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Motivation
▶ Lower-energy collisions, and neutron star mergers, create a hot but extremely

dense environment
▶ High density high temperature region is very unknown
▶ Perturbation theory should work better

Unknown

Well studied
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What is η?

In a fluid system near equilibrium:
▶ η express the strength of the interaction in this fluid
▶ Conservation law (Hydrodynamics):

∂µTµν = 0
▶ Tij corrected from its equilibrium form:

Tij = Pδij − η
(
∂iuj + ∂jui − 2

3δ
ij∂ · u

)
− ζδij∂ · u



What is η?

Bulk Viscosity Shear Viscosity

Figures from Guy Moore
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Kinetic Theory
In kinetic theory, phase space density of particles, f(x,p, t) describes the system,
and changes in momentum occur through scattering:[

∂
∂t + v⃗p ·

∂

∂x⃗

]
f(p⃗, x⃗, t) = −C[f]



Linearized Boltzmann Equation

Keeping only first order in the collision term:[
∂
∂t + v⃗p ·

∂

∂x⃗

]
fa0(p⃗, x⃗, t) = −(C[fa1])(p⃗, x⃗, t)

Where
fa = fa0 + fa0(1 − fa0)f

a
1

and
fq/q0 = {exp[β(p ± µ)] + 1}−1

fg0 = {exp[βp] − 1}−1
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Linearized Boltzmann Equation
The f1(p⃗) that will solve the linearized Boltzmann equation:

f1(p⃗) =
β2
√

6

(
∂iuj + ∂jui −

2δij∂kuk

3

)
χij(p⃗)

χij(p⃗) =
√

2
3

(
p̂ip̂j −

1
3δij

)
χ(p)

Solving the Boltzmann equation means determining χ(p)
Now we define:

Si...j(p⃗) = −
1
β
|⃗p|f0(p⃗)[1 ± f0(p⃗)]

√
2
3

(
p̂ip̂j −

1
3δij

)
We can simplify the equation:

Si...j(p⃗) = (Cχi...j)(p⃗)
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Feynman Diagrams
At leading-log the diagrams we need to compute are:

(A) (B) (C)

(D) (E)



Diagrams (A) and (B) at high µ

▶ Number of quarks increases
▶ Number of gluons remains the same



Diagram (C) at high µ

▶ Number of quarks increases
▶ This diagram gets more important
▶ screening mass increases - mD ∼ g2(T2 + µ2) ⇒ perturbation theory should

work better



Diagrams (D) and (E) at high µ

▶ Number of anti-quarks decreases ⇒ diagram (D) is highly suppressed
▶ Diagram (E) is also highly suppressed ⇒ difficult to transfer all momentum

from quark to gluon
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Variational Solution

To solve this equation we will convert this into an equivalent variational problem,
using the fact that the collision operator is hermitian with respect to the inner
product:

(f, g) = β3
ffhc∑

a

∫
p⃗

fa(p⃗)ga(p⃗)

Now, we define the functional:

Q[χ] = (χi...j,Si...j) −
1
2(χi...j,Cχi...j)

Viscosity comes from maximizing Q:

η =
2
15Qmax



Variational Solution

The source term:

(χi...j,Si...j) = −β2
ffhc∑

a

∫
p⃗

fa0(p)[1 ± fa0(p)]|⃗p|χa(p)

The collision integrals:

(χi...j,Cχi...j) = β3
ffhc∑
abcd

∫
p⃗,k⃗,p⃗′,k⃗′

|Mab
cd(p, k,p

′, k′)|2(2π)4

δ4(p + k − p′ − k′)fa0(p⃗)f
b
0(k⃗)[1 ± fc0(p⃗′)][1 ± fd0(k⃗′)]

[χa
i...j (p⃗) + χ

b
i...j(k⃗) − χc

i...j(p⃗′) − χd
i...j(k⃗′)]

2



Basis Set
We rewrite our χ as:

χg(p) =

N∑
m=1

amϕ
(m)(p)

χq(p) =

N∑
m=1

am+Nϕ
(m)(p)

χq(p) =

N∑
m=1

am+2Nϕ
(m)(p)

The choice of basis set was:

ϕ(m) =
p(p/T)m

(1 + p/T)N−1 m = 1, ...,N



Shear Viscosity

Putting these back into the source integrals, we get the source vector:(
Sij, χij

)
=

∑
m

amS̃m

And the scattering matrix:

(χij,Cχij) =
∑
m,n

amC̃mnan

Inserting it in the functional we find that the viscosity is given by:

η =
1
15S̃TC̃−1S̃
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Shear Viscosity
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Power Estimation

The momentum-diffusion coefficient q̂ for µ≫ T is:

q̂ ∼ g4µ2T .

For the system to equilibrate momentum has to change as:

(∆p)2 ∼ µ2

The time scale is:
t ∼ (∆p)2

q̂ ∼ 1
g4T

The shear viscosity is η ∼ Pt:

η ∼
µ4

g4T



Entropy Density

In weakly coupled QCD the entropy density is given by:

s = 479π2

90 T3 + 6µ2T

⇒ the entropy density scales as s ∼ µ2T



η/s
⇒ η/s ∼ µ2/(g4T2)

g4 log(g−1)η/s = A + Bµ2/T2
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η/s
▶ Small µ/T: η/s → constant
▶ Large µ/T: η/s → parabola

Fermions dominate s, the
scatterings and the source term
Diagram C → most important
Diagrams A and B → not
important
Diagrams D and E → highly
suppressed

▶ Around µ/T = 2: η/s → more
complicated.
Quarks and gluons play
important part

(A) (B) (C)

(D) (E)



Summary

For high µ:
▶ we can obtain η for hot dense QCD at leading log
▶ the relation η/s ∼ µ2/(g4T2) is a good fit
▶ Fermions dominate both scatterings and the source term
▶ Next step: leading order calculations

Thank you!
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Shear viscosity to enthaply density ratio:

0 1 2 3 4 5 6
μ/T

2.5

3.0

3.5

4.0

Tη
(e

+
P)
×
g4
ln
g−

1


	Introduction
	Effective kinetic theory
	Collision integrals at high 
	Variational solution
	Results
	Summary

