DARWIN

ARWIN

Neutrinoless Double Beta Decay with The Low-Background Low-Threshold Observatory

Marc Schumann U Freiburg on behalf of the DARWIN collaboration

APPEC Community Meeting on $0\nu\beta\beta$ London, October 31, 2019

marc.schumann@physik.uni-freiburg.de
www.app.uni-freiburg.de

www.darwin-observatory.org

Direct WIMP Detection Today

some results are missing...

DAR1

DARWIN The ultimate WIMP Detector

DARWIN

DARWIN The ultimate WIMP Detector

DARWIN

Dual-Phase LXe TPC

DARWIN Collaboration

- international collaboration, 26 groups, ~160 scientists → continuously growing
- most XENON plus new groups
- endorsed by several national and international agencies

DARWIN: Science Channels

Nuclear Recoil Interactions

WIMP dark matter JCAP 10, 016 (2015)

- spin-independent (S1-S2, charge-only)
- spin-dependent
 - \rightarrow complementary with LHC, indirect det.
- various inelastic models, most EFT couplings

Coherent neutrino-nucleon scattering (CNNS)

- ⁸B neutrinos (low E), atmospheric (high E) JCAP 1611, 017 (2016)
- supernova neutrinos PRD 89, 013011 (2014), PRD 94, 103009 (2016)

Electronic Recoil Interactions

Non-WIMP dark matter and neutrino physics

- axions, ALPs JCAP 1611, 017 (2016)
- sterile neutrinos
- JCAP 01, 044 (2014) – pp, ⁷Be: precision flux measurements
- CNO neutrinos with ¹³⁶Xe-depleted Xe PRD 99, 043006 (2019)

Rare nuclear events

- **0νββ (136Xe)**, 0νEC (124Xe), ...

JCAP 01, 044 (2014)

ARWIN WIMP Backgrounds

pp+⁷Be neutrinos → ER signature high-E neutrinos → CNNS bg → NR signature

Remaining background sources: – Neutrinos (\rightarrow ERs and NRs) – Detector materials (\rightarrow n) – Xe-intrinsic isotopes (\rightarrow e⁻) (assume negligible µ-induced background)

JCAP 10, 016 (2015)

neutron veto Xe-intrinsic bg: ²²Rn, ⁸⁵Kr, 2νββ neutrons from (α,n) and sf

Electronic Recoils (gamma, beta)

Nuclear Recoils (neutron, WIMPs)

only single scatters

Water Shield @ LNGS

Full MC Simulation for 3600 mwe

- site not yet chosen, LoI to LNGS submitted
- external y, n background irrelevant after >2.5m
- critical: μ -induced neutrons of high energy
- studied several water shield geometries between XENON and Borexino tank
- 12m tank: ~0.4 n/(200 t×y) Borexino: <0.05 n/(200 t×y)</p>
- Gd-loaded water further reduces numbers
- direct radiogenic and cosmogenic background irrelevant for 0vββ
- \rightarrow only muon-induced activation matters

DARWIN ER Background

- Kr removed by cryogenic distillation EPJ. C 77, 275 (2017)
 - → DARWIN goal already achieved!
- Rn removed by combination of
- material production
- material selection
- surface treatment
- detector design
- cryogenic distrillation EPJ C 77, 358 (2017)

0vββ with DARWIN?!!!

The 40t LXe target contains **3.5t of ¹³⁶Xe** without any expensive enrichment.

immediate advantages:

- get $0\nu\beta\beta$ detector "for free"
- fiducialization is much "cheaper"
- excellent *E*-resolution
 demonstrated by XENON1T

Sensitivity Studies

	top sensor array	Element	Material	Mass
outer cryostat	(955 PMTs, electronics, copper + PTFE panels)	Outer Cryostat	Ti	$3.04\mathrm{t}$
		Inner Cryostat	Ti	$2.10\mathrm{t}$
		Bottom Pressure Vessel	Ti	$0.38\mathrm{t}$
inner cryostat — 🔶 🔰	top electrode	LXe instrumented Target	LXe	$39.3\mathrm{t}$
field cage (copper, 92 rings) support structure (PTFE, 24 pillars)	frames (Titanium)	LXe Buffer outside the TPC	LXe	$9.00\mathrm{t}$
		LXe around Pressure Vessel	LXe	$0.27\mathrm{t}$
	TPC reflector (PTFE, 24 panels)	GXe in top dome + TPC top	GXe	$30 \mathrm{kg}$
		TPC Reflector (3mm thickness)	PTFE	$146 \mathrm{kg}$
		Structural support Pillars (24 units)	PTFE	$84\mathrm{kg}$
		Electrode Frames	Ti	$120 \mathrm{kg}$
	bottom electrode	Field Shaping Rings (92 units)	Copper	$680\mathrm{kg}$
	- / frames (Titanium)	Photosensor Arrays (2 disks):		
		Disk structural support	Copper	$520\mathrm{kg}$
	bottom sensor array	Reflector $+$ sliding panels	PTFE	$70 \mathrm{kg}$
		Photosensors: 3"PMTs (1910 Units)	PMT	$363\mathrm{kg}$
		Sensor Electronics (1910 Units)	$\operatorname{composite}$	$5.7\mathrm{kg}$
	pressure vessel			

- · Geant4 model with reasonable level of details
- Inputs: published materials from
 - \rightarrow room for improvement
- XENON1T (PTFE, Cu, R11410-21 PMTs+electronics) LZ (Ti + cosmogenic activation of ⁴⁴Ti)
- better materials (no optimization for $0\nu\beta\beta$) - upper limits considered as detection

Event Topology

Intrinsic Backgrounds

External (Material) Background

Background Optimization

DARM

DARWIN Sensitivity Reach

- current study not "optimized" for 0νββ
- pre-achieved radioactivity levels
- What could possibly be improved?
 - top array made of SiPM
 - \rightarrow improve xy-resolution, reduce ϵ
 - $\rightarrow\,$ factor 2 reduction of PMT background
 - identify cleaner materials
 - → low-background R11410 PMTs
 - → EXO-type PTFE
 - \rightarrow better cryostat, electronics
 - \rightarrow suppression of external bg
 - reduction of intrinsic background
 - \rightarrow veto for ¹³⁷Xe? (maybe factor ~2?)
 - → deeper lab (almost factor 10 possible)
 - improve energy reconstruction
 - → mitigate detector effects
 - → machine learning techniques

Exciting 0vßß Opportunities

darwin-observatory.org

DARWIN: much more than

The ultimate Dark Matter Detector

→ The low-background, low-threshold Astroparticle Physics Observatory

with competitive 0vββ-sensitivity

- DARWIN can be done at LNGS
 → need ≥12m water shield
- Timeline: R&D and construction parallel to XENONnT data taking

