Quark-antiQuark potential from Wilson Line Correlators at finite temperature: A comparison between different methods

Rasmus Larsen

University of Stavanger

July 27. 2022

Overview

- Objective
 - Find the effective potential between a quark and an anti-quark at finite temperature
- Method
 - Calculate correlator between 2 wilson lines of length au
 - Extract energies from behavior $C \sim \exp(-E\tau)$
- Techniques
 - Zero-temperature continuum subtraction
 - Pade interpolation
 - Hard Thermal Loop inspired fit
- Results
 - Energies of the potential
 - Spectral width of the potential
- Dibyendu Bala, Olaf Kaczmarek, Rasmus Larsen, Swagato Mukherjee, Gaurang Parkar, Peter Petreczky, Alexander Rothkopf, Johannes Heinrich Weber [arxiv:2110.11659]

Approach

Measure the energy of 2 infinitely heavy quarks, separated by distance r

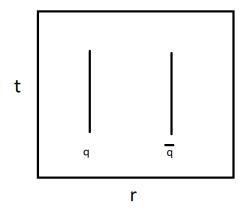
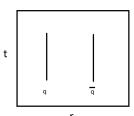


Figure: Illustration of a Wilson line correlation measurement.

- Measurement is not gauge invariant
 - Gauge fix to Coulomb gauge


Wilson Line Correlator

Wilson line is the product of Links

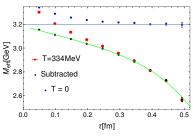
$$W(t,x) = \prod_{i}^{t} U_4(i,x) \tag{1}$$

- Infinitely heavy quarks stay fixed at same position
- ullet Propagating from au=0 to au=t will be done by a wilson line of length ${f t}$
- A quark and anti-quark will interfere with each other, to create different states based on the possible energies

$$C(t,x) = < Tr(W(t,0)W(t,x)^{\dagger}) >$$
 (2)

Correlation function

- Correlation function $C(\tau,r)$ calculated on finite temperature lattice ensembles
- 2+1 flavor HotQCD configurations from T=151MeV to T=667MeV
- Pion mass 160MeV, Kaon mass physical (the 3 highest temp use larger quark mass)
- $N_x = 48$, $N_\tau = 12$


$$C(\tau, r) = \int_0^\infty \rho(\omega, r) \exp(-\omega \tau) d\omega$$
 (3)

- Invert equation to find spectral function $\rho(\omega, r)$
 - Inversion problem very hard

Effective Mass and continuum subtraction

ullet Plateaus of the effective mass M_{eff} -> Mass state exists in $ho(\omega)$

$$M_{eff} = \frac{1}{a} \log[C(\tau)/C(\tau + a)] = -\frac{\partial}{\partial_{\tau}} \log(C(\tau))$$
 (4)

$$C(\tau) = Ae^{-M\tau} + C_{high}(\tau)$$

$$C_{sub}(\tau, T) = C(\tau, T) - C_{high}(\tau)$$

- Small τ behavior similar at T=0 and $T\neq 0$
- Extract continuum $C_{high}(\tau)$ from T=0 results

Extractions technique 1: Fit on continuum subtracted data

- Measurements contain contribution from continuum
- Remove the continuum

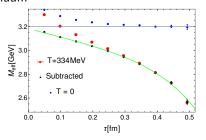
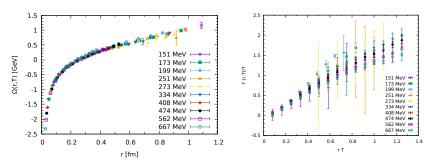


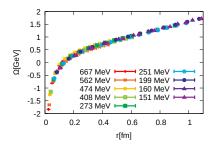
Figure: T=334MeV, r=0.44fm.

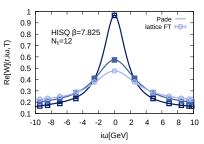

Information in correlation function (Black points) is thus

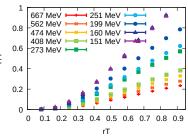
$$C_{sub}(\tau, T) \sim \exp(-\Omega \tau + \frac{1}{2} \Gamma^2 \tau^2 + O(\tau^3))$$

$$\rho_r(\omega, T) = A(T) \exp\left(-\frac{[\omega - \Omega(T)]^2}{2\Gamma^2(T)}\right) + A^{\text{cut}}(T) \delta\left(\omega - \omega^{\text{cut}}(T)\right)$$
(5)

Energy and Width from Wilson Line Correlator

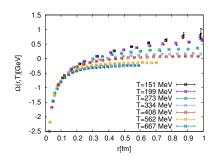

• Almost no change in energy Ω (position of peak), but increasing width Γ [arxiv:2110.11659]

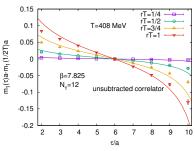


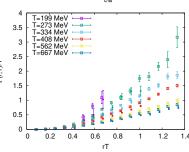

 Note difference to quenched QCD that showed screening with increased temperature

Extraction technique 2: Pade interpolation

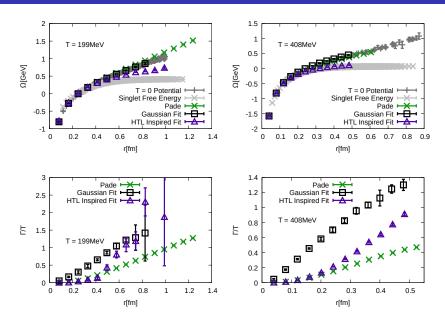
- Fourier transform complex time correlator $W(r, i\omega, T)$
- Calculate Pade function (pol divided by pol) that goes exactly through all points
- Rotate fit from complex time to real time

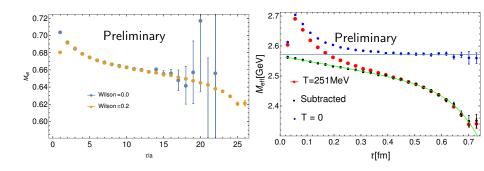




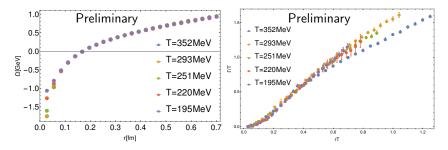


Extraction technique 3: Hard Thermal Loop inspired fit

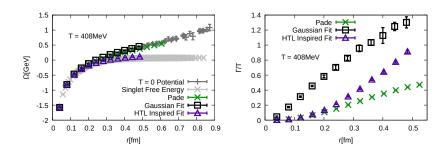

- Fit form expanded around $\tau = \beta/2$ obtained from Hard Thermal Loop expansion
- $m_1(r, n_\tau = \tau/a)a = \Omega(r, T) \frac{\Gamma(r, T)aN_\tau}{\pi} \log(\frac{\sin(\pi n_\tau(N_\tau))}{\sin(\pi(n_\tau + 1)(N_\tau))})$
- Fitted in a variable range around center of lattice



Comparison of Results


Wilson Line correlator results from 96^3 lattices

- Larger lattices generated with heavy quarks ($m_s/m_l=5$) 96^3*N_τ using grant from PRACE
- High Energy fluctuations become dominating for large au/a
- Wilson smearing used to remove high energy contributions
 - Affects results at small au (both ends) and small distances


Wilson Line correlator results from 963 lattices

- Gaussian fits on subtracted correlator
- No Significant difference observed between 0 and finite temperature energy
- Results consistent with same methods on $N_x = 48$

• Smearing affects results at small r

Conclusion

- Most methods show no significant energy change with temperature
- Size of spectral width not consistent between different methods
- Attempts on improving fits with larger/finer lattices continue