Complex Langevin boundary terms in lattice models

Dénes Sexty
 KFU Graz

Collaborators: Nina Maria Lampl, Michael Westh Hansen, Manuel Scherzer, Erhard Seiler, Nucu Stamatescu
XQCD 2022, 28.07.2022.

1. Introduction to Complex Langevin
2. Boundary terms; test in full QCD, 3d XY model; correction
3. Results for full QCD: EoS and phase diagram

From the action to the phenomenology of QCD

Action of QCD, the theory of strong interactions

$$
S=-\frac{1}{4} \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}+\sum_{1}^{6} \bar{\psi}_{f}\left(i \gamma^{\mu} D_{\mu}+m_{f}\right) \psi_{f} \quad \begin{aligned}
& 1 \text { gauge coupling } \\
& 6 \text { quark masses }
\end{aligned}
$$

Confinement mechanism? Mass of hadrons? Scattering cross sections? Phases transition to Quark-gluon plasma? Critical point at nonzero density? Equation of state?
Compressibility of quark matter? (in neutron stars)
Exotic phases:
Color superconducting phases?
Quarkyonic phase?
QCD in magnetic fields?
.... and so on

How?

Perturbation theory - asymptotic freedom Kinetic theory
Effective models (NJL, Polyakov-NJL, SU(3) spin model, Functional methods (FRG, 2PI, Dyson-Schwinger eq.) Lattice

Phase diagram of QCD

Zero density axis well known
transition temperature
zero temperature: hadron masses scattering amplitudes, etc.

At nonzero density much less solid knowledge
What phases are present? Is there a critical point?
compressibility of nuclear matter?

Importance Sampling and Sign Problem

We are interested in a system Described with the partition sum:

$$
Z=\int D \phi e^{-S}=\operatorname{Tr} e^{-\beta(H-\mu N)}=\sum_{C} W[C]
$$

Usually: Markov Chain Monte Carlo

$$
\ldots \rightarrow C_{i-1} \rightarrow C_{i} \rightarrow C_{i+1} \rightarrow \ldots
$$

Probability of visiting C

$$
p(C) \sim W[C]
$$

$$
\langle X\rangle=\frac{1}{N} \sum_{i} X\left[C_{i}\right]
$$

This works if we have

$$
W[C] \geq 0 \quad \text { Otherwise we have a Sign problem }
$$

Workaround: Dual variables, Density of States, Reweighting, Taylor expansion, Imaginary potentials, etc.

Using analyticity: Lefschetz Thimbles, Complex Langevin

Toy model with sign problem

$$
Z=\int_{-\infty}^{\infty} e^{-\left(\sigma x^{2}+i \lambda x\right)} d x \quad\left\langle x^{2}\right\rangle=\frac{1}{Z} \int x^{2} e^{-\left(\sigma x^{2}+i \lambda x\right)} d x=?
$$

Sampling method: draw uniform random

$$
-a \leqslant x_{i} \leqslant a
$$

$$
\int_{-a}^{a} f(x) d(x) \approx \frac{1}{N} \sum_{i} f\left(x_{i}\right)
$$

$$
\sigma=\sqrt{2}, \lambda=0
$$

$$
\sigma=1+i, \quad \lambda=20
$$

100 samples to have 10% relative error

$$
\Delta \sim \frac{1}{\sqrt{N}}
$$

How to solve the sign problem (of QCD)?
Extrapolation from a positive ensemble
Reweighting $\langle X\rangle_{W}=\frac{\sum_{c} W_{c} X_{c}}{\sum_{c} W_{c}}=\frac{\sum_{c} W^{\prime}{ }_{c}\left(W_{c} / W^{\prime}{ }_{c}\right) X_{c}}{\sum_{c} W^{\prime}{ }_{c}\left(W_{c} / W^{\prime}{ }_{c}\right)}=\frac{\left\langle\left(W / W^{\prime}\right) X\right\rangle_{W^{\prime}}}{\left\langle W / W^{\prime}\right\rangle_{W^{\prime}}}$
Taylor expansion $\quad Z(\mu)=Z(\mu=0)+\frac{1}{2} \mu^{2} \partial_{\mu}^{2} Z(\mu=0)+\ldots$

Analytic continuation from imaginary sources (chemical potentials, theta angle,..)

Using analyticity (for complexified variables)
Complex Langevin Complexified variables - enlarged manifolds

Lefschetz thimble (not yet for QCD) Integration path shifted onto complex plane

In QCD direct simulation only possible at $\mu=0$

Taylor extrapolation, Reweighting, continuation from imaginary μ, canonical ens. all break down around

$$
\frac{\mu_{q}}{T} \approx 1-1.5 \quad \frac{\mu_{B}}{T} \approx 3-4.5
$$

Around the transition temperature Breakdown at $\quad \mu_{q} \approx 150-200 \mathrm{MeV} \quad \mu_{B} \approx 450-600 \mathrm{MeV}$

Results on
$N_{T}=4, N_{F}=4, m a=0.05$
using
Imaginary mu,
Reweighting,
Canonical ensemble

Agreement only at $\mu / T<1$

Langevin Equation (aka. stochatic quantisation)

Given an action $S(x)$

Stochastic process for x : $\quad \frac{d x}{d \tau}=-\frac{\partial S}{\partial x}+\eta(\tau)$

$$
\begin{aligned}
& \text { Gaussian noise } \\
& \langle\eta(\tau)\rangle=0 \\
& \left\langle\eta(\tau) \eta\left(\tau^{\prime}\right)\right\rangle=\delta\left(\tau-\tau^{\prime}\right)
\end{aligned}
$$

Random walk in configuration space

Averages are calculated along the trajectories:

$$
\langle O\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} O(x(\tau)) d \tau=\frac{\int e^{-S(x)} O(x) d x}{\int e^{-S(x)} d x}
$$

Numerically,
results are extrapolated to $\Delta \tau \rightarrow 0$

Complex Langevin Equation

Given an action $S(x)$

$$
\text { Stochastic process for } \mathrm{x}: \quad \frac{d x}{d \tau}=-\frac{\partial S}{\partial x}+\eta(\tau) \quad \begin{aligned}
& \begin{array}{l}
\langle\eta(\tau)\rangle=0 \\
\left\langle\eta(\tau) \eta\left(\tau^{\prime}\right)\right\rangle=\delta\left(\tau-\tau^{\prime}\right)
\end{array}
\end{aligned}
$$

Averages are calculated along the trajectories:

$$
\langle O\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} O(x(\tau)) d \tau=\frac{\int e^{-S(x)} O(x) d x}{\int e^{-S(x)} d x}
$$

The field is complexified

$$
\frac{d x}{d \tau}=-\frac{\partial S}{\partial x}+n(\tau)
$$

real scalar \longrightarrow complex scalar
link variables: $\underset{\text { compact }}{\operatorname{SU}(N)} \underset{\text { non-compact }}{\text { SL(N,C) }}$

$$
\operatorname{det}(U)=1, \quad U^{+} \neq U^{-1}
$$

Analytically continued observables

$$
\begin{gathered}
\frac{1}{Z} \int P_{\text {comp }}(x) O(x) d x=\frac{1}{Z} \int P_{\text {real }}(x, y) O(x+i y) d x d y \\
\left\langle x^{2}\right\rangle_{\text {real }} \rightarrow\left\langle x^{2}-y^{2}\right\rangle_{\text {complexificed }}
\end{gathered}
$$

Gaussian Example

$$
S[x]=\sigma x^{2}+i \lambda x
$$

CLE

$$
\frac{d}{d \tau}(x+i y)=-2 \sigma(x+i y)-i \lambda+\eta
$$

∇

$$
P(x, y)=e^{-a\left(x-x_{0}\right)^{2}-b\left(y-y_{0}\right)^{2}-c\left(x-x_{0}\right)\left(y-y_{0}\right)}
$$

Gaussian distribution around critical point

$$
\left.\frac{\partial S(z)}{\partial z}\right|_{z_{0}}=0
$$

Measure on real axis

"troubled past": Convergence to wrong results Lack of theoretical understanding Runaway trajectories

$S(\varphi)=i \beta \cos \varphi+i \varphi$
Correct in one parameter region Incorrect in an other

Convergent in both

Klauder '83, Parisi '83, Hueffel, Rumpf '83, Karsch. Wyld '84, Gausterer, Klauder '86. Matsui, Nakamura '86, ...
Interest went down as difficulties appeared
Renewed interest in connection of otherwise unsolvable problems applied to nonequilibrium: Berges, Stamatescu '05, ... aimed at nonzero density QCD: Aarts, Stamatescu '08 ... many important results since revival

Argument for correctness of CLE results

If there is fast decay $\quad P(x, y) \rightarrow 0$ as $x, y \rightarrow \infty$ and a holomorphic action $S(x)$

then CLE converges to the correct result

```
[Aarts, Seiler, Stamatescu (2009)
Aarts, James, Seiler, Stamatescu (2011)]
```

Loophole 1: Non-holomorphic action for nonzero density

$$
S=S_{W}\left[U_{\mu}\right]+\ln \operatorname{Det} M(\mu)
$$

measure has zeros (Det $M=0$) complex logarithm has a branch cut

- meromorphic drift

No problems if poles are not 'touched' by distribution satisfied for: HDQCD, full QCD at high temperatures

[Aarts, Seiler, Sexty, Stamatescu '17]

Loophole 2: decay not fast enough

boundary terms can be nonzero

explicit calculation of boundary terms possible
[Scherzer, Seiler, Sexty, Stamatescu (2018)+(2019)]

Unambigous detection of boundary terms given by plateau as 'cutoff' $Y \rightarrow \infty$

Observable cheap also for lattice systems

Measuring "corrected observable" in case boundary term nonzero

Details below...

Sketch of the proof

$P(x, y, t)$: probability density on the complex plane at Langevin time t
Real Fokker-Planck equation

$$
\frac{\partial P}{\partial \tau}=\frac{\partial}{\partial x}\left|\frac{\partial P}{\partial x}-K_{x} P\right|-\frac{\partial}{\partial y}\left(K_{y} P\right) \text { with } K_{i}=-\partial_{i} S
$$

Real action $\rightarrow K_{y}=0$, positive eigenvalues of H_{FP}

$$
P(x, y, \infty)=\delta(y) \exp (-S(x))
$$

$\rho(x, t)$: complex measure evolving with the complex Fokker-Planck equation (not associated to a stochastic process)

$$
\partial_{t} \rho(x, t)=\partial_{x}\left(\partial_{x}-K_{x}\right) \rho(x, t)=L_{c}^{T} \rho(x, t)
$$

Stationary solution: $\rho(x, \infty)=\exp (-S(x))$
Assuming spectrum of L_{c} is fine
CLE works, if

> What we want

What we get with CLE

$$
\int d x \rho(x) O(x)=\int d x d y P(x, y) O(x+i y)
$$

$$
\langle O(x)\rangle_{\mathrm{P}(t)}=\langle O(x+i y)\rangle_{P(t)}
$$

Interpolating function:

$$
\begin{gathered}
O(z, t)=e^{L_{c} t} O(z, 0) \\
\text { with } L_{c}=\left(\partial_{z}+K(z)\right) \partial_{z}
\end{gathered}
$$

$$
F(t, \tau)=\int P(x, y, t-\tau) O(x+i y, \tau) d x d y
$$

$$
F(t, 0)=\langle O(x+i y)\rangle_{P(t)}
$$

$$
F(t, t)=\int P(x, y, 0) O(x+i y, t) d x d y
$$

Choose to be

$$
=\int \rho(x, 0) \delta(y) O(x+i y, t) d x d y
$$

on real axis initially

$$
=\int \rho(x, 0) O(x, t) d x=\int \rho(x, t) O(x, 0) d x=\langle O(x)\rangle_{\rho(t)}
$$

$\partial_{\tau} F(t, \tau)=0$ can be seen with partial integrations using Cauchy-Riemann eqs. for $\partial_{x} O(x+i y, \tau)$

Boundary term defined on a surface

$$
\begin{array}{r}
\partial_{\tau} F_{o}(t, \tau)=B_{O}(Y, t, \tau)=\int K_{y}(x, Y) P(x, Y, t-\tau) O(x+i Y, \tau) d x \\
-\int K_{y}(x,-Y) P(x,-Y, t-\tau) O(x-i Y, \tau) d x
\end{array}
$$

Loophole 2: Spectrum on the wrong side

Fokker Planck operator

$$
L_{c}=\sum_{i} \partial_{i}^{2}+K_{i} \partial_{i}
$$

Determines $\rho(x, t)=e^{t L_{c}^{T}} \rho(x, 0)$

Toy model:

$S=\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{24} \phi^{4}+H \phi \quad \rightarrow \quad L_{c}=\partial_{z}^{2}+\left(-m^{2} z-\frac{\lambda}{6} z^{3}-H\right) \partial_{z}$

At imaginary magnetic field Lee-Yang zeroes appear

At each Lee-Yang zero
an eigenvalue appears with $\operatorname{Re}(\lambda)>0$

Slow decay is also present: - Boundary terms signal also this problem

One plaquette model

$$
S(\varphi)=i \beta \cos (\varphi) \quad\left\langle e^{i k x}\right\rangle=(-i)^{k} \frac{J_{k}(\beta)}{J_{0}(\beta)}
$$

Exact stationary solution of Fokker-Planck eq. [Salcedo, 2017]

$$
\begin{aligned}
& P_{a}(x, y)=\frac{1}{4 \pi \cosh ^{2} y} \quad \text { independent of } x \text { and } \beta \\
& \left\langle e^{i x}\right\rangle_{P_{a}}=0, \quad\left\langle e^{i k x}\right\rangle_{P_{a}} \text { for } k \geq 2 \text { is undefined or divergent }
\end{aligned}
$$

CLE reproduces this (incorrect) solution

Langevin time evolution

For short times
plateau at the correct value
asymptotic result incorrect

$F(t, 0)-F(t, t)$ gets >0 above $t=20$
Largest slope at $\tau=0$

$$
\partial_{\tau} F_{(t, \tau=0)}=B(t, 0)
$$

seems like a good proxy for

$$
F(t, 0)-F(t, t)
$$

Boundary term

Boundary term

Calculated using Fokker-Planck discretised on a 2d grid

Using Complex Langevin only

Plateau clearly visible
At high cutoff statistics is worse

Need to measure on some surface inconvenient in many dimensions

Boundary terms as a volume integral

Calculating an observable defined on a compact boundary in many dimensions can be inconvenient

$$
\begin{aligned}
& \partial_{\tau} F_{o}(Y, t, \tau=0)=B_{O}(Y, t, \tau=0)= \\
& \quad \int_{-Y}^{Y} P(x, y, t) L_{c} O(x+i y)-\int_{-Y}^{Y}\left(L^{T} P\right) O(x+i y, 0)
\end{aligned}
$$

Observable with a cutoff easy to do in many dimensions

$$
L_{c} O(x+i y) \text { consistency conditions } \quad \approx \text { Schwinger-Dyson eqs. }
$$

Order of limits crucial

$$
\lim _{t \rightarrow \infty} \lim _{Y \rightarrow \infty} \int_{-Y}^{Y} P(x, y, t) L_{c} O(x+i y) \text { can be undefined }
$$

Measuring boundary terms

$$
\begin{aligned}
& \int_{-Y}^{Y} P(x, y, t) L_{c} O(x+i y)=\int P(x, y, t) L_{c} O(x+i y) \theta(Y-y) \\
& L_{c}=\sum \partial_{i}^{2}+K_{i} \partial_{i}
\end{aligned}
$$

Many variables: define cutoff to extend SU(N) manifold to compact submanifold of SL(N,C)

$$
\text { e.g. } \operatorname{Im} \mathrm{z} ; \max _{i} \operatorname{Tr}\left(U_{i}^{+} U_{i}-1\right)^{2}
$$

Measure "unitarity norm" and observable

Analyze for any cutoff
Trick for second term:

$$
\sum K_{i} \partial_{i} O=\frac{1}{\epsilon} O(z(\tau+\epsilon, \eta=0)-z(\tau))
$$

Measure observable after doing a noiseless update step with stepsize ϵ

One plaquette model

$$
S(x)=i \beta \cos (x)+\frac{S}{2} x^{2}
$$

Unambigous detection of boundary terms Observable cheap also for lattice systems

In full QCD this confirms already known signals Quantifies error

Faster than exponential decay of histograms of observables Drift criterion = same for drift term observable

Boundary terms appear at small $\beta=$ large lattice spacing

Correcting CLE using boundary terms

CLE result at $\mathrm{t}=200$

Interpolation function

$$
F(t, \tau)=\sum A_{n} \exp \left(-\omega_{n} \tau\right)
$$

Higher order boundary terms

$$
\frac{\partial^{n} F(t, \tau)}{\partial \tau^{n}}=B_{n}=\left\langle L_{c}^{n} O\right\rangle
$$

Systematic error of CLE

$$
F(t, 0)-F(t, t)=B_{1}^{2} / B_{2}
$$

Correction using Boundary terms in U(1) toy model

$S(x)=i \beta \cos (x)+\frac{S}{2} x^{2}$
Measuring $B_{1,} B_{2}$ allows correction of results when CLE fails

β, s	B_{1}	B_{2}	B_{1}^{2} / B_{2}	CL error	CL	correct	corrected CL
$0.1,0$	$-0.04859(45)$	$0.0493(11)$	$0.04786(79)$	$0.04891(45)$	$-0.00115(45)$	-0.05006	$-0.04901(62)$
$0.1,0.01$	$-0.01795(49)$	$0.01801(80)$	$0.01789(60)$	$0.01689(50)$	$-0.03318(50)$	-0.05006	$-0.05106(40)$
$0.1,0.1$	$-0.00048(30)$	$0.00057(35)$	$0.00039(28)$	$0.00049(31)$	$-0.04957(31)$	-0.05006	$-0.04997(6)$
$0.5,0$	$-0.2474(11)$	$0.237(11)$	$0.258(11)$	$0.25818(23)$	$0.00003(23)$	-0.25815	$-0.258(11)$
$0.5,0.3$	$-0.05309(86)$	$0.0552(51)$	$0.0507(41)$	$0.04183(70)$	$-0.19658(70)$	-0.23841	$-0.2473(37)$

XY model in $\mathrm{d}=3$

$$
S=-\beta \sum_{x} \sum_{v=1}^{3} \cos \left(\phi_{x}-\phi_{x+v}-i \mu \delta_{v 0}\right)
$$

Can be solved exactly using dual variables (worldlines)
CLE fails in one of the phases
$\langle S\rangle_{\mathrm{CLE}}-\langle S\rangle_{\text {exact }}$

Boundary terms in 3d XY model

CLE is actually wrong in the whole phase diag.
Boundary term is very small in one of the phases

Correction

B_{2} is very noisy, hard to measure
Step in the right direction

\mathcal{O}	β, μ^{2}	B_{1}	B_{2}	B_{1}^{2} / B_{2}	CL error	CL	worldline	corrected CL
S	$0.2,10^{-6}$	$0.02567(21)$	$-0.0730(47)$	$-0.00902(46)$	$-0.013029(65)$	$-0.075316(65)$	$-0.062288(17)$	$-0.06630(53)$
	$0.2,0.1$	$0.03309(25)$	$-0.0903(79)$	$-0.01213(89)$	$-0.0169974(91)$	$-0.0792922(91)$	$-0.062295(18)$	$-0.06716(90)$
	$0.2,0.2$	$0.03941(28)$	$-0.109(13)$	$-0.0142(17)$	$-0.0205408(80)$	$-0.0828399(80)$	$-0.062299(11)$	$-0.0686(17)$
	$0.7,10^{-6}$	$1.440(15) 10^{-4}$	$-7.33(17) 10^{-4}$	$-2.834(46) 10^{-5}$	$-1.23(33) 10^{-4}$	$-1.482311(33)$	$-1.48219(35)$	$-1.482283(34)$
	$0.7,0.1$	$0.004783(50)$	$-0.0082(23)$	$-0.00278(69)$	$-0.002791(31)$	$-1.526766(31)$	$-1.52398(35)$	$-1.52399(72)$
	$0.7,0.2$	$0.006013(38)$	$-0.00873(96)$	$-0.00414(45)$	$-0.002488(29)$	$-1.568899(29)$	$-1.56641(20)$	$-1.56476(48)$
n	$0.2,10^{-6}$	$4.8(1.6) 10^{-5}$	$-0.00021(124)$	$1.3(3.7) 10^{-5}$	$1.36(31) 10^{-5}$	$1.36(31) 10^{-5}$	$-1.2(1.1) 10^{-8}$	$0.89(7.65) 10^{-6}$
	$0.2,0.1$	$-0.01147(15)$	$0.0286(32)$	$0.00460(24)$	$0.0058177(41)$	$0.0058182(41)$	$4.9(2.1) 10^{-7}$	$0.00122(69)$

Pressure of the QCD Plasma at non-zero density

$\frac{p}{T^{4}}=\frac{\ln Z}{V T^{3}}$

- Derivatives of the pressure are directly measureable \longrightarrow Integrate from T=0
[Engels et. al. (1990)]
Other strategies:
Measure the Stress-momentum tensor using gradient flow
[Suzuki, Makino (2013-)]
Shifted boundary conditions
[Giusti, Pepe, Meyer (2011-)]
Non-equilibrium quench
[Caselle, Nada, Panero (2018)]

First integrate along the temperature axis, then explore $\mu>0$
Taylor expansion [Bielefeld-Swansea (2002-)]
Simulating at imaginary μ to calculate susceptibilities [de Forcrand, Philipsen (2002-)]

Pressure of the QCD Plasma at non-zero density

$$
\Delta\left|\frac{p}{T^{4}}\right|=\frac{p}{T^{4}}\left(\mu=\mu_{q}\right)-\frac{p}{T^{4}}(\mu=0)
$$

If we want to stay at $\mu=0$

$$
\Delta\left(\frac{p}{T^{4}}\right)=\sum_{n>0, \text { even }} c_{n}(T)\left(\frac{\mu}{T}\right)^{n}
$$

$$
\begin{aligned}
& c_{2}=\frac{1}{2} \frac{N_{T}}{N_{s}^{3}} \frac{\partial^{2} \ln Z}{\partial \mu^{2}} \\
& c_{4}=\frac{1}{24} \frac{1}{N_{s}^{3} N_{T}} \frac{\partial^{4} \ln Z}{\partial \mu^{4}}
\end{aligned}
$$

Measuring the coefficients of the Taylor expansion

$$
\begin{aligned}
\frac{\partial^{2} \ln Z}{\partial \mu^{2}}= & N_{F}^{2}\left\langle T_{1}^{2}\right\rangle+N_{F}\left\langle T_{2}\right\rangle \\
\frac{\partial^{4} \ln Z}{\partial \mu^{4}}= & -3\left\langle\left\langle T_{2}\right\rangle+\left\langle T_{1}^{2}\right\rangle\right)^{2}+3\left\langle T_{2}^{2}\right\rangle+\left\langle T_{4}\right\rangle \\
& +\left\langle T_{1}^{4}\right\rangle+4\left\langle T_{3} T_{1}\right\rangle+6\left\langle T_{1}^{2} T_{2}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
T_{1} / N_{F}= & \operatorname{Tr}\left(M^{-1} \partial_{\mu} M\right) \\
T_{i+1}=\partial_{\mu} & T_{i} \\
T_{2} / N_{F}= & \operatorname{Tr}\left(M^{-1} \partial_{\mu}^{2} M\right)-\operatorname{Tr}\left(\left(M^{-1} \partial_{\mu} M\right)^{2}\right) \\
T_{3} / N_{F}= & \operatorname{Tr}\left(M^{-1} \partial_{\mu}^{3} M\right)-3 \operatorname{Tr}\left(M^{-1} \partial_{\mu} M M^{-1} \partial_{\mu}^{2} M\right) \\
& +2 \operatorname{Tr}\left(\left(M^{-1} \partial_{\mu} M\right)^{3}\right) \\
T_{4} / N_{F}= & \operatorname{Tr}\left(M^{-1} \partial_{\mu}^{2} M\right)-4 \operatorname{Tr}\left(M^{-1} \partial_{\mu} M M^{-1} \partial_{\mu}^{3} M\right) \\
& -3 \operatorname{Tr}\left(M^{-1} \partial_{\mu}^{2} M M^{-1} \partial_{\mu}^{2} M\right)-6 \operatorname{Tr}\left(\left(M^{-1} \partial \mu M\right)^{4}\right) \\
& +12 \operatorname{Tr}\left(\left(M^{-1} \partial_{\mu} M\right)^{2} M^{-1} \partial_{\mu}^{2} M\right)
\end{aligned}
$$

Pressure of the QCD Plasma using CLE

If we can simulate at $\quad \mu>0$

$$
\Delta\left|\frac{p}{T^{4}}\right|=\frac{p}{T^{4}}\left(\mu=\mu_{q}\right)-\frac{p}{T^{4}}(\mu=0)=\frac{1}{V T^{3}}(\ln Z(\mu)-\ln Z(0))
$$

$$
\ln Z(\mu)-\ln Z(0)=\int_{0}^{\mu} d \mu \frac{\partial \ln Z(\mu)}{\partial \mu}=\int_{0}^{\mu} d \mu n(\mu)
$$

$$
n(\mu)=\left\langle\operatorname{Tr}\left(M^{-1}(\mu) \partial_{\mu} M(\mu)\right)\right\rangle
$$

Using CLE it's enough to measure the density - much cheaper

Pressure calculated with CLE

Integration performed numerically Jackknife error estimates

β	$a(\mathrm{fm})$	$c_{2} \mathrm{HMC}$	$c_{4} \mathrm{HMC}$	c_{2} CLE	c_{4} CLE
5.3	0.099 ± 0.001	1.986 ± 0.042	0.27 ± 0.23	2.117 ± 0.1	0.152 ± 0.05
5.6	0.052 ± 0.0013	2.351 ± 0.044	0.16 ± 0.12	2.168 ± 0.1	0.200 ± 0.05

Pressure with improved action

naiv action
C_{4} is measurable with this action at high T (with $O(500)$ configs.)

Pressure with improved action

In deconfined phase
Symanzik gauge action
stout smeared staggered fermions

β	c_{2} Taylor exp.	c_{4} Taylor exp.	c_{6} Taylor exp.	c_{2} CLE	c_{4} CLE	c_{6} CLE
3.7	2.206 ± 0.009	0.156 ± 0.016	0.016 ± 0.013	2.33 ± 0.1	0.13 ± 0.02	0.002 ± 0.001
3.9	2.312 ± 0.007	0.150 ± 0.007	0.001 ± 0.005	2.36 ± 0.04	0.14 ± 0.01	0.002 ± 0.001

Good agreement at small μ CLE calculation is much cheaper
further interesting quantities: Energy density, quark number susceptibility, ... See also Felix Ziegler's talk using CLE and Dyn. Stab. (11:25 today)

Mapping out the phase transition line

[Scherzer, Sexty, Stamatescu (2020)]

Follow the phase transition line starting from $\mu=0$

Using Wilson fermions
Fixed lattice spacing and spatial vol. N_{t} scan

Detection of the phase transition line

Binder cumulant

$$
B_{3}=\frac{\left\langle O^{3}\right\rangle}{\left\langle O^{2}\right\rangle^{3 / 2}}
$$

$O=P-\langle P\rangle$ with $P=\sqrt{P_{\text {bare }} P_{\text {bare }}^{-1}}$
no renormalization zero crossing defines transition

Shift method

Define $T_{c}(\mu)$ as $\phi\left(T_{c}(\mu), \mu\right)=C$
e.g. B_{3}, chiral condensate,
baryon number susceptibility

Works well for small μ Critial point at μ_{4}

Lattice spacing: $a=0.065 \mathrm{fm}$
Pion mass: $\quad m_{\pi}=1.3 \mathrm{GeV}$
Volumes: $8^{3}, 12^{3}, 16^{3}$

Finite size effects large

$$
\kappa_{2} \approx 0.0012
$$

Consistent results
In literature For physical pion mass $\kappa_{2}=0.015$
Can follow the line to quite high μ / T

Summary

CLE has potential problems with boundary terms and poles
Monitoring of the process is required: measuring Boundary terms
lattice models with cheap observable Correction with higher order boundary terms

Results for the EoS Phase diag. of QCD

Extra slides

HDQCD boundary terms

