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Abstract
Using the hard-thermal-loop (HTL) resummation in real-time formal-
ism, we study the next-to-leading order (NLO) quark self-energy and
corresponding NLO dispersion laws. In NLO, all the propagators and
vertices are replaced with the HTL effective ones in the usual quark
self-energy diagram. Additionally, a four-point vertex diagram also
contributes to the quark NLO self-energy. The usual quark self-energy
diagram and the four-point vertex diagram are calculated separately,
and the NLO quark self-energy is expressed in terms of the three- and
four-point HTL effective vertex functions. The integrals containing
the three- and four-point HTL effective vertex functions are expressed
in terms of the solid-angles using the Feynman technique. After com-
pleting the solid-angle integrals, the momentum integrals in the trans-
verse part of the NLO quark self-energy has been calculated numeri-
cally and plotted as a function of the ratio of momentum and energy.
Using the transverse part of the NLO quark self-energy, NLO disper-
sion laws have been plotted.

Motivation
In gauge theories at high temperature T: physical quantities like the
dispersion laws give gauge dependent results.

In order to resolve that issue, effective perturbative expansion came
in the picture which sums the so-called hard thermal loops (HTL) into
effective propagators and effective vertices.

Because of the HTL theory, at lowest order gT, in effective pertur-
bation, the infrared region is ‘safe’ since HTL summation dresses the
massless quarks and gluons by giving them thermal masses.

But, static chromomagnetic fields do not screen at this lowest or-
der, they are believed to do so at the next-to-leading order g2T , the
so-called magnetic scale.

Leading order dispersion relations
One-loop effective quark propagator is given by

S(P ) =
1

/P − Σ(P )

Feynman diagram for one-loop quark self-energy

K

P PQ = P−K

Lowest order quark self-energy for both modes is

Σ±(ω, p) =
m2
q

p

[
±1 +

1

2

(
1∓ ω

p

)
ln
ω + p

ω − p

]
where mq =

√
CF/8gT is thermal mass of a quark with zero chem-

ical potential.
The lowest order dispersion relations are obtained from the equation

p0 ∓ p− Σ±(P ) = 0

The below figure shows the solution of the lowest order dispersion
relation
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NLO formalism
NLO dispersion relations take the final form as

Ω
(1)
± (p) =

Ω
(0)
±

2
(p)− p2

2m2
q
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(1)
±
(

Ω
(0)
± (p), p

)
Two Feynman diagram contributes at NLO quark self-energy

P

K

P

K

First Feynman diagram contribution after doing summation over
Keldysh indices

Σ
(1)
1±(P ) =

−ig2CF
2

∫
d4K

(2π)4
tr γ±p

[
{γµ + Iµ−−(P,Q)}∆R(Q)γν + Iν−−(Q,P )DS

µν(K)

+ {γµ + Iµ−−(P,Q)}∆S(Q) {γν + Iν+−(Q,P )}DA
µν(K)

Four-point vertex diagram contribution comes out to be

Σ
(1)
2±(P ) =

−ig2CF
4

∫
d4K

(2π)4
tr γ±pI

µν
−−(P,K)DS

µν(K)

The three and four point vertex integrals in NLO quark self-energy diagram are

Iµη1η2(P,Q) = m2
q

∫
dΩs

4π

Sµ/S

(PS + iη1ε) (QS + iη2ε)
;

Iµνη1η2(P,K) = m2
q

∫
dΩs

4π

−SµSν /S
(PS + iη1ε) (PS + iη2ε)

×
[

1

(P + K)S + iη1ε
+

1

(P −K)S + iη2ε

]
Final result of the NLO quark self-energy in compact form, after doing summation

over Lorentz and Dirac indices is

Σ
(1)
± (P ) = −ig

2CF
2

∫
d4K

(2π)4
[
F SR
±;0(P,K) + FAS

±;0(P,K) + 2F SR
±;−−(P,K) + FAS

±;−−(P,K)

+FAS
±;−+(P,K) + F SR

±;−−;−−(P,K) + FAS
±;−−;+−(P,K) + GS

±;−−(P,K)
]

Resummed retarded propagator
Effective retarded transverse gluon propagator can be written as

D
R(−1)
T (k, k0, ε) = −

[
4k20
k2

+
(
k2 − k20

){
1− k0

k3
ln

(k0 − k)2 + ε2

(k0 + k)2 + ε2

}]
− i

[
2k0
k3
(
k20 − k2

){
tan−1

(
ε

k0 − k

)
− tan−1

(
ε

k0 + k

)}
− εΘ(k0)

]
Effective retraded quark propagator comes out to be

∆
R(−1)
− (q, q0, ε) = −

[
1

q
+ q − q0 −

q0 − q
4q2

ln
(q0 + q)2 + ε2

(q0 − q)2 + ε2
+

ε

2q2{
tan−1

(
ε

q0 + q

)
− tan−1

(
ε

q0 − q

)}
− i
[
ε +

ε

4q2
ln

(q0 + q)2 + ε2

(q0 − q)2 + ε2

+
q0 − q

2q2

{
tan−1

(
ε

q0 + q

)
− tan−1

(
ε

q0 − q

)}]]

Evaluation of NLO quark self energy
The scaled quark momentum can be written in terms of the variable t = p

p0
as

p(t)/mq =

√
t

1− t
− 1

2
ln

(
1 + t

1− t

)
The below figure shows the variation of quark energy and momentum w.r.t. vari-

able t.
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The third term of NLO quark self-energy is

Σ3
(1)
± (P ) =

−ig2CF
2

∫
d4K

(2π)4
[
2F SR
±;−−(P,K)

]
The transverse part of F SR

±;−−(P,K) is

F SR
±;−−(P,K) = m2

q

∫
dΩs

4π

1

(PS − iε) (QS − iε)

[(
1− p̂ε.q̂ε − p̂ε.ŝ− q̂ε.ŝ + p̂ε.k̂ k̂.ŝ + q̂ε.k̂ k̂.ŝ

−(k̂.ŝ)2 + p̂ε.q̂ε (k̂.ŝ)2 + 2p̂ε.ŝ q̂ε.ŝ− p̂ε.k̂ q̂ε.ŝ k̂.ŝ− q̂ε.k̂ p̂ε.ŝ k̂.ŝ
)
DS
T (K)∆R

∓(Q)
]

Thus, all the lines of discontinuity are

k0 = 0; k0 = ±k;

k0 = p0 ±
√
p2 + k2 − 2pkx;

k = kt ≡
1

2

p20 − p2

p0 − xp
=

1

2t

1− t2

1− xt

√
t

1− t
− 1

2
ln

(
1 + t

1− t

)

All the above lines of discontinuity are plotted in below figure and momentum integration has been
done in each of the domain of the figure.
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The eighth term of NLO quark self-energy is

Σ8
(1)
± (P ) =

−ig2CF
2

∫
d4K

(2π)4

[
GS
±;−−(P,K)

]

The transverse part of GS
±;−−(P,K) is

GS
±;−−(P,K) =

∫
dΩs

4π

1

[PS − iε] [PS − iε]

[
1

(P + K)S − iε
+

1

(P −K)S − iε

]
×
{

1− p̂ε · ŝ−
(
k̂ · ŝ

)2
+ p̂ε · ŝ

(
k̂ · ŝ

)2}
DS
T (K)

The sudden jumps in the above integrand are at

k0 = 0; k0 = ±k;

k0 = −p0 ±
√
p2 + k2 + 2pkx;

k = kt ≡
1

2

p20 − p2

p0 − xp
=

1

2t

1− t2

1− xt

√
t

1− t
− 1

2
ln

(
1 + t

1− t

)

These lines of sudden jumps are plotted in below figure and momentum integrations has been per-
formed in each of the domain of the figure.
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Results
Variation of imaginary part and real part of Σ

(1)
+ with a coefficient (4πg) w.r.t variable t = p

p0
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Variation of imaginary part and real part of Σ
(1)
− with a coefficient (4πg) w.r.t variable t = p

p0
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Behavior of NLO damping rate and NLO mass with a coefficient (4πg) for real quark mode w.r.t
their momentum
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Behavior of NLO damping rate and NLO mass with a coefficient (4πg) for plasmino mode w.r.t their
momentum

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.5

1.0

1.5

2.0

2.5

3.0

Conclusion
Next-to-leading order transverse quark self energy has been evaluated numerically.

Using the NLO quark self energy, NLO dispersion relations have been plotted for both quark mode
and plasmino mode.

It has been found that at NLO , infrared region is safe atleast for transverse part of the NLO quark
self energy.
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