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Outline

I Why overoccupied, weak coupling gauge theory?
I Method: real time classical lattice

+ linearized fluctuations
I Test case system: isotropic self-similar UV cascade
I Spectral function + comparison HTL
I Heavy quark diffusion
I 2 spatial dimensions

Based on:

I Kurkela, T.L., Peuron, Eur. Phys. J. C 76 (2016) 688, [arXiv:1610.01355 [hep-lat]]

I Spectral function: K. Boguslavski, A. Kurkela, T.L., J. Peuron Phys. Rev. D 98 (2018) 014006, arXiv:1804.01966

I 2d system: K. Boguslavski, A. Kurkela, T.L., J. Peuron arXiv:1907.05892 [hep-ph]

I Heavy quark diffusion: K. Boguslavski, A. Kurkela, T.L., J. Peuron, in preparation
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Overoccupied gauge fields

z  (beam axis)

t

strong fields classical EOMs

gluons & quarks out of eq. viscous hydrodynamics

gluons & quarks in eq.
ideal hydrodynamics

hadrons in eq.

freeze out

Heavy ion collision: formation and dynamics of Quark-Gluon Plasma
I Initial stage: dynamics dominated by saturation scale Qs � ΛQCD;

gluon field nonperturbative: AµAµ ∼ 1/αs

I Later: ∼thermal system, soft fields p . gT nonperturbative
Want to understand real time QCD systems with both

I Perturbative scale Q � ΛQCD =⇒ weak coupling αs � 1
I Fields (at least at some p) overoccupied

Aµ ∼ 1/g � 1 =⇒ can use classical field dynamics, g scales out
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Standard method: hard (thermal) loops HTL

I Scale separation: hard ∼ Q (particles) and soft ∼mD (field) modes
I Initially Q ∼mD ∼ Qs =⇒ thermal Q ∼ T �mD ∼ gT
I Many numerical implementations with explicit particle+field description:

transport, plasma instabilities, sphalerons too many references to list here . . .
I Problem: continuum limit; where to put cutoff mD � 1/a � Q?

=⇒ cannot go to large mD/Q

Idea here: all scales on same classical lattice =⇒ do not need mD � Q
I But can also have scale separation (on big, but doable, lattice)

I Hard+hard interactions classical =⇒ thermalize incorrectly,
but this is slower process (& often neglected anyway)

I Use as generalization of HTL picture?
I Can vary mD/Q smoothly
I Details of hard sector should not matter for HTL
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Yang-Mills on a real time lattice

Real-time numerics for classical field: standard Hamiltonian lattice setup
I Gauge potential Ai , cov derivative Di = ∂i + ig[Ai , ·] =⇒ link Ui(x) = eiagAi(x)

I Canonical conjugate electric field E i = ∂tAi

I Temporal gauge A0 = 0 ; constraint [Di , E i ] = 0 (Gauss’ law)

1st thing to measure: “Statistical function”

Fab
jk (x , x ′) =

1
2

〈{
Âa

j (x) , Âb
k (x ′)

}〉
I Measures (thermal) fluctuations ∼ particles in system ∼ f (p)

I Now field is classical Ai ∼ 1/g =⇒ F is just 2-pt function of classical field

Fab
jk (x , x ′) =

〈
Ab

j (x)Ab
k (x ′)

〉
cl
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Linearized fluctuations on a real time lattice
The other independent correlator is the “spectral function”

ρab
jk (x , x ′) = i

〈[
Âa

j (x), Âb
k (x ′)

]〉
This is “quantum”, ∼ ~, but related to retarded propagator

GR(t , t ′,p) = θ(t − t ′) ρ(t , t ′,p).

Measure in classical theory: linear response

Âa
i (x)→ Âa

i (x) + âa
i (x) , 〈âb

i (x)〉 =

∫
d4x ′G bc

R,ik (x , x ′) jkc(x ′)

Algorithm for statistical function
Kurkela, T.L., Peuron, Eur. Phys. J. C 76 (2016) 688

I Perturb system with current jkc(x) = eik·xδ(t − t0)

I Follow linearized equations of motion for aa
i (x), ei

a(x)

I Correlate field aa
i (t) with current j ia(t0) =⇒ ρ(p, t)
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Test case: overoccupied cascade to UV

Extensively studied system:
Berges et al [arXiv:1203.4646 [hep-ph]] + . . . , Kurkela, Moore, [arXiv:1207.1663 [hep-ph]] + . . .

HTL/kinetic theory explains basic properties of numerics

I Start from isotropic
f (p) ∼ n0

g2 θ(p0 − p)
(actually smoother Gaussian)

I Later p0,n0 separately don’t
matter, only ε ∼ Q4/g2

I Energy cascades towards UV:
largest occupied pmax ∼ t1/7

I Typical occupation∼ t−4/7

(at hard scale)
ln(p)

ln(f)

Thermal

f ~ 1

Initial condition

(eβp-1)-1

Self-similar cascade

p
max      

~ t1/7

f(p
max

)~ t-4/7

1/α

Q

Specifically: define Q ≡ 4
√
ε/g2, (nonexpanding: ε conserved) Plots here: Qt = 1500
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Debye or plasmon scale

Self-similar scaling

f (t ,p) = t−4/7fS(p/t1/7)

m2 ∼
∫

d3p
p

f (p)

=⇒ Soft scale goes as

m ∼ t−1/7

I Numerically verified
I Can dial m/Q or m/pmax by

looking at different t
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Spectral function: Transversely polarized mode
K. Boguslavski, A. Kurkela, T.L., J. Peuron Phys. Rev. D 98 (2018) 014006

I F and ρ, same
quasiparticles?

I For apples-to apples
comparison plot

∂tρ(t , t ′) and
∂t∂t′F(t , t ′,p)

[t → t ′]

I Very nice agreement!

I Same in frequency t − t ′ → ω
=⇒ nice Lorentzian

I Even see a Landau cut; line
is HTL theory
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Longitudinally polarization mode

I Story very similar: good agreement
between statistical and spectral

I Measurement harder:
peak weak at high p

I Linearized fluctuations clearly much
cleaner
Orange: statistical (i.e. bkg field)
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Dispersion relations

I Difference between T and L
qualitatively as expected
from HTL 2
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Damping rate

Extract damping rate from
decay of plasma oscillation

HTL available for only γ(p = 0)

I Rougly agree
I But extend to higher p
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Infrared enhancement?
Equal time correlators of fields

Soft transverse fields:
from HTL expect thermal

f (p) ∼ T
ωp

with

T = T∗ ≡
1
2

∫
p f (t ,p) (f (t ,p) + 1)∫

p
f (t,p)√
m2

∞+p2

∼ t−3/7

(classical fields: neglect 1 in (f + 1))
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Numerical result: IR enhanced compared to HTL expectation
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Heavy quark diffusion
Preliminary results

Sign of infrared enhancement in equal-time, Coulomb gauge statistical function

pf (p) ∼
∫

d3x d3yeip·(x−y)
〈

E i(t ,x)E i(t ,y)
〉

I Interpretation: Magnetic scale physics, condensation, topology ??
I Or just gauge artefact?

Heavy quark diffusion coefficient
Gauge-invariant unequal-time, equal-space correlator

κ(ti ,∆t) ∼
〈

E i(ti ,x)E i(ti + ∆t ,x)
〉

(when measured in A0 = 0 gauge)

I Does it show some similar IR enhancement?
I By itself of phenomenological interest for . . . heavy quarks
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What does it look like?
Rapid initial oscillation, quickly averages to zero

=⇒ Looking for a smaller signal at large ∆t , ω → 0
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HQ diffusion constant and other physical scales

Time-dependence

κ ∼ (Qt)−5/7

understood as

κ ∼m2
DT∗

in terms of
I Hard scale Λ ∼ Q(Qt)1/7

I Debye scale
mD ∼ Q(Qt)−1/7

I Effective temperature of IR
modes T∗ ∼ Q(Qt)−3/7
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Zoom in on long time

Try to understand not only κ(T =∞) but κ(T ) vs. upper time limit T

I Red: numerical data
I “HTL”: model with

I Numerically extracted
gauge-fixed
equal-time-correlator
(statistical function) ∆t = 0,k

I ω,k with HTL analytical form
I IR enhancement needed

to reproduce oscillations
I “KT” kinetic theory with

I Numerically extracted f (p)
I mD-screened scattering
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2+1 dimensional plasma

I Glasma field is 2-dimensional
boost invariant

I Is there a 2-dimensional
cascade? =⇒ yes!

I Study 2+1d theory, either
I Just 2+1d gauge

I 2+1d gauge + adj. scalar
(from dim. red. 3d theory)

I Both exhibit scaling

I pmax ∼ t1/5 (cf 1/7 for 3d)
I Typical occupation ∼ t−3/5

(cf −4/7 for 3d)
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Hard and soft modes in 3 + 1 and 2 + 1 d

For simplicity consider propagator correction
I

m2
D ∼ ω2

pl ∼
∫

ddp
f (p)

p
I

Thermal f (p) ∼ T
p
θ(T − p)

I In d = 3 dominated by hard p ∼ T
I But in d = 2: log integral, all scales

p

Similarly for KT 2→ 2 collision integral
I In 3d hard particles scatter mostly off hard particles
I In 2d hard particles scatter equally often off soft particles

=⇒ Already at LO soft modes are a leading contribution

Thus: can understand power pmax ∼ t1/5 etc — but not use KT quantitatively
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2+1 dimensional plasma

IR enhancement seen only in scalars
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Conclusions

I Several aspects of a heavy ion collision exhibit overoccupied f (p) ∼ 1/g2

=⇒ classical gauge field
I Initial glasma fields: one scale problem p ∼ Qs
I Soft fields p ∼ gT in thermal system

I For controlled understanding of these fields:
new numerical algorithm for linearized fluctuations

I First test case: isotropic self-similar UV cascade
I Here ∃ scale separation =⇒ can compare to HTL, and go beyond
I See enhancement of IR modes over thermal distribution
I Confirmed by “heavy quark diffusion coefficient”

I In 2 spatial dimensions (closer to glasma) also observe universal behavior,
but physics (hard vs soft) very different!

Thank you!
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Backup
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Gauge fixing

Gauge fixing: equal-time correlators in Coulomb gauge

I For unequal times: fix Coulomb
when introducing current j / at
first time in statistical function
measurement, not later

I Keeping Coulomb gauge
condition would introduce
gauge artefacts in correlator
=⇒ to remove these need to
keep track of A0
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Insensitivity to parameters

I Dispersion relation
I Damping rate
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Insensitivity to parameters

I Dispersion relation
I Damping rate
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Dispersion relation

I Overall shape agrees with HTL

I More detail:√
ω2 − p2 between HTL

prediction and pure
ω2 = m2 + p2

I Characterize by
I ωpl ≡ ω(p→ 0)
I m∞ ≡mass gap at p→∞

I Numerical estimate:
ωpl

m∞
= 0.96

where HTL prediction is

ωpl

m∞
=

√
2/3 ≈ 0.82
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Curve “HTL” uses m∞ from f (p)
(which we estimate using EE-correlator)
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