computation;

e analysing data online can improve the understanding of the observed process and can
reduce the amount of data stored.

MILESTONES AND EXPECTED OUTCOME

Milestone Duration H/W S/W Approx. Criteria Outcome
effort (FTE)
M1 1 month 1 Identification
of a
benchmark
for the
evaluation of
the
performance
M2 9 months 1 Developmen
t of a
scheduling
system

M3 2 months 1 Test of
different
topologies
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2. Machine Learning/Deep Learning
We have various applications in this area, and namely

1. Generative models for detector simulation
2. Data Acquisition and Filtering

3. Event Classification

4. Event reconstruction

Generative models for detector simulation (use case 2.1)

The CERN openlab group has now a quite extensive experience in applying generative methods
for detector simulation. While results are very promising, we still could not conduct extensive
hyperparameter scans to determine the optimal network configuration, the main bottleneck being
the performance of the training process. The optimisation of complicated networks has high
computational costs and the availability of HPC facilities, on-demand access to large Cloud
resources and to dedicated hardware (such as TPUs) would enable us to define the best network
configuration, maximise performance and insure quick turn-around of new trainings, when needed.
In fact, given the number of deep learning algorithms that are being explored for different
applications (from data quality monitoring to online selection, to simulation, reconstruction and
analysis) large training workloads are likely to become more and more frequent within the High
Energy Physics experiments.

In order to scale out the training process of our 3D convolutional GAN model we have tested
several approaches to distributed training in different environments (HPC centers and Cloud) using
both CPU and GPU accelerators. We intend to leverage those results to improve performance and
effectiveness of hyperparameter optimisation in order to determine the appropriate network
parameters for different types of detectors. So far our initial prototype has reached a very good
agreement to standard Monte Carlo approach as far as the simulation of a specific detector geometry
is concerned. The aim of this work would be to test to which extent (and at what computational
cost) it is possible to tune a network architecture in order to simulate a larger range of detectors
(i.e. calorimeters).

Different approaches can be explored to find the best network configuration: from the easiest, but
most time-consuming sequential model based strategy, defining an initial model and a specific set
of alternative configurations to test, to more refined reinforcement learning approaches, in which
hyper-parameter modifications represent actions to be performed by the agent and the network
accuracy is the reward function. We propose to implement an evolutionary approach in order to
perform the training and hyper-parameter optimisation of our network in one step, i.e. optimising
the network architecture and weights at the same time. While successful examples exist in different
fields [18,21,22], this strategy is still new to our field: in particular, optimisation of a large number
of parameters (network weights and hyper-parameters summing up to ~millions) represents a
major challenge to this approach in terms of efficiency and computing resources, however a genetic
algorithm is naturally scalable on distributed systems [21] and it might have the advantage, with
respect to the typical SGD-based training, to converge faster to an absolute minimum. In order to
manage the 3DGAN use-case complexity, in terms of image size, network parameters and the
adversarial approach, this activity will be implemented in three major steps: initially we will reduce
the problem complexity from 3 to 2 dimensions, by slicing the detector volume along the direction
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of particle propagation and implement the training step as genetic optimisation problem for the a
classifier/regression network, similar to our GAN discriminator. During a second phase the
architecture hyper-parameters will also be encoded in chromosomes and optimised. At this stage
we will test indirect weight encoding in order to reduce the number of parameters and stabilize the
training. The complete GAN scenario will be implemented once efficient optimisation of single
networks is proven. This step requires integration of the adversarial training with the evolutionary
approach which is non trivial. Here we focus on phase 1 and 2 as described above: the
corresponding milestones are listed in the table below.

Apart from the direct benefit of designing a prototype capable of simulating several different

detectors, this project intends to understand the limits of network generalisation and to optimise

the application of a GA-based approach to a real life use case, as an alternative to standard hyper-
arameter scans strategies.

Milestone | Duration | H/W | S/W | Approx. Criteria Outcome
effort (FTE)
M1 6 months X 1 Working Training of a 2
prototype | dimensional
classifier/energy
regressor network
implemented as a
genetic optimisation
task.
M2 3 month X 1 Working Inclusion of the
prototype | architecture hyper-
parameter optimisation
M3 3 months X 1 - Performance
optimisation in terms of:
1. Computing
performance
and test of
different
accelerators
(GPUs, TPUs)
2. Network
accuracy
M4 3 months X 1 - Extension to the 3
dimensional case.
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Deep Learning Inference on TPU for LHC real-time collision processing (use case
2.2)

Atthe LHC, 40M collisions are produced every second. Of these, only 1000 can be saved for further
analysis (offline), mainly due to CPU and storage limitations. In order to guarantee the possibility
of carrying on a broad physics program, one cannot just select 1000 events randomly. Instead, a set
of algorithms (trigger filters) run in a real-time processing system (online) to select the most
interesting events (according to physics knowledge and expectations).

The CMS trigger system is structured in two levels:

1. The Level 1 (L1) trigger operates filters 100K events/sec, based on a coarse reconstruction
implemented into the detector readout electronics (ASICS or FPGAS), directly attached to
the detector. The selection is mainly based on local signatures (e.qg., the presence of a high-
energy electron) and uses to a limited extent the global event information (e.g., total
energy).

2. TheHigh Level Trigger (HLT), consisting in a CPU farm where a coarser and faster version
of the offline reconstruction runs. At this stage, the final 1000 events are selected, based
on a much more accurate (than at L1) description of the event.

The main structural aspect that drives the algorithm complexity is the system latency, with in
average 10 psec and 100 msec available to take a decision at L1 and HLT, respectively.

In the last years, CMS trigger experts have started looking at Deep Learning as a shortcut to run
complex algorithms online while keeping latency under control. During the LHC Run Il several
algorithms (mainly Boosted Decision Trees) have been deployed in the HLT system. Recently, a
dedicated effort to translate TensorFlow models into FPGA firmware (HLS4ML) has allowed the
development of classification and regression models for the CMS L1 system, based on deep fully
connected networks.

With new Deep-Learning dedicated computing architectures emerging, the CMS collaboration is
interested in exploring alternative architectures for fast inference. In this respect, TPUs offer
multiple possibilities:
A. They could be used as accelerator device to run inference as a service for the HLT CPU,
a development direction that is currently under investigation both for FPGAs and GPUs,
both considering in-situ and cloud solutions.
B. They could be adapted to be Deep Learning ASICs, to be integrated in the data flow of the
L1 trigger architecture.

Starting with a set of reference use cases, developed in the context of the HLS4ML development,
we propose to carry on a comparative study between TPUs and FPGAs for L1 and HLT use cases,
in order to establish the technological feasibility of a TPU-for-CMS trigger solution for future
upgrades. The work will move in three directions:

1. Investigate the integrability of TPUs as Deep Learning ASICs in the L1 system.
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2. Develop CPU+TPU deep learning inference system integrating the C++ based CMS

reconstruction software to TensorFlow on TPU.
3. Build cloud-based solution, in which the on-site CPU farm (running CMS reconstruction
software) would communicate with TPU cloud resources for inference purpose.
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Deep Learning data pipelines for high energy physics and event classification (use
case 2.3)

High Energy Physics (HEP) experiments and their detectors at LHC produce very large quantities
of data, nominally of the order of 1 PB/sec. Very sophisticated procedures have been developed
and put in production in order to identify, select and filter collisions of interest, prior to storing
them for further analysis. Currently, most of the algorithms that run at the “trigger level” are
handcrafted traditional performant routines that physicists used over the years.

Deep Learning provides a promising alternative approach to the problem of collision event
classification and filtering. Accuracy achieved by employing various architectures of neural
networks proves them an ideal candidate for replacement of traditional algorithms.

This work addresses key technological challenges in the preparation of a data pipeline for DL
research and aims at providing a demonstrator of tools and methods that can improve the
productivity of the data scientists/physicists. Key area of investigation are: performance at scale,
ease of deployment and integration of the component of the data pipeline, use of industry-standard
APIs.

In particular, we plan to deploy the data pipeline and DL workload using the Google Cloud
Platform. For the purpose of data preparation and feature engineering, we plan to use Apache Spark
and for the setup of the DL training pipeline we plan to investigate Kubeflow. For defining and
training DL model we will utilize TensorFlow and profit of hardware acceleration with TPUs
and/or GPUs. The workflows will be defined using Python and Jupyter notebooks on Google Colab.
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Deep Learning for Earth Observation (use case 2.4)

The United Nations Institute for Training and Research (UNITAR) hosts the UN
Operational Satellite Applications Centre (UNOSAT), which analyses satellite imagery to
support disaster response and humanitarian operations. Because of the high level of
precision required, manual analysis of a refugee settlement in a satellite image can take
many hours (sometimes days).

As a consequence and because of time and manpower constraints, UNOSAT can currently
fulfill only 5-10% of UN requests.

UNITAR is researching the use of Artificial Intelligence and Deep Learning to improve
efficiency and reduce this amount of time, allowing an effective deployment of field
operations in critical humanitarian situations.

A unique partnership between CERN openlab, Intel, and UNITAR has been created, a few
years ago, in order to use Deep Learning methods to improve the analysis of optical satellite
imagery for humanitarian purposes and in particular automatize, shelter counting in refugee
camps, mapping of flooded areas and infrastructure damage detection using Deep Learning
models.

An initial study performed last year by a student from the CERN openlab Summer Student
project, leveraged transfer learning on a Convolutional Neural Network (FaceBookAi
Detectron framework) for counting in refugee camps images. The initial results achieved a
82% average precision and a x200 speedup with respect to UNOSAT standard approach
(visual recognition by a trained expert). Results are now being integrated by the UN
Global Pulse office in their studies to enrich and refine Deep Learning based prediction
tools.

We propose to extend this approach to the problem of detecting flooded areas and
determine infrastructural damages from satellite images, designing a DNN capable of
reaching a higher level of accuracy (above 90-95%) as required by UNOSAT operations.

The image segmentation models are being applied to satellite imagery with mixed results
(see results of a recent Kaggle challenge on the subject [19]): in general the diversity of
environments including urban areas, dense vegetations or mountainous terrain and the
relative small size of available training set make complicate the task. In this context, the
U-Net architecture, initially developed for medical imaging tasks, has produced very
interesting results [20].

Our work will initially leverage on the results obtained last year for the refugee camps
image analysis, testing the performance of region-based CNNs on the detection of flooded
areas. The optimisation and adaptation of the tool will take into account the specific
features of water and mud in satellite imagery. Results will be compared to the performance
of classical approaches and to other existing methods (U-Net based for example).

Multiple natural and human-made disasters can affect various areas of the world
simultaneously. We believe the development of an automated change detection system
could be an instrumental tool which could enhance our capacity to provide immediate
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findings and reports to UN organizations and NGOs working in the field addressing their
needs and supporting them in evidence-based decision making at the highest level. This
system could be conducive in responding rapidly and timely to any specific natural or
human-made disaster by providing factual and credible information leading towards
achieving our common goals.

Milestone | Duration | H/W | S/W | Approx. Criteria Outcome
effort (FTE)
M1 3 months X 1 Working First R-CNN  based
prototype prototype on RGB
images.
M2 3 month X 1 Working Extension to  multi-
prototype spectral data
M3 3 months X 1 - Performance
optimisation
M4 3 months X 1 - Comparison to U-Net
based approaches

RICH reconstruction using Google TPUs (use case 2.5)

The Ring-imaging Cherenkov (RICH) detectors determine the velocity of particles coming from
proton-proton collisions at the LHCb detector at CERN. When particles pass by a C4F10 radiator
gas, they emit cones of photons whose angle is linked to the particle speed and particle type. These
photons are reflected in two mirrors prior to being detected in 64-channel Multi-Anode
Photomultiplier Tubes (MaPMTSs), translating into an array of pixels.

The RICH reconstruction is currently a costly process in terms of computing power. For each
particle, all possible MaPMT pixels according to variations in speed and type are associated. One
of the mirrors is a section of a spherical mirror, and hence calculating a single reflection means
solving a quartic equation. Additionally, since different sets of pixels would be associated with
each particle depending on their type, a "likelihood" is defined for each association of particles and
types. The process of likelihood minimization, intractable in practice due to the number of possible
associations (possible types " number of particles), is tackled with a local search.

Other reconstruction mechanisms exist in literature. In this project, we propose exploring non-
conventional global techniques for RICH reconstruction, applied to the LHCb use case.
Convolutional Neural Networks (CNNs) are a well-known category of Neural Networks within the
Machine Learning field. In particular, they have shown to be effective in classification problems
with large training datasets. In addition to CNNs other deep learning methods are studied, such as
Recurrent Neural Networks, and combinations of the two. We propose to formulate the RICH
reconstruction problem as a classification problem of n particles, where every particle can be
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classified as one of five possibilities: muon, kaon, pion, proton, electron or deuteron. We intend to
employ Monte Carlo datasets as a source of training and test data, and validate our results with
existing validation tools from the LHCb framework.
Such a project will greatly benefit from the use of Google’s TPU accelerator hardware in order to
perform the training and tuning of the neural network models that are studied to find an optimal
reconstruction approach. Various Neural Network models are under study, with a large and
complex architecture that would be optimally suited for the TPU’s time-to-accuracy optimisation.
As a result, Google’s TPUs could contribute significantly to the success of the research project.

MILESTONES AND EXPECTED OUTCOME

Milestone

Duration

H/W

S/W Approx.
effort (FTE)

Criteria Outcome

KEY RISKS
Summary description.

Risk

Probability | Impact

Mitigation Strategy

Organi
zationa
| risks

Critical
path
techno

logy
risks
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3. Quantum Computing

This use case will include Quantum Computing applications to High Energy Physics. Its aim is to
recast relevant High Energy Physics computational problems into quantum algorithms and explore
new applications such as direct simulation of quantum systems. It is expected that the work will
initially be done on quantum simulators and, when available on quantum hardware.

Quantum generative models(use case 3.1)

Generative models are being explored by the High Energy Physics community, and by the
CERN openlab group, in particular, as possible fast solutions to replace Monte Carlo
simulation. Models such as Boltzman Machines, Generative Adversarial Networks (GAN)
and Variational Auto-Encoders (VAE) learn the underlying probability distribution from a
training set and sample it during the generation step. VAEs rely on latent (non-visible)
variables to encode properties of the training dataset and re-use them during the
generation (de-coding step). GANs implement the adversarial training process as a zero-
sum game: convergence occurs when the corresponding Nash equilibrium is reached.

Implementing generative models on quantum processors could bring potential
advantages in terms of representational power and computing time (for training and
inference). Recent studies on Quantum VAE (QVAE) show promising results, although no
guantum supremacy in this field has been proven so far. A quantum-classical hybrid
approach implements the QVAE as a classical auto-encoding network and a Quantum
Boltzmann Machine-based generative process on the D-Wave annealer [12]: results on
the MNIST dataset are comparable to well established classical methods (i.e.
convolutional neural networks). Another approach focuses instead on the auto-
enconding process: Quantum Auto-Enconders can be implemented as a sequence of
gates [13] in order to compress the input qubits information into a smaller number of
output qubits.

Quantum GANs, QUGAN, have been proposed in [14] and the theoretical implications of
a quantum approach to the adversarial training are detailed in [15]. In QUGAN, the
optimisation problem is reformulated using the quantum formalism and the cost function
is minimized by evaluating the gradients on a quantum processor. The method is proved
using a simple numerical example (a two labels system) and a total of 5 qubits.
Convergence is reached after 100,000 training steps.

We propose to explore the possibility to extend the QUGAN system to a realistic example:
the simulation of the physics quantities describing an interesting final state (i.e. the four-
momentum components of the particles produced by a specific Higgs boson decay). This
“ultra-fast” simulation would skip entirely the detector output reconstruction process and
provide in one step the information needed by preliminary analysis design studies. Similar
approaches are being studied by the High Energy Physics community using classical
techniques. Given the relatively small number of outputs (in the range of 10) ) this kind
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of application seems well suited to the dimensions of near-term quantum processors
(tens of qubits). Moreover, since the input (training) data and the output are quantistic
by nature, this application could benefit by the use of quantum states to represent the
input.

Initial studies will be devoted to the implementation of the GAN model and the
adversarial training mechanism using Cirg. The ability to reproduce the results presented
in [14] (on a simplified numerical use case) will allow us to benchmark the quality of our
implementation. The next step would be to understand the maximum problem size that
could be solved by such a system and to design an efficient strategy to represent input
and output quantities related to our fast simulation use case in terms of quantum states
(i.e. quantum states amplitudes). It should be noted that this step, in itself, represents an
interesting challenge, since most QML applications so far, focused on classification
problems where the output variables are simple 0-1 flags in nature.

Depending on the results of this first use case we could extend this project to a second,
more realistic, problem: the simulation of the detector output, interpreted as a pixelized
image. Generation [12] and classification [13] quantum networks have already been
applied to image datasets such as MNIST. In our case a major challenge would be the
high dimensionality of the input image ( typically thousands of pixels) that should be
reduced to a manageable size, by classical approaches such as downsampling or Principal
Components Analysis techniques.

Milestone | Duration | H/W | S/W | Approx. Criteria Outcome
effort (FTE)
M1 3 months X 1 Reproduce | Implementation in Cirq
results in | of the method proposed
[14] in [14]
M2 2 month X 1 - Representation of the
simplified fast

simulation input and
output variables as
guantum states

M3 6 months X 1 Working Implementation of a
prototype quGAN example to
generate simplified fast
simulation output
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M4 1 month - 1 - Result publication on a

peer-reviewed journal or
conference proceedings

Optimisation of GRID job placement (use case 3.2)

The ALICE experiment at CERN has access to more than 70 computing centers, located in
40 countries on 5 continents, offering access to upwards of 150,000 CPU cores and 120
PB of storage for the processing needs of the experiment. The resources, both CPU and
storage, are highly heterogeneous and the workflows are highly 10 intensive (60GB/s
reading and 6GB/s writing). The Our mission is to globally optimize the data access for
both read and write operations.

For data processing jobs, the decision on where to read from or to write to is based on a
distance metric between the client and all storage nodes. This metric is a weighted
function of storage reliability, network topology (RTT) and remaining capacity (for
writing). While having the great advantage of being fully automatic and generally correct,
it doesn’t take into account infrastructure elements like network links capacity and
utilization nor the 10 capabilities of the storage elements or the interconnect capacity
between the storage and the computing nodes.

To find the correct balance between how much data to stream from the site local data
storage and when it would be worth to rely on external locations is a hard problem to
which we don’t have a solution yet. The access to remote copies affects circa the 5-10%
of the ALICE analysis jobs which means a total amount of 50PB/year in terms of data
volume. With the help of quantum computing algorithms applied to the data replication
protocols, this amount of data could decrease in a factor 2. This has a clear effect on the
network usage whose occupancy could decrease in a 50%.

Ideally the final system should be able to:

Interface with the monitoring system to receive the relevant information;

Learn from the past decisions retrieving information from the ALICE MonALISA
monitoring system;

Provide hints to job and file brokers in quasi-real time;

Sustain one order of magnitude higher access rates, from the current O(10kHz).

The potential benefit is in better utilization of the CPU cores. At the moment, the analysis
uses 48% of the allocated CPU, spending thus half of the time in 10 operations. With a
global optimization the turnaround time for the physics analysis would be shorter and the
physicists would waste less time waiting for the results to be available.
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The work will make use of the extensive monitoring database that the ALICE experiment
has collected over the last 10 years of Grid operation, based on the MonALISA technology
[5,6], and “live” tests can be conducted on the ALICE WLCG infrastructure where jobs are
continuously run.

Some of the very first applications proposed for QC have been in the domain of
optimisation. In case of extremely non-linear systems, classical optimisation methods
such as gradient descent have shown to be sub-optimal, leading to poor local minima or
failing to converge at all, especially in quickly changing systems. Minimisation via classical
sampling is also problematic in case of very high dimensionality of the parameter space,
and even methods such as Gibbs sampling are known to have slow-mixing properties. The
ability of QC of exploring several states concurrently has led to one of the first “quantum
dominance” algorithms [7] and since then search and optimisation algorithms have been
the focus of a large part of the studies in QC [8, 9] (see also the excellent survey [10] and
references therein).

The challenge of this project will be to design a system that could be run (at least in
principle) dynamically, to adapt to the current status of the Grid. We expect most of the
work to be done on QC simulator, with tests on real QC hardware when the algorithms
have been implemented and validated.

CERN openlab will provide 1.2 FTEs for this work, out of which 1 financed by the project.

The ALICE team at CERN will provide 0.3 FTEs and expertise and guidance in the
interpretation of the monitoring data. It will also test the results of the optimisation on
the ALICE Grid.

The Polytechnic University of Bucharest will contribute their expertise in the analysis and
optimisation of the data extracted from the MonALISA monitoring system, providing a
total of 0.2 FTEs.

The Laboratory of the Techniques of Informatics and Microelectronics for integrated
systems Architecture will provide its expertise in optimisation and statistical analysis
techniques, providing a total of 0.2 FTEs.

Google will collaborate to the project by providing support and guidance for the
implementation of the quantum algorithms. Google will also provide support in the usage
of the quantum simulation software (Cirq simulator) and, when appropriate during the
project access to the quantum hardware to test the algorithms developed.

Several initiatives have started at CERN along this line, for example the idea of optimising
WLCG data storage within geographical regions, by prototyping a distributed storage
service that concentrates data (in the so-called data-lakes) and then streams it to cache
locations as efficiently as possible [11].
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MILESTONES AND EXPECTED OUTCOMES

Expected results

R1 |Demonstration of the algorithm on the quantum simulator;

R2 [Test of the algorithm on quantum hardware;

R3 [Result publication on a peer-reviewed journal or conference proceedings;

KEY RISKS

Risk Probability | Impact Mitigation Strategy

Organi
zationa
| risks

Critical
path
techno

logy
risks
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