Equations of state with conserved charge conditions for heavy-ion collisions

Jamie M. Karthein

In collaboration with: a Mroczek, Angel Nava, Jaki Noronha-Hostler, Paolo Parotto, Damien Price, Claudia Ratti

Tim muses

585

QCD EQUATION OF STATE AT FINITE DENSITY WITH A CRITICAL POIN

EoS Thermodynamic Outputs

Pressure and its derivatives show effects of a critical point in the QCD phase diagram

Baryon density

J.M. Karthein, D. Mroczek et al, EPJ Plus (2021)

The Scaling Equation of State

Criticality is implemented by mapping the critical point from the 3D Ising model onto the QCD phase diagram

$$\frac{T - T_C}{T_C} = w \ (t \ \rho \ sin\alpha_1 + h)$$

$$\frac{\mu_B - \mu_{B,C}}{T_C} = -w (t \rho \cos \alpha_1 - t)$$

- Pressure from scaling equation of state: $P = -G = h_0 M_0 R^{2-\alpha} [\theta H(\theta) g(\theta)]$
- Singular and non-singular contributions to the pressure: $\chi_N^{Lat}(T) = \chi_N^{Ising}(T) + \chi_N^{Non-Ising}(T)$ \blacktriangleright

P. Parotto et al, PRC (2020) A. Bzdak et al, Phys. Rep. (2020) C. Nonaka, M. Asakawa, PRC (2005) J. Zinn-Justin Quantum Field theory and Critical Phenomena

Isentropic Trajectories and Conserved Charge Constraints

- ► Isentropes show the path of the HIC system through the phase diagram in the absence of dissipation

> Different path when conserved charge conditions applied: $\langle n_S \rangle = 0$ $\langle n_O \rangle = 0.4 \langle n_B \rangle$

J.M. Karthein, D. Mroczek et al, EPJ Plus (2021)

