Magnetic monopoles in heavy ion collisions

Arttu Rajantie

Heavy lons and New Physics, 20 May 2021

Collaborators: Oliver Gould, David Ho, Cheng Xie MoEDAL Collaboration

Magnetic Fields in Heavy Ion Collisions

(Video: Brookhaven National Laboratory)

Magnetic Fields in Heavy Ion Collisions

- Magnetic field strengths:
 - LHC magnets
 - Magnetars
 - Fixed-target Pb collisions at SPS
 - 5.02 TeV Pb-Pb collisions at LHC
- New physics phenomena?
 - Magnetic monopoles
 - Baryon number violation

 $\begin{aligned} |\vec{B}| &\sim 8.3 \text{ T} \sim 1.6 \times 10^{-15} \text{ GeV}^2 \\ |\vec{B}| &\sim 2 \times 10^{11} \text{ T} \sim 4 \times 10^{-5} \text{ GeV}^2 \\ |\vec{B}| &\sim 5 \times 10^{13} \text{ T} \sim 10^{-2} \text{ GeV}^2 \\ |\vec{B}| &\sim 4 \times 10^{16} \text{ T} \sim 7 \text{ GeV}^2 \end{aligned}$

Magnetic Charges

$$\vec{\nabla} \cdot \vec{E} = \rho_{\rm E}$$

$$\vec{\nabla} \cdot \vec{B} = \rho_{\rm M}$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} - \vec{J}_{\rm M}$$

$$\vec{\nabla} \times \vec{B} = \frac{\partial \vec{E}}{\partial t} + \vec{J}_{\rm E}$$

• Duality $\vec{E} + i\vec{B} \rightarrow e^{i\theta} (\vec{E} + i\vec{B})$

• Dirac quantisation condition $g \in g_D \mathbb{Z}$, $g_D = \frac{2\pi}{e_0}$

Monopole Searches in Colliders

Monopole Searches in Colliders

- Upper bounds on production cross section ATLAS Collaboration, 2019
- To obtain a bound on the monopole mass, one needs to calculate the cross section from theory

Monopole Searches in Colliders

Production Amplitude

- Semiclassical argument for solitonic monopoles: pair production from two-particle collisions suppressed by ~ $e^{-4/\alpha}$ ~ 10^{-238} (Witten, Drukier&Nussinov)
- Confirmed numerically for kinks in 1+1D (Demidov&Levkov 2011)
- Production of solitonic monopoles may be practically impossible in two-particle collisions

Schwinger Pair Production

• Energy of a charged particle-antiparticle pair in uniform electric field \vec{E} :

$$E(\vec{r}) = 2m - \frac{e^2}{4\pi r} - e\vec{E}\cdot\vec{r}$$

 Sauter 1931, Heisenberg&Euler 1936, Schwinger 1951: Tunneling through potential barrier
 pair production from vacuum

Schwinger Rate

Pair production rate per spacetime volume

 $\Gamma \sim \exp(-S_{\text{inst}})$

- S_{inst} is the instanton action
- Prefactor from functional determinant
- Affleck, Alvarez & Manton 1981:
 - Circular worldline instanton with radius $r = m/e \left| ec{E}
 ight|$

• Action
$$S_{\text{inst}} = \frac{\pi m^2}{e|\vec{E}|} - \frac{e^2}{4}$$

$$\Gamma = \frac{e^2 |\vec{E}|^2}{8\pi^3} e^{-\frac{\pi m^2}{e|\vec{E}|} + \frac{e^2}{4}}$$
Arbitrary coupling but weak field $e|\vec{E}| \ll m^2$

Schwinger Production of Monopoles

- Calculation does not require weak coupling: $g \gg 1$ is not a problem
- Pair production rate (constant field, pointline monopoles):

$$\Gamma = \frac{g^2 |\vec{B}|^2}{8\pi^3} e^{-\frac{\pi M^2}{g|\vec{B}|} + \frac{g^2}{4}}$$

- Pair production needs a strong magnetic field $\left| \vec{B} \right| \gtrsim M^2/g^3$
- LHC magnets $|\vec{B}| \sim 8.3 \text{ T} \sim 1.6 \times 10^{-15} \text{ GeV}^2$

$$M \gtrsim 1.5 \left(\frac{g}{g_D}\right)^{3/2} \text{keV}$$

► Magnetars $|\vec{B}| \sim 2 \times 10^{11} \text{ T} \approx 4 \times 10^{-5} \text{ GeV}^2$ $M \gtrsim 0.3 \dots 0.7 \text{ GeV}$

LHC Heavy Ion Collisions

Pb-Pb collisions in Nov 2018

B

- $\circ \sqrt{s_{NN}} = 5.02 \text{ TeV},$
- Time-dependent field

$$\vec{B} \approx \frac{B\hat{y}}{2} \left(\left(1 + \omega^2 \left(t - \frac{z}{v} \right)^2 \right)^{-3/2} + \left(1 + \omega^2 \left(t + \frac{z}{v} \right)^2 \right)^{-3/2} \right)^{-3/2}$$

where

$$pprox rac{Ze\gamma}{2\pi R^2} pprox 7.3 \ \mathrm{GeV}^2,$$

$$\omega \approx \frac{\gamma}{R} \approx 73 \text{ GeV}$$

Spacetime Dependence

Parameterised by

$$\xi = \frac{M\omega}{gB} \approx M/(2n \text{ GeV})$$

- Constant field: $\xi \to 0$
- Find worldline instanton in a time-dependent background (Gould, Ho & AR, PRD2019)
- > Zeroth order in self-interaction: Ellipse with axes $\frac{M}{gB\sqrt{1+\xi^2}}, \frac{M}{gB(1+\xi^2)}$
- Production rate at large ξ : $\Gamma \sim \exp(-4M/\omega)$

Spacetime Dependence

- Space and time dependence enhances the production rate (Gould, Ho & AR, 2019)
 ⇒ Stronger mass bounds
- Cannot reach LHC parameters yet:
 - Self-interactions
 - Finite monopole size

Ignoring self-interactions gives the (conservative) estimate M ≥ 80 GeV if no monopoles found

Sphalerons for Solitonic Monopoles

- Georgi-Glashow model: SU(2)+adjoint scalar, $z = m_s/m_v$
- Unstable classical sphaleron solutions in external field B_{ext}: Barrier height
- Energy determines the thermal rate $\Gamma \propto \exp(-E_{\rm sph}/T)$: Lower than for pointlike

(Ho and AR, 2020)

• Energy vanishes at Ambjørn-Olesen critical field $B_{crit} = m_v^2/e$: Classical monopole production even at zero temperature

Instantons for Solitonic Monopoles

- Georgi-Glashow model: SU(2)+adjoint scalar , $\beta = m_{\rm s}/m_{\rm v}$
- 4D instanton solution
- Action determines the quantum Schwinger rate $\Gamma \propto \exp(-S_{inst})$

⁽Ho and AR, 2021)

Instantons for Solitonic Monopoles

- Georgi-Glashow model: SU(2)+adjoint scalar , $\beta = m_{\rm s}/m_{\rm v}$
- 4D instanton solution
- Action determines the quantum Schwinger rate $\Gamma \propto \exp(-S_{inst})$
- Lower than for pointlike

⁽Ho and AR, 2021)

Monopoles from Magnetic Fields

• Constant field
$$\Gamma = \frac{g^2 |\vec{B}|^2}{8\pi^3} e^{-\frac{\pi M^2}{g|\vec{B}|} + \frac{g^2}{4}}$$

- Time dependence
 - Enhances production
 - Rapid pulse $\Gamma \sim \exp(-4M/\omega)$
- Spatial inhomogeneity
 - Effect not known
- (Solitonic) monopole size
 - Enhances production
 - Classical instability at $B_{\rm crit} = m_{\rm v}^2/e$

Baryon Number Violation

- Chiral anomaly in the Standard Model
 - ⇒ Electroweak sphaleron transitions change baryon number
- Rate per spacetime volume

 $\Gamma \sim \exp(-E_{\rm sph}/T)$

- Zero field $E_{\rm sph} \approx 1.9 \times \frac{4\pi\nu}{g} \approx 9 \, {\rm TeV}$
- Non-zero magnetic field: Numerical calculation (Ho&AR 2020)

Baryon Number Violation

Unsuppressed B violation when

 $\left|\vec{B}\right| > \frac{m_{H}^{2}}{e} \approx 5.2 \times 10^{4} \text{GeV}^{2}$

Requires

 $\gamma \sim 10^7$, $\sqrt{s_{NN}} \sim 2 \times 10^4 \text{ TeV}$

Effect of time-dependence?

