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Abstract Numerical Solution
In Ref.[1], we introduced a method for reducing anisotropic heavy-quark potentials to isotropic ones by To assess the efficacy of using the effective 1D potentials we compared to static and dynamical solutions ot
introducing an effective screening mass that depends on the quantum numbers 1 and m of a given state. the 3D Schrodinger equation. For the static solutions, we used a previously developed 3D eigensolver called

quantumFDTD. Using this code, we compared results obtained with the 1D effective potential and the full 3D
anisotropic potential. For the real time solutions, we wrote a CUDA-based code to solve the 3D Schrodinger
equation in real time. For this purpose, we used a split-step pseudospectral method and once again compared
Introduction results obtained with the full 3D anisotropic potential to those obtained with the 1D effective potential |1,2].

We study the dynamics of heavy quarkonium states (¢q) inside the Quark Gluon Plasma (QGP).

Bottomonium: bb Charmonium: cc
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Biisipesion Bachce Comparing with the results obtained based on the 1D effective potential model, the corresponding differences as denoted by 0 E are also listed. The
: reference temperature 7, is 192 MeV and all the results are given in the units of MeV.
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Dynamical Results
Full complex potential = Solve SWE = Obtain observables such as R 4 4 and elliptic flow (v9) = Compare
with experimental data available from the ATLAS, ALICE, and CMS collaborations.
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Fig. 3: Left: Time evolution of the J/v, ¥(25), and ¥ (3.5) overlaps. we initialized the wave function as pure J/1.
1D Effective Potential Model:

Right: Time evolution of the charmonium p-wave overlaps resulting from initialization with different p-wave polarizations corresponding to [ = 1 and

— R m = 0,+1 labeled as x.(1P) and y.+1(1P), respectively.
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where, e The 1D effective isotropic potential is much easier to solve as compared to the 3D anisotropic potential.
_ 92 _
Ky, = 2l +1) —2am” — 1 (9) e We demonstrate that, using the resulting 1D effective potential model, one can solve a 1D Schrodinger
d{l+1) -3 equation and reproduce the full 3D results for the energies and binding energies of low-lying heavy-
R 7 quarkonium bound states to relatively high accuracy.
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e The resulting 1D effective isotropic potential model includes the splitting of different p-wave polarizations.

e The resulting 1D eflective isotropic potential model could provide an efficient method for including
momentum anisotropy effects in open quantum system simulations of heavy-quarkonium dynamics in
the quark gluon plasma.
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