New Physics Searches in Cosmic Ray Showers

Oliver Fischer

with Marius Bertrand, Maximilian Reininghaus, Ralf Ulrich

Heavy lons and New Physics May 21, 2021

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The stage: Cosmic Rays

Albrecht et al. [2105.06148]

- Interactions above the LHC centre-of-mass energy.
- Cosmic rays provide an untapped source for such interactions.

Oliver Fischer

New Physics Searches in Cosmic Ray Showers

< □ > < 同 > < 三 > < 三 >

The tool: CORSIKA8 a few words only

See talk by R. Ulrich here.

- New framework to investigate particle cascades in astroparticle physics.
- Open source, joint community project. gitlab.ikp.kit.edu
- ▶ Highly modular, flexible geometry and physics (PYTHIA8).

Oliver Fischer

New Physics Searches in Cosmic Ray Showers

2 / 20

On the side: Interactions of mesons from Cosmic Rays

Figure 1: Number of hadronic interactions by species in a single EAS (left) as function of energy, and folded with the CR spectrum (right)

M. Reininghaus, PoS ICHEP2020 (2021), 602.

< ∃⇒

New Physics Searches in Cosmic Ray Showers 3 / 20

Oliver Fischer

Motivation: The muon deficit problem

R. Ulrich et al. [2105.06148]

- Simulated/observed muon densities in extensive air showers.
- Visible for showers above $\sim 10 \text{ PeV} (10^{16} \text{ eV})$.
- For all hadronic interaction models.
- Physics (beyond) the Standard Model?

Oliver Fischer

ヘロト 人間ト ヘヨト ヘヨト

Hypothesis: new process

- 1. Becomes operative at threshold energy, e.g. \sim 100 PeV.
- 2. Produce larger number of muons.

(Muons stem from decaying hadrons.)

3. Cross section $\sim \sigma_{had}$

\Rightarrow Large-multiplicity scattering

Theory: Large-multiplicity scattering

Spannowsky et al., Phys. Rev. D 94 (2016), 085031

- Creation of $n \gg 1$ of bosons in a single scattering process.
- Large number of diagrams: factorial growth of the amplitude. J. M. Cornvall, Phys. Lett. B 243 (1990), 271-278
- Proposed as solution to the hierarchy problem (Higgsplosion).

V. V. Khoze and M. Spannowsky, Nucl. Phys. B 926 (2018), 95-111

In principle testable at LHC (and other colliders).

J. S. Gainer, [arXiv:1705.00737 [hep-ph]]

• $n_{
m max}$ limited by \sqrt{s} (σ estimated as \sim ab).

Oliver Fischer

New Physics Searches in Cosmic Ray Showers

6 / 20

Theoretical key questions

- Large multiplicity cross section σ_{LM} grows exponentially.
- Countered by the growth of the off-shell mediator width.
- Maximum at some threshold energy.
- What is its value?
 - 1. $\sigma_{LM} \ll \sigma_{had}$: small number of events.
 - 2. $\sigma_{LM} \gtrsim \sigma_{had}$: dominant process for energy above threshold.
- Agnostic approach: find observables and study data to constrain the cross section

The Model

- Model parameters: f, ϵ, b .
- A fixed fraction f of \sqrt{s} is used to to create bosons b in pairs.
- The kinetic energy $(n_{\text{pairs}}\epsilon)$ is distributed among the *b* pairs.

$$n_{\mathrm{pairs}} = \left\lfloor rac{f\sqrt{s}}{2m_b(1+\epsilon)}
ight
floor$$

- Isotropic momentum vectors in centre-of-mass system.
- Bosons decay via Pythia8 into long-lived particles.
- Electromagnetic particles are fed into CONEX to generate EM longitudinal profiles by solving the cascade equations.
- Secondary hadronic interactions: QGSJetII-04 above and with UrQMD below 60 GeV.

Implemented into CORSIKA8

Oliver Fischer

First we consider only the case: b = h.

Oliver Fischer

New Physics Searches in Cosmic Ray Showers

9 / 20

・ロト・(型)・(目)・(目)・(日)・(の)

Results

Standard Model shower:

Large multiplicity scattering for two values of f:

Kinematics: snapshot a few cm after the scattering.

New Physics Searches in Cosmic Ray Showers

Observable I - $\langle X_{\rm max} \rangle$

- Depth of the electromagnetic shower maximum.
- Measured in slant depth along the shower axis.

Oliver Fischer

New Physics Searches in Cosmic Ray Showers

11 / 20

Observable I - $\langle X_{\rm max} \rangle$ continued

- Remember: f controls n_{pairs}.
- \blacktriangleright e controls E_{kin} of the bosons, increases the shower depth.
- For $f \rightarrow 0$ we get the SM shower back.

Oliver Fischer

Observable II - the muon spectrum

New Physics Searches in Cosmic Ray Showers

13 / 20

Outlook

- This was work in progress.
- Next we will also study other bosons b = Z, W.
- Other interesting observables: high-energy lepton bundles.
- Other detectors: IceCube, ATLAS/CMS, DECOR.
- Moreover ...

The ANITA excess

Unusual Near-horizon Cosmic-ray-like Events Observed by ANITA-IV

P. W. Gorham,¹ A. Ludwig,² C. Deaconu,² P. Cao,³ P. Allison,⁴ O. Baneriee,⁴ L. Batten,⁵ D. Bhattacharva,⁶ J. J. Beatty,⁴ K. Belov,⁷ W. R. Binns,⁸ V. Bugaev,⁸ C. H. Chen,⁹ P. Chen,⁹ Y. Chen,⁹ J. M. Clem,³ L. Cremonesi,⁵ B. Dailev,⁴ P. F. Dowkontt,⁸ B. D. Fox,¹ J. W. H. Gordon,⁴ C. Hast,¹⁰ B. Hill,¹ S. Y. Hsu,⁹ J. J. Huang,⁹ K. Hughes,⁴ R. Hupe,⁴ M. H. Israel,⁸ T.C. Liu,¹¹ L. Macchiarulo,¹ S. Matsuno,¹ K. McBride,⁴ C. Miki,¹ J. Nam,⁹ C. J. Naudet,⁷ R, J, Nichol,⁵ A, Novikov,^{12,13} E, Oberla,² M, Olmedo,¹ R, Prechelt,¹ B, F, Rauch,⁸ J, M, Roberts,¹ A, Romero-Wolf,⁷ B. Rotter, ¹ J. W. Russell, ¹ D. Saltzberg, ¹⁴ D. Seckel, ³ H. Schoorlemmer, ¹⁵ J. Shiao, ⁹ S. Stafford, ⁴ J. Stockham, ¹² M. Stockham,¹² B. Strutt,¹⁴ M. S. Sutherland,² G. S. Varner,¹ A. G. Vieregg,² S. H. Wang,⁹ and S. A. Wissel¹⁶ ¹Dept. of Physics and Astronomy, Univ. of Hawaii, Manoa, HI 96822. ²Dept. of Physics, Enrico Fermi Institute, Kavli Institute for Cosmological Physics, Univ. of Chicago, Chicago IL 60637. ³Dept. of Physics, Univ. of Delaware, Newark, DE 19716. ⁴Dept, of Physics, Center for Cosmology and AstroParticle Physics, Ohio State Univ., Columbus, OH 43210, ⁵Dept. of Physics and Astronomy, University College London, London, United Kingdom, ⁶Dept. of Mathematics, George Washington University, Washington D.C. ⁷Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109. ⁸Dept of Physics & McDonnell Center for the Space Sciences, Washington Univ in St Louis, MO, 63130 ⁹Dept. of Physics, Grad. Inst. of Astrophys., & Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei, Taiwan, ¹⁰SLAC National Accelerator Laboratory, Menlo Park, CA, 94025. ¹¹Dept. of Electrophysics, National Yang-Ming Chiao Tung University, Hsinchu 30010, Taiwan. ¹²Dant of Physics and Astronomy Univ. of Kansas Lawrence, KS 66045

Balloon-borne experiment, [2008.05690]

IceCube: astrophysical explanation assuming SM is disfavoured.

"A search for IceCube events in the direction of ANITA neutrino candidates," [2001.01737]

Oliver Fischer

New Physics Searches in Cosmic Ray Showers

15 / 20

イロト 不得 トイヨト イヨト 二日

BSM in super-LHC energy collisions

- Explanations with TeV-scale resonances and Long-Lived Particles (LLP)
 cf. [1812.00919], [2002.12910], [2004.09464]
- ► IceCube makes compatible observations. D. B. Fox et al. [1809.09615]
- New Physics from resonances with √s > 14 TeV, or from rare decays of SM particles.
- Visible signatures in 'large-scale' experiments.

Oliver Fischer

New Physics Searches in Cosmic Ray Showers

- ロ ト - (理 ト - (ヨ ト - (ヨ ト -)

LLP in CR showers

- LLP with masses ~ GeV can be produced in hadron decays.
- Possible in a CR shower even without TeV-scale mediator.
- LLP flux that has to be quantified for every model.
- CR at all energies and angles contribute.
- No new detectors necessary: Dedicated searches should be sensitive already.

Oliver Fischer

New Physics Searches in Cosmic Ray Showers

イロト イヨト イヨト ・

This is an upcoming topic!

"Unified explanation of flavor anomalies, radiative neutrino masses, and ANITA anomalous events in a vector leptoquark model,"

P. S. Bhupal Dev et al., [2004.09464]

 "New Constraints on Millicharged Particles from Cosmic-ray Production"

R. Plestid, V. Takhistov, Y. D. Tsai, T. Bringmann, A. Kusenko and M. Pospelov [2002.11732]

 "Constraining strongly-coupled new physics from cosmic rays with machine learning techniques"

Spannowsky et al. [1906.09064]

"Searches for Atmospheric Long-Lived Particles"

Coloma, Argüelles et al. [1910.12839]

"Constraining New Physics with High Multiplicity : I. Ultra-High Energy Cosmic Rays on air-shower detector arrays"

Jho & Park [1806.03063]

Oliver Fischer

New Physics Searches in Cosmic Ray Showers

18 / 20

イロト 不得下 イヨト イヨト 二日

Conclusions

Cosmic rays constitute a ubiquitous source for BSM:

- Resonances at super-LHC energies;
- Long lived particles with masses \sim GeV;
- \Rightarrow Complementarity.
- A link between a CR simulation framework and BSM models is currently missing.
- Signatures in Cosmic Ray showers.
- Useful to study anomalies in IceCube, ANITA, and others.
- New Physics discovery potential!

Thank you.

Oliver Fischer

New Physics Searches in Cosmic Ray Showers

20 / 20