Hadrons at high temperature: a lattice update

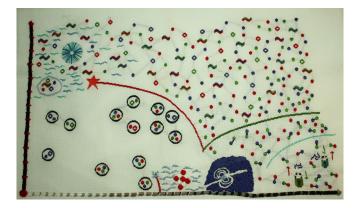
Jon-Ivar Skullerud

Maynooth University, FASTSUM Collaboration

Extreme QCD, 25 July 2022

Outline

Introduction, lattice setup


Light hadrons

Charm

Beauty

Summary and outlook

Background

Background

- Quark–gluon plasma is created in heavy-ion collisions at RHIC and LHC
- No direct observation of QGP must infer from "fallout"
- Dynamical medium: expanding, cooling fireball
 - $\rightarrow\,$ transport coefficients are crucial in understanding
- In-medium mass and width modifications below T_c
 - \rightarrow relevance for hadron resonance gas models?
- Sequential suppression —> quarkonia as QGP thermometers?

Lattice simulations

- QGP near crossover is strongly interacting: nonperturbative methods required
- Equilibrium thermal field theory formulated in euclidean space

- suitable for Monte Carlo simulations

$$\langle {\cal O}
angle = \int {\cal D}[\Phi] {\cal O}[\Phi] e^{-{\cal S}[\Phi]}$$

• Temperature $T = \frac{1}{L_{\tau}} = (N_{\tau}a_{\tau})^{-1}$

Real-time quantities may be determined from spectral function

$$\rho(\omega) = \operatorname{Im} G_R(\omega) = \operatorname{Im} \int_0^\infty G_R(t) e^{-i\omega t}$$
$$G_E(\tau; T) = \int_0^\infty d\omega K(\omega, \tau; T) \rho(\omega; T)$$

2+1 active light flavours required for quantitative predictions!

Dynamical anisotropic lattices

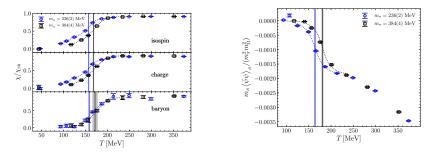
- A large number of points in time direction required to extract spectral information
- For $T = 2T_c$, $\mathcal{O}(10)$ points $\Longrightarrow a_t \sim 0.025$ fm
- Far too expensive with isotropic lattices $a_s = a_t!$
- Fixed-scale approach
 - ightarrow vary T by varying $N_{ au}$ (not a)
 - $\rightarrow\,$ need only 1 $\,T=0$ calculation for renormalisation
 - $\rightarrow\,$ independent handle on temperature

- Introduces 2 additional parameters
- Non-trivial tuning problem
 [PRD 74 014505 (2006); HadSpec Collab, PRD 79 034502 (2009)]

Simulation parameters

[PRD 76 194513 (2007), HadSpec Collab, PRD 79 034502 (2009)]

Gen	N _f	ξ	a_s (fm)	$a_{ au}^{-1}$ (GeV)	m_{π} (MeV)	Ns	L_s (fm)
1	2	6.0	0.162	7.35	490	12	1.94
2	2+1	3.45	0.123	5.63	390	24	2.95
						32	3.94
2L	2+1	3.45	0.112	6.08	240	32	3.58
2P	2+1	3.45	*0.100	*6.80	140	48	4.80
3	2+1	7.0	*0.123	*11.66	*390	32	3.94

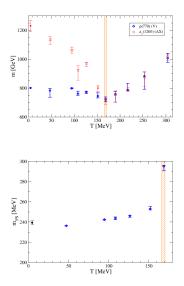

Simulation parameters: temperatures

 n pu	ranneters.	comp	ciucu	100	
Gen 2				Gen 2L	
$N_{ au}$	T (MeV)	T/T_c	$N_{ au}$	T (MeV)	T/T_c
128	44	0.24	128	47	0.42
			64	95	0.59
			56	109	0.67
48	117	0.63	48	127	0.78
40	141	0.76	40	152	0.94
36	156	0.84	36	169	1.04
32	176	0.95	32	190	1.17
28	201	1.09	28	217	1.34
24	235	1.27	24	253	1.56
20	281	1.52	20	304	1.87
16	352	1.90	16	380	2.34
			12	507	3.12
			8	760	4.69

Susceptibilities and chiral transition [PRD105(2022)034504]

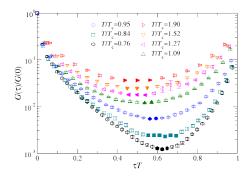
Isospin, charge and baryon susceptibility

Renormalised chiral condensate

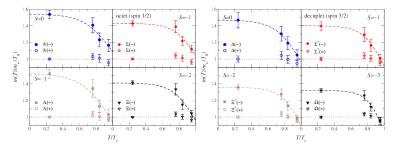


 T_c is shifted by \sim 20 MeV when m_π goes from 390 to 240 MeV

Light mesons


PRELIMINARY

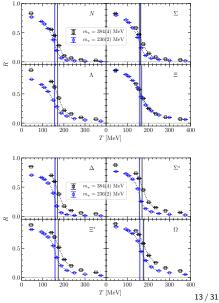
- Exponential fits to smeared and point correlators
- Consistent results, only showing smeared
- Chiral partners A and V become degenerate at transition
- ► No degeneracy seen in PS-S
- Slight increase in m_{π}


Light baryons [PRD**92**(2015)014503; JHEP**1706**034; PRD99(2019)074503; PRD**105**(2022)034504]

Positive and negative parity states encoded in same correlator

Forward propagating: + parity; Backward propagating: - parity Using smeared (extended) sources to enhance ground state

Baryon mass modifications [Gen2]



- Positive parity ground state masses unaffected by T up to T_c
- Negative parity masses decrease
- Parity restoration near T_c?

Parity restoration

Measure of parity restoration:

$$R(\tau) = \frac{G(\tau) - G\beta - \tau)}{G(\tau) + G(\beta + \tau)}$$
$$R = \frac{\sum_{n=0}^{\beta/2 - 1} R(\tau_n) / \sigma^2(\tau_n)}{\sum_{n=0}^{\beta/2 - 1} 1 / \sigma^2(\tau_n)}$$

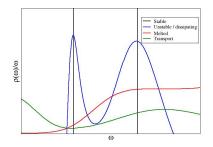
Charm

- ▶ J/ψ suppression a probe of the quark–gluon plasma?
- Quantitative results for broadening and melting?
- To what extent do c quarks thermalise?
- How reliable are quenched lattice simulations?
- What happens to open charm and charmed baryons?

Methods

- ▶ Reconstructed correlators with model T = 0 spectral function
- Reconstructed correlators: direct reconstruction
- Bayesian reconstruction of spectral functions
- Model χ^2 fits, point and smeared sources

Spectral functions


contain information about the fate of hadrons in the medium

- ightarrow stable states $ho(\omega)\sim\delta(\omega-m)$
- ightarrow resonances or thermal width $ho(\omega)\sim$ lorentzian
- $\rightarrow~{\rm continuum}$ above threshold

Spectral functions

contain information about the fate of hadrons in the medium

- ightarrow stable states $ho(\omega)\sim\delta(\omega-m)$
- ightarrow resonances or thermal width $ho(\omega)\sim$ lorentzian
- $\rightarrow~{\rm continuum}$ above threshold

Spectral functions

contain information about the fate of hadrons in the medium

- ightarrow stable states $ho(\omega)\sim\delta(\omega-m)$
- ightarrow resonances or thermal width $ho(\omega)\sim$ lorentzian
- \rightarrow continuum above threshold
- $\rho_{\Gamma}(\omega, \vec{p})$ related to euclidean correlator $G_{\Gamma}(\tau, \vec{p})$ according to

$$G_{\Gamma}(\tau, \vec{p}) = \int
ho_{\Gamma}(\omega, \vec{p}) K(\tau, \omega) d\omega , \quad K(\tau, \omega) = rac{\cosh[\omega(\tau - 1/2T)]}{\sinh(\omega/2T)}$$

- an ill-posed problem requires a large number of time slices
 - $\rightarrow\,$ Fit to physically motivated Ansatz
 - $\rightarrow\,$ Use Maximum Entropy Method or other Bayesian methods
 - ightarrow Other inversion methods, eg Backus–Gilbert, machine learning

Reconstructed correlators

The systematic uncertainty of the spectral function can be avoided by studying the reconstructed correlator, defined as

$$G_r(\tau; T, T_r) = \int_0^\infty \rho(\omega; T_r) K(\tau, \omega, T) d\omega$$

where K is the kernel

$$\mathcal{K}(au, \omega, T) = rac{\cosh[\omega(au - 1/2T)]}{\sinh(\omega/2T)}$$

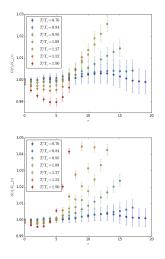
If $\rho(\omega; T) = \rho(\omega; T_r)$ then $G_r(\tau; T, T_r) = G(\tau; T)$

Small changes in correlators is compatible with large changes in spectral function

Direct correlator reconstruction [Meyer (2010), Ding et al (2012)]

With

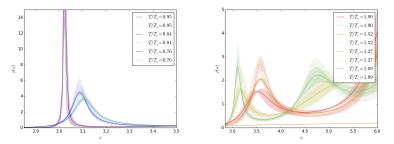
$$T=rac{1}{a_ au N}, \ T_r=rac{1}{a_ au N_r}, \ rac{N_r}{N}=m\in\mathbb{N}$$


and using

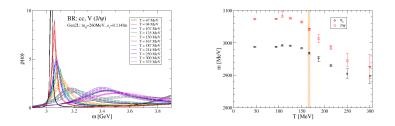
$$\frac{\cosh\left[\omega(\tau - N/2)\right]}{\sinh(\omega N/2)} = \sum_{n=0}^{m-1} \frac{\cosh\left[\omega(\tau + nN + mN/2)\right]}{\sinh(\omega mN/2)}$$

we have

$$G_r(\tau; T, T_r) = \sum_{n=0}^{m-1} G(\tau + nN, T_r)$$


Charmonium: reconstructed correlators [Gen2]

Top: pseudoscalar (η_c) Bottom: vector (J/ψ)

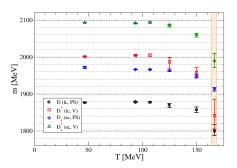

- $T \lesssim T_c$ consistent with no change
- Small but significant modifications above T_c

J/ψ spectral functions [Gen2]

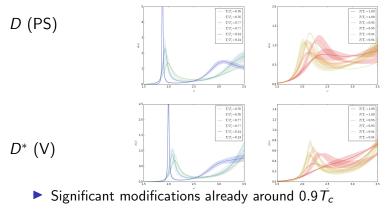
- BR method for thermal (solid lines) and reconstructed (dotted lines) correlators
- Similar results from MEM
- Consistent with no change below T_c
- Possible weakening or melting for $T \gtrsim 1.5 T_c$

Charmonium: Gen2L

BR on thermal correlators only

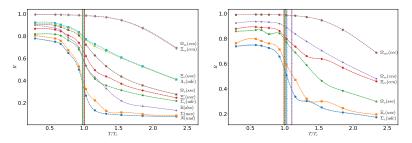

 $\blacktriangleright\,$ Fits to smeared correlators suggest negative mass shift for $T>120 {\rm MeV}$

D mesons: reconstructed correlators and fits



Top: D, Bottom: D^*

- Significant changes for $T \gtrsim T_c$
- Modifications below T_c
- Smaller for D_s



Open charm spectral functions

• Clear difference at $T \approx 1.9 T_c$

Charmed baryons

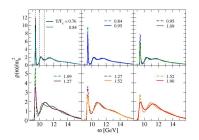
Parity doubling crossover is at same temperature for (singly) charmed as for light and strange baryons

NRQCD

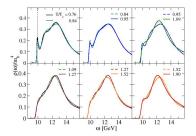
Scale separation $M_Q \gg T$, $M_Q v$ Integrate out hard scales \longrightarrow Effective theory Expand in orders of heavy quark velocity \mathbf{v} ; we use $\mathcal{O}(\mathbf{v}^4)$ action

Advantages

- ▶ No temperature-dependent kernel, $G(\tau) = \int \rho(\omega) e^{-\omega \tau} \frac{d\omega}{2\pi}$
- No zero-modes
- Longer euclidean time range
- Appropriate for probes not in thermal equilibrium

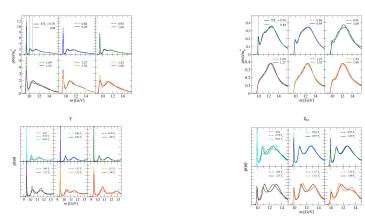

Disadvantages

- Not renormalisable, requires $Ma_s\gtrsim 1$
- Does not incorporate transport properties

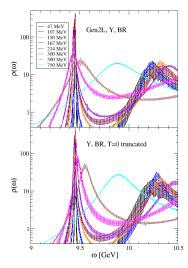

Spectral functions - MEM analysis [Gen2

S-waves

P-waves



 Υ (2S) melts, but ground state remains robust


P-waves dissociate close to T_c

MEM vs BR method

Known discrepancy: BR produces more peak structures

BR spectral functions — Gen2L

PRELIMINARY

- ▶ Negative mass shift at all *T*?
- No significant thermal broadening for T ≤ 250 MeV?
- Width and mass to be cross-checked with other methods — in progress
- ↑ (2S) not resolved

Summary

- Light mesons:
 - $\rightarrow\,$ chiral doubling $\rho-a_1$ seen at $\,T_c$
 - $ightarrow \, m_{\pi}$ increases with $\, T$
- ► Baryons:
 - $\rightarrow~$ observed parity restoration
 - $\rightarrow\,$ impact on hadron resonance gas
 - $\rightarrow\,$ singly charmed baryons behave similarly to light

Open charm:

- ightarrow thermal modifications already below T_c
- $\rightarrow\,$ indication of significant mass drop
- ightarrow no bound states above ${\mathcal T}_c$

Charmonium:

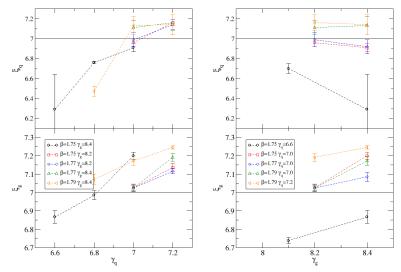
- ightarrow no significant modification in S-waves below T_c
- ightarrow suggested survival up to $1.5\,T_c$

Beautonium:

- \rightarrow S wave survival up to $T>2T_c$, moderate mass shift
- $\rightarrow~$ Quantitative results for mass shift and width still elusive

Outlook

- Complete understanding of systematics
- Towards the physical limit with lighter quarks underway
- Repeat with smaller a_{τ} underway
- Open beauty


THANK YOU

Tom Spriggs, Ryan Quinn, Ben Page, Sam Offler, Eoghan Murphy, Aoife Kelly, Rachel Horohan D'Arcy, Sergio Cháves

Aleksandr Nikolaev, Tim Harris, Jonas Glesaaen, Ryan Bignell

Sinéad Ryan, Maria Paola Lombardo, Seyong Kim, Ben Jäger, Simon Hands, Tim Burns, Chris Allton, Gert Aarts

Gen3 tuning

