

# HL-LHC power converter requirements Thermal settling drift

Miguel Bastos

153rd WP2 meeting - CERN - 6/R-012 - 03/07/2019

- Requirements were revised and approved this year, new version of CERN-ACC-2017-0101 document to be released
- As a reminder, values and definitions of some parameters were revised, and the effect of temperature considered separetely, as shown below

|                                                        | PC REQUIREMENTS SUMMARY - ACCURACY CLASSES |     |      |      |      |
|--------------------------------------------------------|--------------------------------------------|-----|------|------|------|
|                                                        | 0                                          | 1   | 2    | 3    | 4    |
| Resolution [ppm]                                       | 0.5                                        | 0.5 | 1.0  | 1.0  | 1.0  |
| Initial uncertainty after cal [2xrms ppm] normal       | 2.0                                        | 2.0 | 3.0  | 7.0  | 10.0 |
| Linearity [ppm] [max abs ppm] uniform                  | 2.0                                        | 2.0 | 5.0  | 8.0  | 9.0  |
| Stability during a fill (12h) [max abs ppm] uniform    | 0.7                                        | 1.9 | 5.0  | 8.0  | 9.5  |
| Short term stability (20min) [2xrms ppm] normal        | 0.2                                        | 0.4 | 1.2  | 2.0  | 5.0  |
| Noise (<500Hz) [2xrms ppm] normal                      | 3.0                                        | 5.0 | 7.0  | 15.0 | 19.0 |
| Fill to fill repeatability [2xrms ppm] normal          | 0.4                                        | 0.8 | 2.6  | 4.0  | 5.0  |
| Long term fill to fill stability [max abs ppm] uniform | 8.0                                        | 8.0 | 19.0 | 40.0 | 45.0 |
| Temperature coefficient [max abs ppm/C] uniform        | 1.0                                        | 1.2 | 2.5  | 5.5  | 6.5  |
| 12h Delta T for HL-LHC [max C] constant                | 0.5                                        | 1.0 | 5.0  | 5.0  | 5.0  |
| 1 y Delta T for HL-LHC [max C] constant                | 0.5                                        | 1.0 | 5.0  | 5.0  | 5.0  |

|                                              | 0   | 1   | 2    | 3    | 4    |
|----------------------------------------------|-----|-----|------|------|------|
| Stability during a fill (12h) [2xrms ppm]    | 1.0 | 2.6 | 15.5 | 33.1 | 39.1 |
| Fill to fill repeatability [2xrms ppm]       | 0.7 | 1.6 | 14.7 | 32.0 | 37.9 |
| long term fill to fill stability [2xrms ppm] | 9.3 | 9.3 | 26.3 | 56.1 | 64.1 |



- For the HL-LHC, the temperature variations are known (estimated) and the TC can be used to recalculate some of the parameters:
  - Stability during a fill (12h)
  - Fill to fill repeatability
  - Long Term stability
- For example for Long Term Stability (LTS) the new uncertainty is:

$$U = \sqrt{(\Delta T * \frac{TC}{\sqrt{3}})^2 + (\frac{LTS}{\sqrt{3}})^2}$$

 For the case of Fill to Fill Repeatibility (FFR), since this parameter is already given in 2\*RMS, the calculation is as follows:

$$U = \sqrt{(\Delta T * \frac{TC}{\sqrt{3}})^2 + (\frac{FFR}{2})^2}$$

(Details in EDMS 2048827)



The final values are presented in 2 x RMS. resulting in the <u>final</u> table shown below..

|                                                  | PC REQUIREMENTS SUMMARY - ACCURACY CLASSES |     |      |      |      |
|--------------------------------------------------|--------------------------------------------|-----|------|------|------|
|                                                  | 0                                          | 1   | 2    | 3    | 4    |
| Resolution [ppm]                                 | 0.5                                        | 0.5 | 1.0  | 1.0  | 1.0  |
| Initial uncertainty after cal [2xrms ppm] normal | 2.0                                        | 2.0 | 3.0  | 7.0  | 10.0 |
| Linearity [ppm] [max abs ppm] uniform            | 2.0                                        | 2.0 | 5.0  | 8.0  | 9.0  |
| Stability during a fill (12h) [2xrms ppm]        | 1.0                                        | 2.6 | 15.5 | 33.0 | 39.0 |
| Short term stability (20min) [2xrms ppm] normal  | 0.2                                        | 0.4 | 1.2  | 2.0  | 5.0  |
| Noise (<500Hz) [2xrms ppm] normal                | 3.0                                        | 5.0 | 7.0  | 15.0 | 19.0 |
| Fill to fill repeatability [2xrms ppm]           | 0.7                                        | 1.6 | 14.5 | 32.0 | 38.0 |
| Long term fill to fill stability [2xrms ppm]     | 9.5                                        | 9.5 | 26.5 | 56.0 | 64.0 |

 The distributions and limits of the parameters impacted by the temperature variation change with respect to the previous table.

Details in EDMS doc 2048827



|                                                        | PC REQ | PC REQUIREMENTS SUMMARY - ACCURACY CLASSES |      |      |      |  |
|--------------------------------------------------------|--------|--------------------------------------------|------|------|------|--|
|                                                        | 0      | 1                                          | 2    | 3    | 4    |  |
| Resolution [ppm]                                       | 0.5    | 0.5                                        | 1.0  | 1.0  | 1.0  |  |
| Initial uncertainty after cal [2xrms ppm] normal       | 2.0    | 2.0                                        | 3.0  | 7.0  | 10.0 |  |
| Linearity [ppm] [max abs ppm] uniform                  | 2.0    | 2.0                                        | 5.0  | 8.0  | 9.0  |  |
| Stability during a fill (12h) [max abs ppm] uniform    | 0.7    | 1.9                                        | 5.0  | 8.0  | 9.5  |  |
| Short term stability (20min) [2xrms ppm] normal        | 0.2    | 0.4                                        | 1.2  | 2.0  | 5.0  |  |
| Noise (<500Hz) [2xrms ppm] normal                      | 3.0    | 5.0                                        | 7.0  | 15.0 | 19.0 |  |
| Fill to fill repeatability [2xrms ppm] normal          | 0.4    | 0.8                                        | 2.6  | 4.0  | 5.0  |  |
| Long term fill to fill stability [max abs ppm] uniform | 8.0    | 8.0                                        | 19.0 | 40.0 | 45.0 |  |
| Temperature coefficient [max abs ppm/C] uniform        | 1.0    | 1.2                                        | 2.5  | 5.5  | 6.5  |  |
| 12h Delta T for HL-LHC [max C] constant                | 0.5    | 1.0                                        | 5.0  | 5.0  | 5.0  |  |
| 1 y Delta T for HL-LHC [max C] constant                | 0.5    | 1.0                                        | 5.0  | 5.0  | 5.0  |  |
|                                                        |        |                                            |      |      |      |  |
|                                                        | 0      | 1                                          | 2    | 3    | 4    |  |
| Stability during a fill (12h) [2xrms ppm]              | 1.0    | 2.6                                        | 15.5 | 33.1 | 39.1 |  |
| Fill to fill repeatability [2xrms ppm]                 | 0.7    | 1.6                                        | 14.7 | 32.0 | 37.9 |  |
| long term fill to fill stability [2xrms ppm]           | 9.3    | 9.3                                        | 26.3 | 56.1 | 64.1 |  |

- The performance of power converters described above is essentially defined by:
  - ADCs (Analogue to digital conversion), DCCTs (current measurement) and Current regulation loop -> Low Frequency
  - Voltage source and load -> Medium and high frequency



#### Therefore...

- Performance requirements for the power converter translate into even tighter performance requirements for ADCs and DCCTs.
- For example, class 0 requirement for 12h stability of a power converter is 0.7ppm and for the DCCT it is 0.5ppm.

|                                                        | Class 0          |      |     |            |
|--------------------------------------------------------|------------------|------|-----|------------|
|                                                        | FGC3.2-EXT-AC-D0 |      |     |            |
|                                                        | total PC         | dcct | adc | notes      |
| Resolution [ppm]                                       | 0.5              |      | 0.2 |            |
| Initial uncertainty after cal [2xrms ppm] normal       | 2.0              | 1.0  | 1.0 | sum of rms |
| Linearity [ppm] [max abs ppm] uniform                  | 2.0              | 1.0  | 1.0 | sum of max |
| Stability during a fill (12h) [max abs ppm] uniform    | 0.7              | 0.5  | 0.2 | sum of max |
| Short term stability (20min) [2xrms ppm] normal        | 0.2              | 0.1  | 0.1 | sum of rms |
| Noise (<500Hz) [2xrms ppm] normal                      | 3.0              | 2.0  | 1.0 | sum of rms |
| Fill to fill repeatability [2xrms ppm] normal          | 0.4              | 0.3  | 0.1 | sum of rms |
| Long term fill to fill stability [max abs ppm] uniform | 8.0              | 4.0  | 4.0 | sum of max |
| Temperature coefficient [max abs ppm/C] uniform        | 1.0              | 0.8  | 0.2 | sum of max |



### The DCCTs

- DCCTs are power devices that measure high (e.g. 18kA) currents by transforming them down to smaller currents (e.g. 5A)
- A current step in the power converter corresponds to a current step in the DCCT and therefore a power dissipation step
- As a consequence, a drift due to thermal settling of the resistor used to measure the DCCT output current, is more likely to happen during ther first minutes after a current step



## Impact for HL-LHC

- The LHC ramps up the current in 10..20 minutes. On arrival to flat top we expect the DCCT to have higher drift in the first few minutes.
- <u>Until now</u>: this drift was included in the 12h stability specification, but if we exclude the initial 5 minutes after arrival to the flat top, a critical specification of the DCCT could be relaxed
- It seems reasonable to assume that the machine doesn't need to operate at full performance on arrival to the flat top (no physics), so...
- Can we consider a period of 5 minutes were the DCCTs are allowed to settle, before they have to perform within the 12h stability?



- If yes, then the following new table is proposed, including a new specification:
  - Stability at the end of ramp (5min): Variation of the delivered current (for a constant reference) during the first 5 minutes after the current reaches the flat top

|                                                                            | PC REQUIREMENTS SUMMARY - ACCURACY CLASSES |     |      |      |      |  |
|----------------------------------------------------------------------------|--------------------------------------------|-----|------|------|------|--|
|                                                                            | 0                                          | 1   | 2    | 3    | 4    |  |
| Resolution [ppm]                                                           | 0.5                                        | 0.5 | 1.0  | 1.0  | 1.0  |  |
| Initial uncertainty after cal [2xrms ppm] normal                           | 2.0                                        | 2.0 | 3.0  | 7.0  | 10.0 |  |
| Linearity [ppm] [max abs ppm] uniform                                      | 2.0                                        | 2.0 | 5.0  | 8.0  | 9.0  |  |
| Thermal settling drift - first 5 minutes of flat top [max abs ppm] uniform | 0.5                                        | 1.5 | 1.5  | 3.0  | 6.0  |  |
| Stability during a fill (12h) [2xrms ppm]                                  | 1.0                                        | 2.6 | 15.5 | 33.0 | 39.0 |  |
| Short term stability (20min) [2xrms ppm] normal                            | 0.2                                        | 0.4 | 1.2  | 2.0  | 5.0  |  |
| Noise (<500Hz) [2xrms ppm] normal                                          | 3.0                                        | 5.0 | 7.0  | 15.0 | 19.0 |  |
| Fill to fill repeatability [2xrms ppm]                                     | 0.7                                        | 1.6 | 14.5 | 32.0 | 38.0 |  |
| long term fill to fill stability [2xrms ppm]                               | 9.5                                        | 9.5 | 26.5 | 56.0 | 64.0 |  |

