
Precision Higgs Physics at the International Linear Collider

Shin-ichi Kawada (DESY)

on behalf of LCC Physics Working Group

EPS-HEP 2019 @ Ghent, Belgium

2019/July/11-17

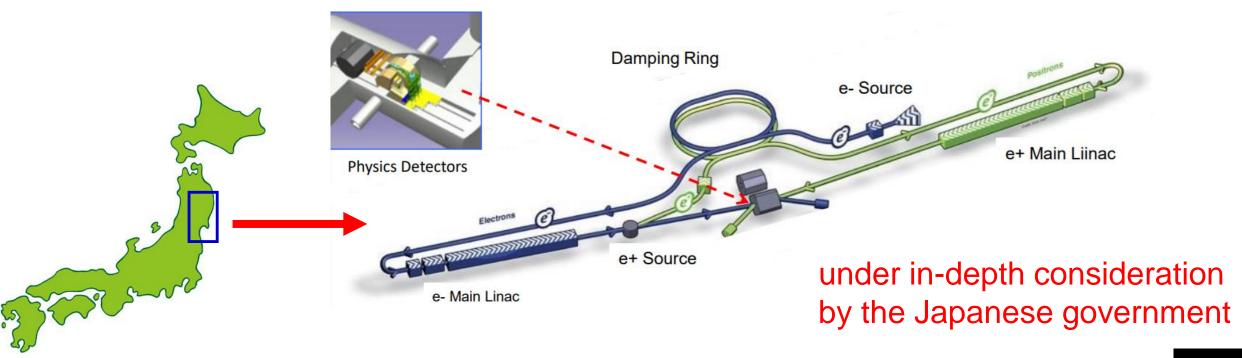
CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

RESEARCH FOR GRAND CHALLENGES

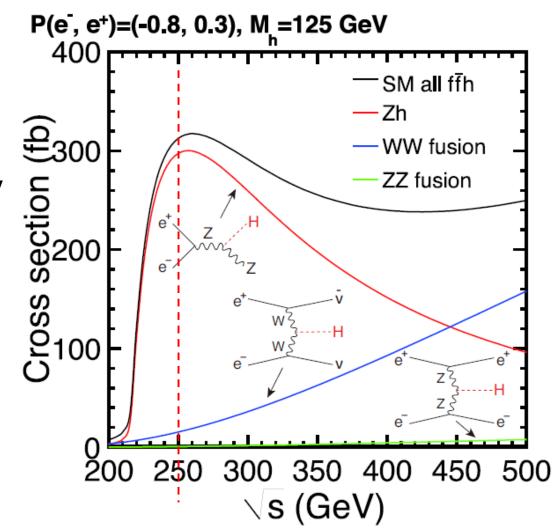
Why We Need Precision on Higgs?

- Until today: SM-like Higgs boson and no new physics
- But we know SM is not a perfect theory, we need new physics.

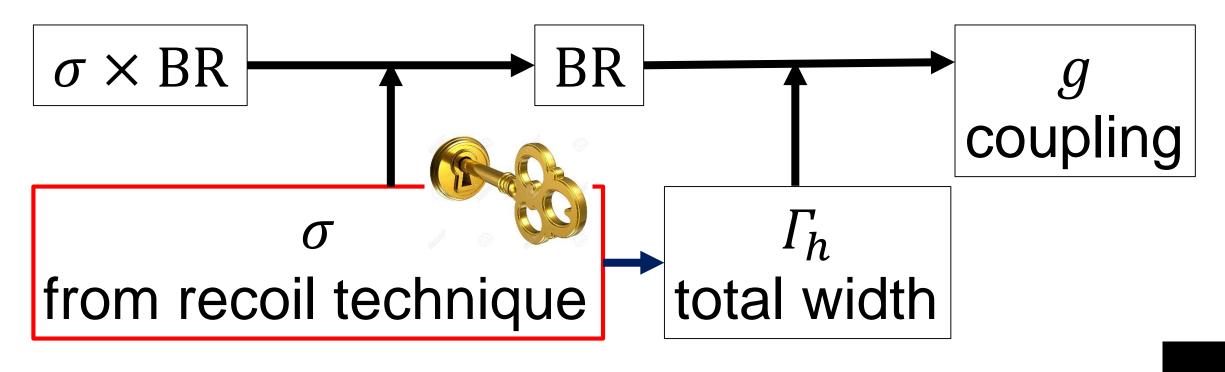

- Newly discovered Higgs boson is a window to new physics.
- Many new physics models predict small deviation from the SM (a few to 10%) ---> O(1%) level precision is necessary

Precision measurement on Higgs

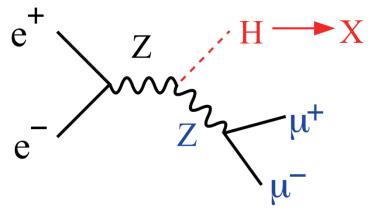
The International Linear Collider (ILC)


- e^+e^- collider, \sqrt{s} = 250 GeV (upgradable to 500 GeV, 1 TeV)
- polarized beam (e^- : $\mp 80\%$, e^+ : $\pm 30\%$)
- clean environment, known initial state
- matured technology, TDR published

Higgs Production at the ILC

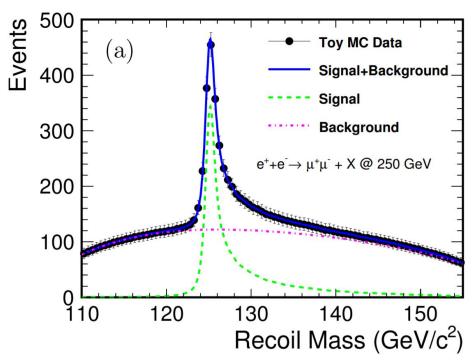

 \sqrt{s} = 250 GeV Higgs-strahlung (Zh) dominant maximum cross section around 250 GeV ---> Higgs factory

 \sqrt{s} = 500 GeV WW-fusion dominant improvements in many couplings tth, Higgs self-coupling, rare decays


Key Point

- LHC: all measurements are $\sigma \times BR$
- ILC: $\sigma \times BR$ measurements + σ measurement

Key Measurement: σ_{Zh}


Unique measurement at lepton colliders

leptonic & hadronic

$$M_X^2 = \left(p_{CM} - \left(p_{\mu^+} + p_{\mu^-}\right)\right)^2$$

- well-defined initial states
- without looking Higgs (recoil mass technique)

ILC250, 2 ab⁻¹

$$\Delta m_h =$$
 14 MeV, $\frac{\Delta \sigma_{Zh}}{\sigma_{Zh}} =$ 0.7%

arXiv:1903.01629

Direct Higgs Observables at ILC250

 σ_{Zh} $\sigma_{Zh} \times BR(h \to bb)$

 \bigcirc : speciality of e^+e^- colliders

$$\sigma_{\nu\nu h} \times \mathrm{BR}(h \to bb)$$

$$\sigma_{Zh} \times BR(h \to cc)$$

$$\sigma_{Zh} \times \mathrm{BR}(h \to gg)$$

$$\sigma_{Zh} \times \mathrm{BR}(h \to WW^*)$$

$$\sigma_{Zh} \times \mathrm{BR}(h \to ZZ^*)$$

$$\sigma_{Zh} \times BR(h \to \tau\tau)$$

$$\sigma_{Zh} \times BR(h \to \gamma \gamma)$$

$$\sigma_{Zh} \times BR(h \to \mu\mu)$$

next talk

$$\sigma_{Zh} \times BR(h \rightarrow invisible)$$

$-80\% e^-, +30\% e^+$ polarization:											
	250 ($250 \mathrm{GeV}$		GeV	500 GeV						
	Zh	$ u \overline{ u} h$	Zh	$ u \overline{ u} h$	Zh	$ u \overline{ u} h$					
σ	2.0		1.8		4.2	_					
$h \to invis.$	0.86		1.4		3.4						
$h \to b\overline{b}$	1.3	8.1	1.5	1.8	2.5	0.93					
$h \to c\overline{c}$	8.3		11	19	18	8.8					
$h \to gg$	7.0		8.4	7.7	15	5.8					
$h \to WW$	4.6		5.6^{*}	5.7^{*}	7.7	3.4					
$h \to \tau \tau$	3.2		4.0^{*}	16^*	6.1	9.8					
$h \to ZZ$	18		25*	20^{*}	35*	12^*					
$h \to \gamma \gamma$	34^{*}		39*	45*	47	27					
$h \to \mu\mu$	72		87*	160*	120	100					
\overline{a}	7.6		2.7*		4.0						
b	2.7		0.69^{*}		0.70						
ho(a,b)	-99.17		-95.6*		-84.8						

estimated from **full simulation** of ILD/SiD numbers in %, nominal $\int Ldt = 250 \text{ fb}^{-1}$

Dimension-6 SMEFT Formalism

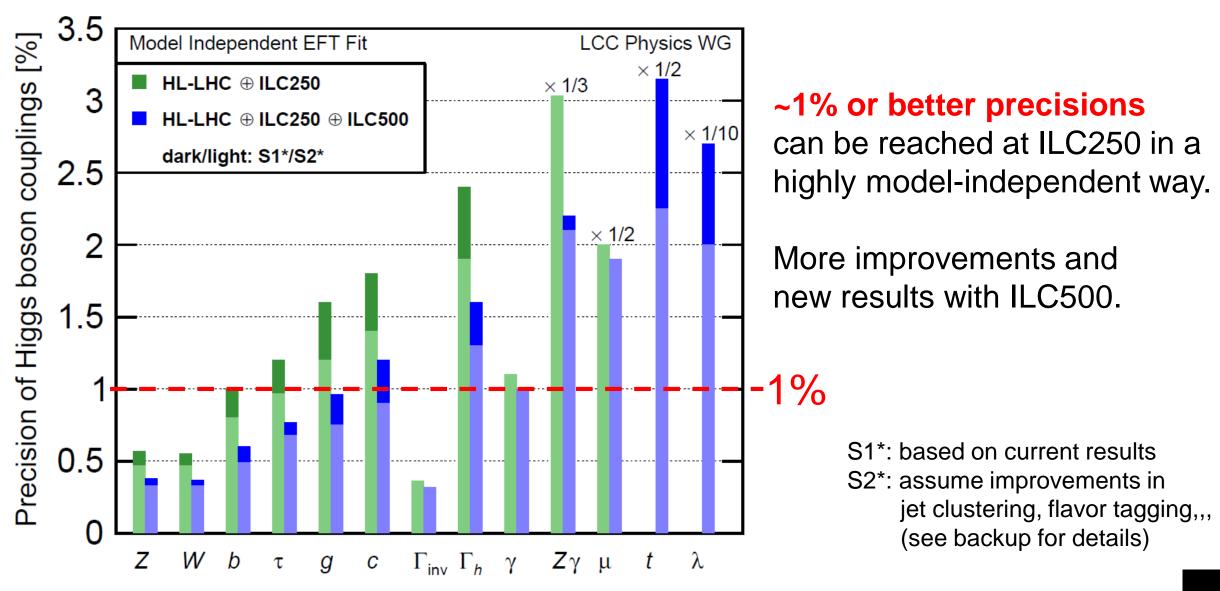
$$\Delta \mathcal{L} = \frac{c_{H}}{2v^{2}} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) + \frac{c_{T}}{2v^{2}} \left(\Phi^{\dagger} \overleftrightarrow{D^{\mu}} \Phi \right) \left(\Phi^{\dagger} \overleftrightarrow{D_{\mu}} \Phi \right) - \frac{c_{6} \lambda}{v^{2}} \left(\Phi^{\dagger} \Phi \right)^{3}$$

$$+ \frac{g^{2} c_{WW}}{m_{W}^{2}} \Phi^{\dagger} \Phi W_{\mu\nu}^{a} W^{a\mu\nu} + \frac{4gg' c_{WB}}{m_{W}^{2}} \Phi^{\dagger} t^{a} \Phi W_{\mu\nu}^{a} B^{\mu\nu}$$

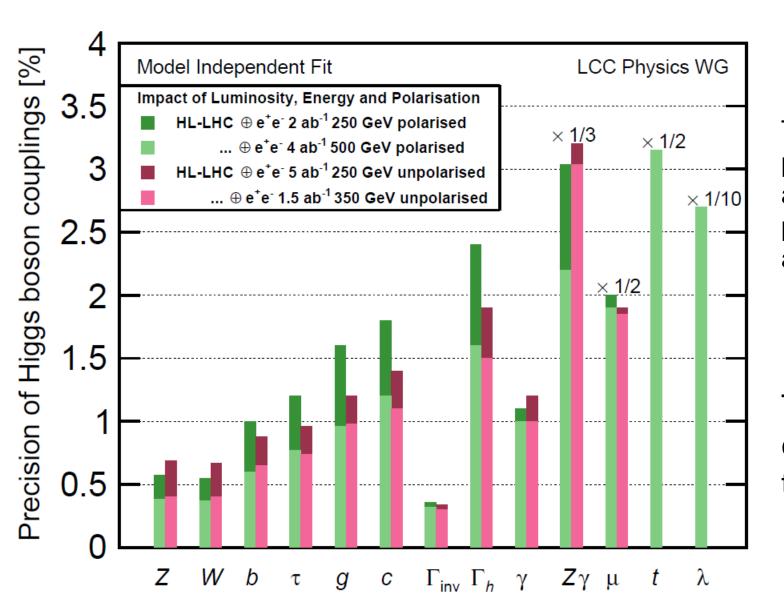
$$+ \frac{g'^{2} c_{BB}}{m_{W}^{2}} \Phi^{\dagger} \Phi B_{\mu\nu} B^{\mu\nu} + \frac{g^{3} c_{3W}}{m_{W}^{2}} \varepsilon_{abc} W_{\mu\nu}^{a} W_{\rho}^{b\nu} W^{c\rho\mu}$$

$$+ i \frac{c_{HL}}{v^{2}} \left(\Phi^{\dagger} \overleftrightarrow{D^{\mu}} \Phi \right) \left(\overline{L} \gamma_{\mu} L \right) + 4i \frac{c'_{HL}}{v^{2}} \left(\Phi^{\dagger} t^{a} \overleftrightarrow{D^{\mu}} \Phi \right) \left(\overline{L} \gamma_{\mu} t^{a} L \right)$$

$$+ i \frac{c_{HE}}{v^{2}} \left(\Phi^{\dagger} \overleftrightarrow{D^{\mu}} \Phi \right) \left(\overline{e} \gamma_{\mu} e \right)$$

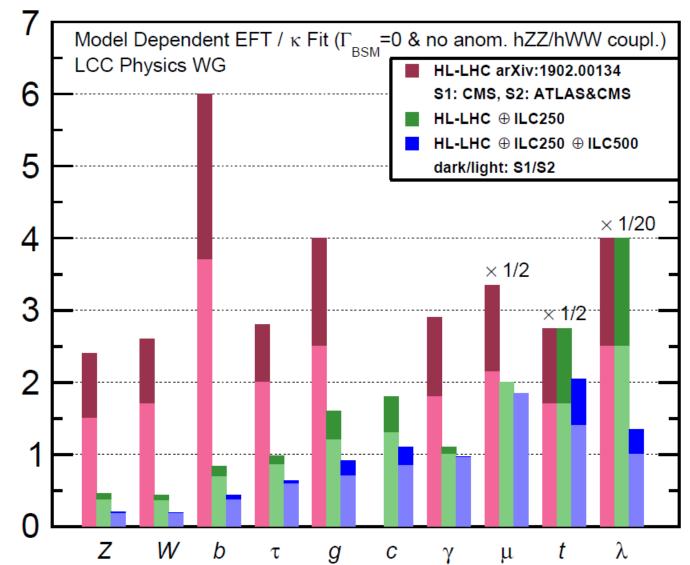

"Warsaw" basis SMEFT full formalism

- gauge invariant
- Lorentz invariant
- CP conserving
- 23 parameters
- 10 EFT operators (h, W, Z, γ) : c_H , c_T , c_6 , c_{WW} , c_{WB} , c_{BB} , c_{3W} , c_{HL} , c'_{HL} , c_{HE}
- 5 EFT operators modifying h couplings to b, c, τ , μ , g
- 2 EFT operators for contact interaction with quarks
- 4 SM parameters: g, g', v, λ
- 2 parameters for $h \rightarrow$ invisible and exotics


Observables in SMEFT

- In total: 39 observables
 - Electroweak Precision Observables (9)
 - Triple Gauge Coupling observables (3)
 - Higgs observables from LHC and ILC (3+12 × 2)
 - LHC: BR($h \rightarrow \gamma \gamma, \gamma Z, ZZ^*$)
 - ILC: multiplied by 2 because of beam polarization
- Systematics are considered in the global fit
- At the ILC, it is possible to determine all the 23 parameters simultaneously.

Model-independent Determination of Higgs Couplings

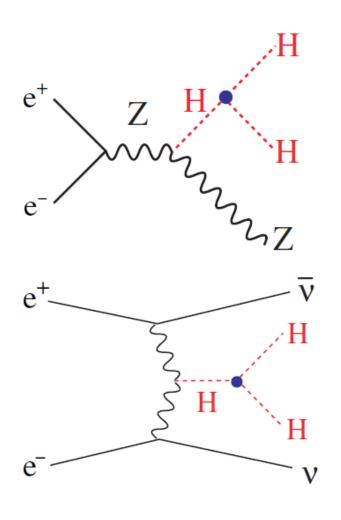

Power of Beam Polarization

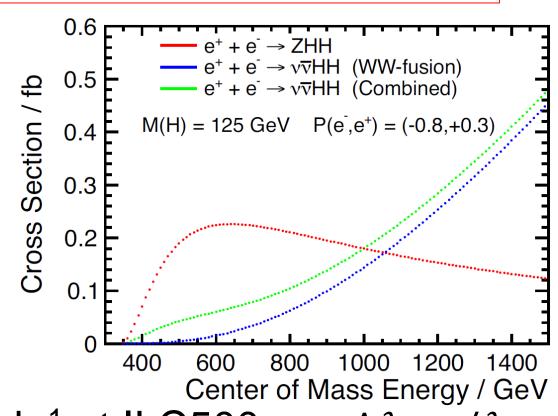
There are no drastic difference between precision with 2 ab⁻¹, polarized beam and precision with 5 ab⁻¹, unpolarized beam at 250 GeV.

The polarization is very powerful, essentially compensating the advantage of large data set.

Comparison with HL-LHC Higgs Capabilities

Precision of Higgs boson couplings [%]

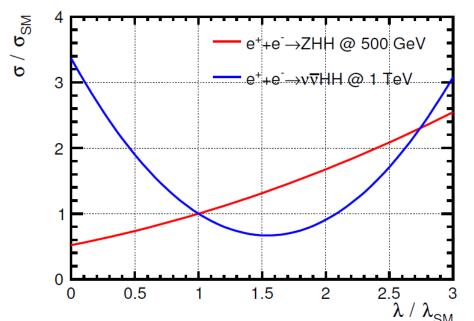

Not simple comparison due to different framework.

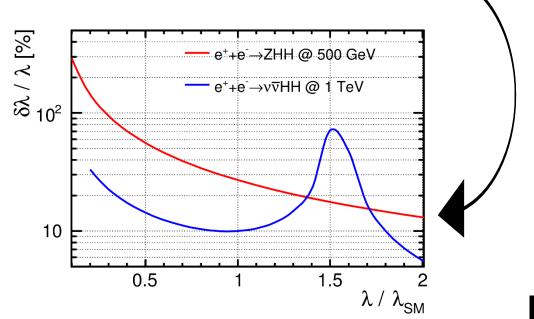

- ---> add assumptions in EFT fit (model-dependent fit)
- (1) no BSM decay of Higgs
- (2) no anomalous couplings in *hWW* and *hZZ*

Great improvement at the ILC in many channels.
Nice synergy with HL-LHC, typically in rare channel.

Higgs Self-coupling

Direct measurement of Higgs potential




4 ab⁻¹ at ILC500 ---> $\Delta \lambda_{hhh}/\lambda_{hhh} = 27\%$ +8 ab⁻¹ at ILC1000 --> $\Delta \lambda_{hhh}/\lambda_{hhh} = 10\%$

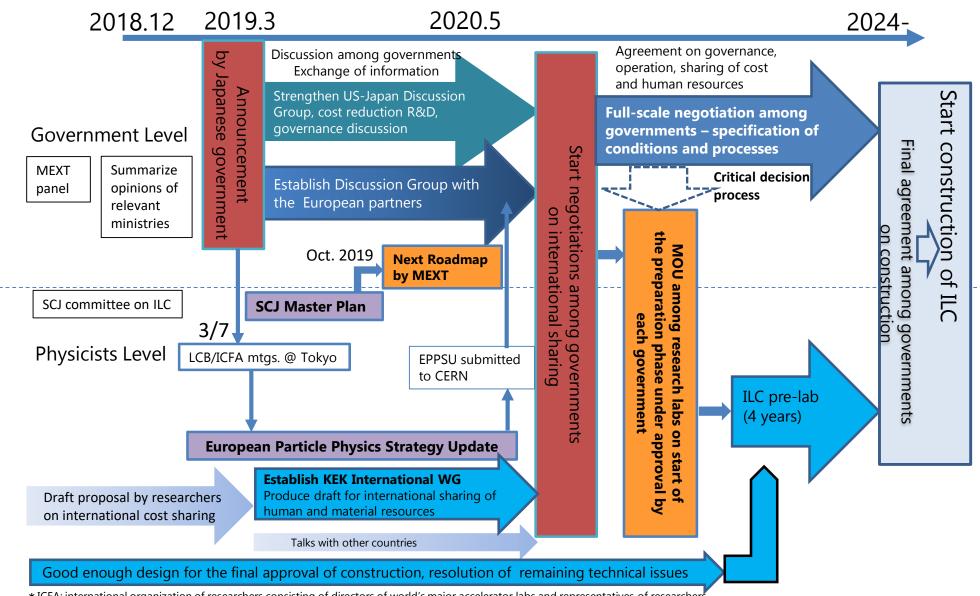
Higgs Self-coupling: What Happens If $\lambda_{hhh} \neq \lambda_{SM}$

- λ_{hhh} can be significantly enhanced in BSM
- Complementarity in $Zhh/\nu\bar{\nu}hh$ (and LHC): interferences different

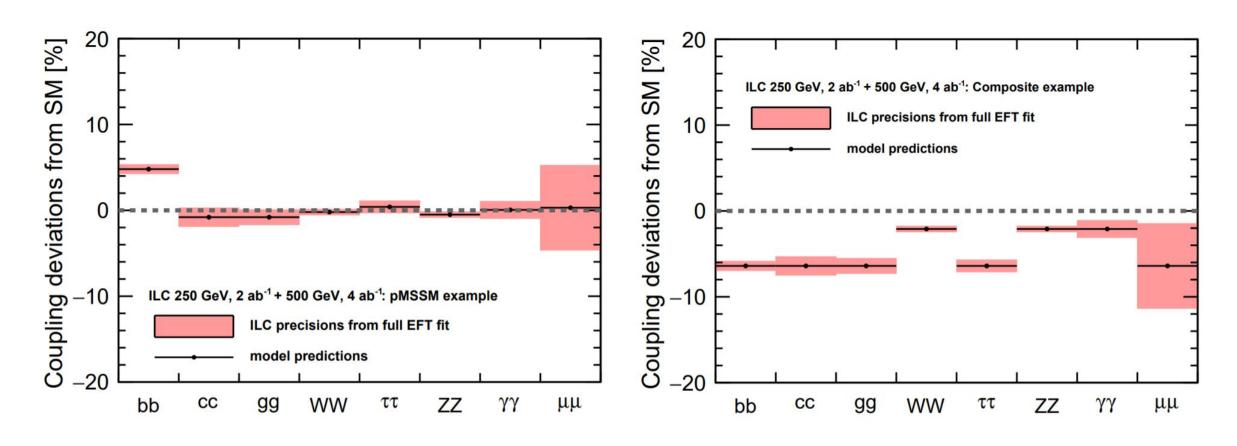
• If $\lambda_{hhh}/\lambda_{SM}=2$, $\Delta\lambda_{hhh}/\lambda_{hhh}\sim15\%$ at ILC500 with $Zhh\sim$

Summary

- Precision measurement on Higgs is a window to new physics.
- Precise and highly model-independent measurements of Higgs boson are possible at the ILC under EFT framework.
- Many couplings can be reached ~1% precision at ILC250.
- Beam polarization is very powerful, essentially compensating × 2.5 luminosity.
- At ILC500 and above, rare channels and Higgs self-coupling can be measured.


#ILCsupporters

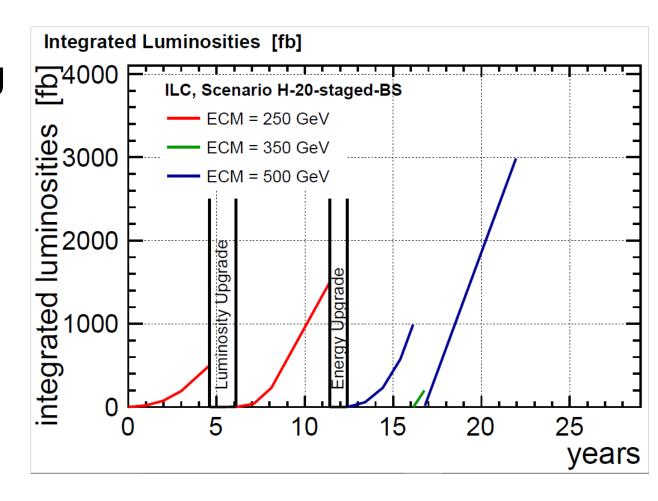
BACKUP


Processes toward Realization of ILC

^{*}ICFA: international organization of researchers consisting of directors of world's major accelerator labs and representatives of researchers

^{*}ILC pre-lab: International research organization for the preparation of ILC based on agreements among world's major accelerator labs such as KEK, CERN, FNAL, DESY etc.

Example of Deviation From SM



ILC Running Scenario

optimized scenario with considering Higgs/Top/New physics

~20 years running with energy range [250-500] GeV, beam polarization sharing

2000 fb⁻¹ @ 250 GeV 200 fb⁻¹ @ 350 GeV 4000 fb⁻¹ @ 500 GeV

GigaZ – Basic facts

	$\operatorname{sgn}(P(e^-), P(e^+)) =$					
arXiv:1506.07830	(-,+)	(+,-)	(-,-)	(+,+)	sum	
luminosity [fb ⁻¹]	40	40	10	10		
$\sigma(P_{e^-}, P_{e^+})$ [nb]	83.5	63.7	50.0	40.6		
Z events $[10^9]$	2.4	1.8	0.36	0.29	4.9	
hadronic Z events [10 ⁹]	1.7	1.3	0.25	0.21	3.4	=230xLEP, 8500xSLC

- Accelerator scenario 3.7Hz@ $M_z/2$ + 3.7 Hz@125 GeV to produce positrons
- With 2625 bunches an instantaneous luminosity of 5x10³³ cm⁻²s-1 => 100 fb⁻¹ in 1.3 years after lumi upgrade
- More possible by improved damping rings and BDS system

The ILD Concept

From key requirements from physics:

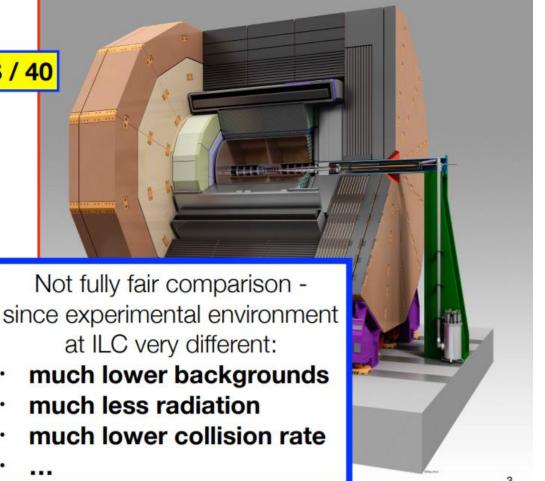
· p_t resolution (total ZH x-section) $\sigma(1/p_t) = 2 \times 10^{-5} \text{ GeV}^{-1} \oplus 1 \times 10^{-3} / (p_t \sin^{1/2}\theta)$

≈ CMS / 40

· vertexing (H → bb/cc/тт) $\sigma(d_0) < 5 \oplus 10 / (p[GeV] \sin^{3/2}\theta) \mu m$

≈ CMS / 4

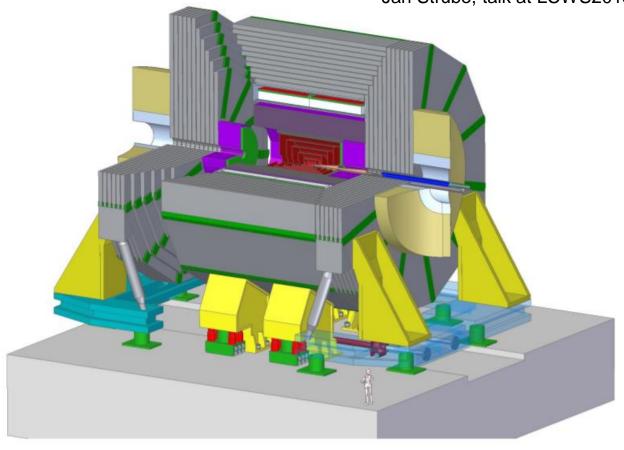
• jet energy resolution 3-4% $(H \rightarrow invisible)$


≈ ATLAS / 2

• hermeticity θ_{min} = 5 mrad $(H \rightarrow invis, BSM)$

≈ ATLAS / 3

To key features of the **detector**:

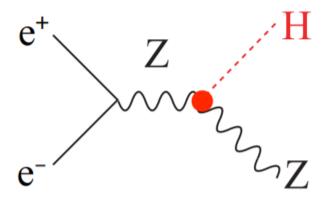

- low mass tracker:
 - main device: Time Projection Chamber (dE/dx!)
 - add. silicon: eg VTX: 0.15% rad. length / layer)
- high granularity calorimeters optimised for particle flow

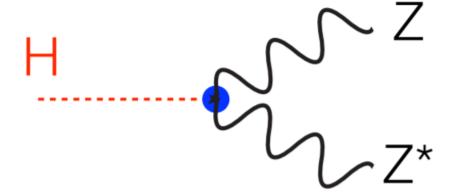
SiD Overview

- Compact design in a 5 T field
- Robust all-silicon tracking with excellent momentum resolution
- Time-stamping for single bunch crossings
- Highly granular calorimetry optimized for Particle Flow
- Integrated design: All parts work in tandem
- Iron flux return / muon identifier is part of SiD self-shielding

A compact, cost-constrained detector designed to make precision measurements and be sensitive to a wide range of new phenomena

Observables To Couplings: κ -formalism (1)


- (1) recoil mass technique ---> σ_{Zh}
- (2) $\sigma_{Zh} \longrightarrow \kappa_Z \longrightarrow \Gamma(h \to ZZ^*)$
- (3) WW-fusion measurement ---> κ_W ---> $\Gamma(h \to WW^*)$
- (4) total width $\Gamma_h = \frac{\Gamma(h \to ZZ^*)}{BR(h \to ZZ^*)}$, or $\Gamma_h = \frac{\Gamma(h \to WW^*)}{BR(h \to WW^*)}$
- (5) then all other couplings $\Gamma_h \times \text{BR}(h \to XX) \dashrightarrow \kappa_X$


Simple, but model-dependent anomalous coupling is not considered

Observables To Couplings: κ -formalism (2)

assume $\zeta_Z = 0$ in κ -formalism: model-dependent

$$\delta \mathcal{L} = \frac{m_Z^2}{v} (1 + \eta_Z) h Z_\mu Z^\mu + \frac{1}{2v} \zeta_Z h Z_{\mu\nu} Z^{\mu\nu}$$

$$\frac{\sigma(e^+e^- \to Zh)}{SM} = 1 + 2\eta_Z + 5.7\zeta_Z$$

$$\frac{\Gamma(h \to ZZ^*)}{SM} = 1 + 2\eta_Z - 0.5\zeta_Z$$

Synergy with HL-LHC

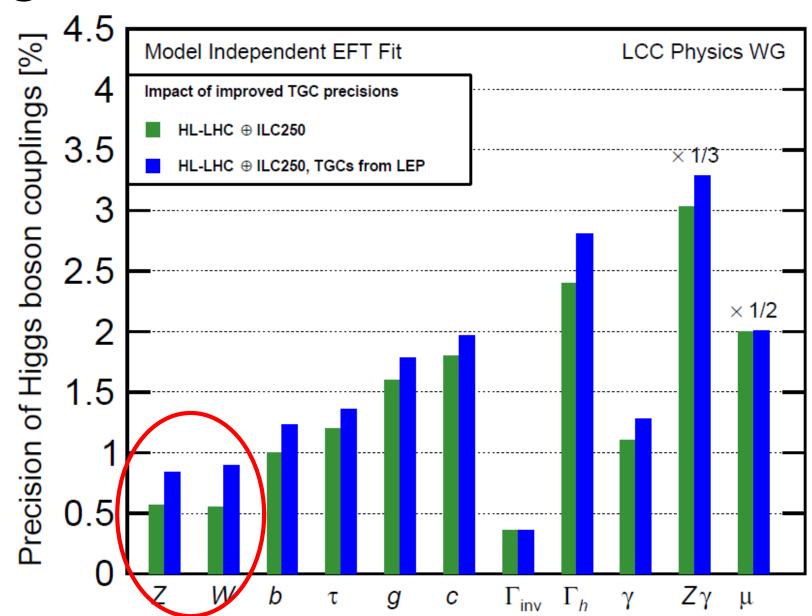
LHC meas.: BR(h-> $\gamma\gamma$)/BR(h->ZZ*), BR(h-> γ Z)/BR(h->ZZ*)

$$\delta\Gamma(h \to \gamma \gamma) = 528 \,\delta Z_A - c_H + \dots$$

$$\delta\Gamma(h \to Z\gamma) = 290 \,\delta Z_{AZ} - c_H + \dots$$

$$\delta\Gamma(h \to ZZ^*) = -0.50\delta Z_Z - c_H + \dots$$

loop induced h->γγ/γZ provide two very strong constraints


Systematic Errors

- 0.1% from theory computations
- 0.1% from luminosity
- 0.1% from beam polarizations
- 0.1% ⊕ 0.3%/sqrt(L/250) from b-tagging and analysis

S2 Assumption

- 10% improvement in signal efficiency of the jet clustering algorithm
- 20% improvement in the performance of the flavor tagging algorithm
- 20% improvement in statistics by including more signal channels in $\sigma_{Zh} \times \text{BR}(h \to WW^*)$
- a factor of 10 improvement in the precision electroweak input A_{LR} through the measurement of $e^+e^-\to \gamma Z$ with polarized beams at ILC250
- 30% improvement in the precision of Higgs self-coupling and top Yukawa coupling at ILC500

Power of TGC

