Size of Central Beam Pipe LHeC Ring-ring IR

Uwe Schneekloth DESY

LHeC Mtg 2.02.2010

- First look at synchrotron radiation shielding, collimators and size of central beam pipe
- Ring-ring, high luminosity, 10° detector acceptance IR
- Input
 - Simulation of synchrotron radiation B.Nagorny
 - Beam orbits and envelopes from B.Holzer

- Warning:
 - Still some inconsistency (direct SR fan)
 - Collimator and central beam pipe dimensions may change

Synchrotron Radiation

Topview of IR

B. Nagorny

U. Schneekloth

LHeC Ring-ring IR

Synchrotron Radiation

Synchrotron radiation power

B. Nagorny

Location of absorbers

Synchrotron Radiation

2D distribution of synchrotron radiation at absorber B.Nagorny power (kW/cm²)

Synchrotron Radiation in IR

- Beam separation very close to IP, starting at 1.2m
- Upstream collimation and partial absorption of synchrotron radiation not possible
- Direct synchrotron radiation must pass through IR
- Most SR absorbed by absorber at 21m
- Must protect detector from SR backscattered from absorber at 21m by downstream collimators
 - No space for moveable collimators
 - Collimators inside central detector, not accessible
 - \rightarrow use fixed collimators
- Size of central beam pipe determined by backscattered SR

HERA II IR

Topview of HERA II IR

- Direct SR passing through IR
- Detector protected from backscattered SR by downstream collimators
- Central beam pipe size determined by backscattered SR

Collimator at 0.8m with integrated shielding

LHC Apertures

IR Sketch Top-view

- Distance of collimator 14sigma + 5mm from proton orbit at injection (ring outside)
- Distance of collimator 2 mm from direct SR fan (ring inside)

IR Sketch Top-view - Zoom

- Horizontal distance of collimator from proton beam 10.5mm
- Minimum width of central beam pipe 73mm

Horizontal distance to proton beam 24mm ring outside, 49mm ring inside
Direct synchrotron radiation fan to be checked

IR Sketch Side-view

- - Second proton beam vertically off set by 20mm
 - Distance of collimator 14sigma + 5mm from proton orbit at injection

IR Sketch Sideview - Zoom

- Vertical distance of collimator from proton beams 10.5mm
- Minimum height of central beam pipe 58mm
 - Vertical distance to colliding proton beam 18mm down, 40mm top

To be done

- Is optics and orbit of 2nd proton beam correct?
 - Where are proton beams separated?
 - 2nd proton beam will go off center through quadrupole magnets!
- Is beam clearance sufficient: 14 and 10 σ ?
 - Quite close to proton beams
 - Eventually have to check proton background in detector (beam gas and proton halo). Not for CDR.
- Have to calculated n_1' parameter for all cases:
 - Injection, luminosity. Not high beta optics.
- Need scaled electron aperture for injection
 - Oscillations at injection
- Have to calculated power of backscattered synchrotron radiation (V. Andreev)
 - Estimate number of photons hitting detector
 - Estimate power hitting vacuum chambers (beam screen) of superconducting magnets
- Should add second collimator 1 to 1.2m from IP
- In principle, have to include electron orbit offsets and tilts in simulation of direct SR (not for CDR)