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Motivation

• Hydrodynamics simulations of Quark-Gluon Plasma are highly dependent
on the QCD EoS.

• GOAL: To provide an Equation of State (EoS) for large µB with a Critical
Point.

Introduction

• A few microseconds after the Big Bang, Quark Gluon Plasma (QGP) was formed
in the early universe. This phase at High Temperature and/or density is separated
from the hadronic phase of QCD by a phase transition line.

• These extreme conditions are re-created at the Large Hadron collider (LHC) at
CERN and at the Relativistic Heavy Ion Collider (RHIC) at BNL.

Fig. 1: Matter under High Pressure /and Density becomes Quark Gluon Plasma

QCD Phase Diagram

• Both experimentally and theoretically, the QCD phase diagram is not yet fully
known. Lattice QCD simulations have provided results at low chemical potential
(µB), for example in the form of a Taylor expansion.

• From these simulations, we know that the phase transition between hadrons and
the QGP at small µB is a broad crossover. The transition might become first order
at large chemical potential, implying the existence of a critical point on the phase
diagram.

• The search for this hypothetical critical point is one of the main focuses of the
experimental program at RHIC

Fig. 2: A schematic view of the QCD phase diagram in the T � µB Plane

Available: Equation of State with critical point

• A family of EoS’s for QCD has been built by combining Lattice Taylor expansion
with a 3D Ising model critical behavior in Ref.[1]
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• This family of equations of state is limited to chemical potential 0 � µB � 450
MeV due to limitations in the Taylor Expansion.

Solution : An alternative expansion scheme

• An alternative summation scheme, that takes into account the µB - dependence of the QCD
transition temperature at the cost of a T -re-scaling, was introduced in Refs. [2 , 3]
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Fig. 3: Lattice QCD results for the parameters �2(T ) (Blue) and �4(T ) (Red).Ref [2

• �4(T ) is consistent with zero, which gives a faster convergence of this expansion scheme
compared to the Taylor expansion.

Methodology

� In the vicinity of the 3D Ising critical point, a parametrization for the magnetization M , the
magnetic field h and the reduced temperature r = T�TC

TC
is given by

M = M0R
�� h = h0R

��h̃(�) r = R(1 � �2) (3)

where M0, h0 are normalization constants h̃(�) = �(1 + a�2 + b�4) with a = �0.76201, b =
0.00804, � and � are 3D Ising critical exponent, and the parameters take on the values
R � 0, |�| � �0 � 1.154, �0 being the first non-trivial zero of h̃(�)

Fig. 4: For Example, we make a choice of parameters µBC = 350MeV � TC � 143.2MeV, �1 = 3.850, �2 � �1 = 900, w = 1, � = 2

� At µB = 0, we assume the Non-Ising Taylor coefficients are the difference between Lattice and
Ising Taylor coefficients order by order.

Methodology

� Shift the Non-Ising part with re-scaled temperature, where the �2 coefficient is
given by a parametrization of the Lattice QCD result shown in Fig. 3.

nB = �1(T, µB) = �Ising
1 (T, µB) + µB

T �Non�Ising
2 (T �, 0) (4)

� Investigate the impact of the parameters w and � on the equation of state

Results1 : Comparison

• The Ising model allows us to constraint the critical behavior by a choice of pa-
rameters

Fig. 6: (a)Baryon density in T � µB plane from Taylor Expansion with a critical point at µB = 350 MeV
Unphysical Wiggly behavior at high µB

(b)Baryon density in T � µB from New expansion scheme with critical point at µB = 350 MeV

No wiggles at high µB even with a critical point

Remarks

• The Alternative Expansion scheme converges faster than Taylor and removes
the unphysical wiggly behavior at high µB.

• We can extend our EoS to high µB, in the range required by Hydrodynamic
simulations of the matter created at RHIC.

• Future work: We will compute all thermodynamic variables and merge them
with the HRG model at low Temperature.
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QCD Phase Structure
The Equation of State (EoS) of QCD reveals information about the QCD

phase diagram, with first-principles results from Lattice QCD at µB = 0
known very precisely.

Motivation: Achieve a description of strongly-interacting matter

that is consistent with the heavy-ion-collision system for realistic

hydrodynamic simulations of heavy-ion collisions (HIC), based

on fundamental results from Lattice QCD.

4D BQS EoS
In HICs, the system depends on all conserved charge chemical potentials and

must obey the constraints of strangeness neutrality and fixed Q/B ratio:

hnSi = 0 hnQi = 0.4hnBi

In the BQS EoS, we corporate the dependence on µB , µQ, µS by reconstructing

the EoS from Lattice QCD susceptibilities of conserved charges [1, 2]:

P (T, µB , µQ, µS)
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We parametrize each of the 22 susceptibilities up to O(µ4
B) across a broad tem-

perature range by utilizing the Hadron Resonance Gas model and the Stefan-

Boltzmann limit:
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BES EoS with Strangeness Neutrality
In the BES EoS, we study the behavior of observables near a critical point by

incorporating critical behavior based on universality classes [3]. The Scaling EoS

is described by the behavior of the magnetization M , the magnetic field h, and

the reduced temperature r = (T � Tc)/Tc and can be captured with the map [4]:

(R, ✓) 7�! (r,h) :

M = M0 R�✓

h = h0 R��h̃(✓)

r = R(1� ✓2)

where � ' 0.326, � ' 4.8 are the 3D Ising model critical exponents, M0, h0

are normalization constants and h̃(✓) = (✓ + a✓3 + b✓5), with a = �0.76201,

b = 0.00804. We map the Ising critical point onto the QCD phase diagram via a

linear map containing 6 parameters:

(r,h) ! (T, µB) :

T �TC
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= w (r⇢ sin ↵1 + h sin ↵2)

µB � µBC

TC
= w (�r⇢ cos ↵1 � h cos ↵2)

We reduce the free parameters to 4 by requiring that the critical point is located

along the chiral phase transition line [5]:
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BES EoS Expansion coefficients
Critical features are added to the overall thermodynamics by writing the

strangeness-neutral Taylor coefficients from Lattice QCD [6] as the sum of

an “Ising” contribution from the critical point and a “Non-Ising” one [7]:
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The full pressure can be similarly reconstructed with an “Ising” critical

contribution and a “Non-Ising” background pressure; the latter is expressed

as a Taylor expansion:

P (T, µB) = T 4
X

n

cNon-Ising
n (T )

⇣µB

T

⌘n
+ T 4

CP
Ising (T, µB)

Results: The thermodynamics
From the reconstructed pressure, we then calculate the remaining quantities

that make up the equation of state, including baryon density.

BQS EoS [2] provides thermodynamic results in T � µB � µQ � µS :

BES EoS [7, 8] shows critical features are already somewhat evident at the

level of the pressure. Choice of parameters: µBC = 350 MeV, TC ' 143.2 MeV,

↵1 ' 3.85�
, ↵2 � ↵1 = ⇡/2, w = 1, ⇢ = 2:

The importance of implementing the conserved charge constraints is
most evident in the isentropic trajectories:

12

FIG. 4. Isentropic trajectories in the (T, µB) plane, for
s/nB = 420, 144, 70, 30, corresponding to collision ener-
gies

�
sNN = 200, 62.4, 27, 14.5 GeV respectively. The solid

black lines correspond to hnSi = 0, hnQi = 0.4hnBi while the
dashed red lines to µS = µQ = 0.
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Conclusions
I. Realistic modeling for HICs should involve constraints on the con-

served charges as in experiment, as achieved in BQS EoS and BES

EoS.

II. The BES EoS matches Lattice QCD at low µB , and contains a

critical point in the 3D Ising model universality class

III. The presence of a critical point in the phase diagram leads to: a kink

in the pressure, and first order quantities such as baryon density and

entropy developing a discontinuity for µB > µBC .

References
[1] S. Borsanyi et al., JHEP 10, 205 (2018)

[2] J. Noronha-Hostler et al., Phys. Rev. C 100, no.6, 064910 (2019)

[3] K. Rajagopal and F. Wilczek, Nucl.Phys. B399 (1993) 395-425

[4] R. Guida and J. Zinn-Justin, Nucl.Phys. B489 (1997) 626-652

[5] R. Bellwied et al., Phys.Rev. D92 (2015) no.11, 114505

[6] J. N. Guenther et al. Nucl. Phys. A 967, 720-723 (2017)

[7] P. Parotto et al., Phys. Rev. C 101, no.3, 034901 (2020)

[8] J. M. Karthein et al., Eur. Phys. J. Plus 136, no.6, 621 (2021)

QCD EQUATION OF STATE AT FINITE DENSITY WITH A CRITICAL POINT FROM AN ALTERNATIVE EXPANSION SCHEME

Micheal Kahangirwe1, Jamie Karthein2, Damien Price1, Pierre Moreau3, Olga Soloveva4, Joerg Aichelin5, Steffen A. Bass3, Elena
Bratkovskaya4, Claudia Ratti1

1University of Houston, 2Massachusetts Institute of Technology, 3Duke University, 4Goethe University Frankfurt 5 University of Nantes

QCD EQUATION OF STATE AT FINITE DENSITY WITH A CRITICAL POINT FROM AN ALTERNATIVE EXPANSION SCHEME

Micheal Kahangirwe1, Jamie Karthein2, Damien Price1, Pierre Moreau3, Olga Soloveva4, Joerg Aichelin5, Steffen A. Bass3, Elena
Bratkovskaya4, Claudia Ratti1

1University of Houston, 2Massachusetts Institute of Technology, 3Duke University, 4Goethe University Frankfurt 5 University of Nantes

Motivation

• Hydrodynamics simulations of Quark-Gluon Plasma are highly dependent
on the QCD EoS.

• GOAL: To provide an Equation of State (EoS) for large µB with a Critical
Point.

Introduction

• A few microseconds after the Big Bang, Quark Gluon Plasma (QGP) was formed
in the early universe. This phase at High Temperature and/or density is separated
from the hadronic phase of QCD by a phase transition line.

• These extreme conditions are re-created at the Large Hadron collider (LHC) at
CERN and at the Relativistic Heavy Ion Collider (RHIC) at BNL.

Fig. 1: Matter under High Pressure /and Density becomes Quark Gluon Plasma

QCD Phase Diagram

• Both experimentally and theoretically, the QCD phase diagram is not yet fully
known. Lattice QCD simulations have provided results at low chemical potential
(µB), for example in the form of a Taylor expansion.

• From these simulations, we know that the phase transition between hadrons and
the QGP at small µB is a broad crossover. The transition might become first order
at large chemical potential, implying the existence of a critical point on the phase
diagram.

• The search for this hypothetical critical point is one of the main focuses of the
experimental program at RHIC

Fig. 2: A schematic view of the QCD phase diagram in the T � µB Plane

Available: Equation of State with critical point

• A family of EoS’s for QCD has been built by combining Lattice Taylor expansion
with a 3D Ising model critical behavior in Ref.[1]

P (T, µB) = T 4
X

n

1

(2n)!
�Non�Ising
2n (T )

⇣µB
T

⌘2
+ PQCD

Crit (T, µB) (1)

where

�Bn (T, µB) =

✓
@

@(µB/T )

◆n ⇣
P/T 4

⌘
and PQCD

Crit (T, µB) is the Critical contribution

• This family of equations of state is limited to chemical potential 0  µB  450
MeV due to limitations in the Taylor Expansion.

Solution : An alternative expansion scheme

• An alternative summation scheme, that takes into account the µB - dependence of the QCD
transition temperature at the cost of a T -re-scaling, was introduced in Refs. [2 , 3]

T�1(T, µB)

µB
= �2(T

0, 0) (2)

where T 0 = T


1 + 2

⇣µB
T

⌘2
+ 4

⇣µB
T

⌘4
+ ...

�

.

Fig. 3: Lattice QCD results for the parameters 2(T ) (Blue) and 4(T ) (Red).Ref [2

• 4(T ) is consistent with zero, which gives a faster convergence of this expansion scheme
compared to the Taylor expansion.

Methodology

⌅ In the vicinity of the 3D Ising critical point, a parametrization for the magnetization M , the
magnetic field h and the reduced temperature r = T�TC

TC
is given by

M = M0R
�✓ h = h0R

��h̃(✓) r = R(1� ✓2) (3)

where M0, h0 are normalization constants h̃(✓) = ✓(1 + a✓2 + b✓4) with a = �0.76201, b =
0.00804, � and � are 3D Ising critical exponent, and the parameters take on the values
R � 0, |✓|  ✓0 ⇡ 1.154, ✓0 being the first non-trivial zero of h̃(✓)

Fig. 4: For Example, we make a choice of parameters µBC = 350MeV ! TC ⇡ 143.2MeV,↵1 = 3.850,↵2 � ↵1 = 900, w = 1, ⇢ = 2

⌅ At µB = 0, we assume the Non-Ising Taylor coefficients are the difference between Lattice and
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⌅ Investigate the impact of the parameters w and ⇢ on the equation of state
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rameters

Fig. 6: (a)Baryon density in T � µB plane from Taylor Expansion with a critical point at µB = 350 MeV
Unphysical Wiggly behavior at high µB

(b)Baryon density in T � µB from New expansion scheme with critical point at µB = 350 MeV

No wiggles at high µB even with a critical point

Remarks

• The Alternative Expansion scheme converges faster than Taylor and removes
the unphysical wiggly behavior at high µB.

• We can extend our EoS to high µB, in the range required by Hydrodynamic
simulations of the matter created at RHIC.

• Future work: We will compute all thermodynamic variables and merge them
with the HRG model at low Temperature.
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EoS Thermodynamic Outputs

➤ Pressure and its derivatives show effects of a critical point in the QCD phase 
diagram
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FIG. 2. Nonuniversal map from Ising variables (r, h) to QCD coordinates (T, µB ).

which can be visualized in Fig. 2. This map makes use of
six parameters, two of which correspond to the location of
the critical point on the QCD phase diagram, two are the
angles that the r and h axes form with the T = const. lines,
and (w, ρ) are scale factors for the variables r and h. While
w represents a global scaling for the Ising variables, namely
determining the size of the critical region, ρ represents a
relative scaling of r and h, thus roughly determining the shape
of it.

At this point, we have a double map between coordinates:

(R, θ ) !−→ (r, h) ←→ (T, µB), (13)

where the second step is globally invertible. We will now ap-
ply the thermodynamics we developed in the previous section
for the Ising model, making use of the additional variables
(R, θ ), to the QCD phase diagram, in a parametrized form
given by Eqs. (11) and (12).

In order to do this analytically, we would need the map
(R, θ ) !−→ (T, µB), which unfortunately cannot be globally
inverted. Therefore, it is necessary to solve the following
relations numerically:

T (R, θ ) − Ti = 0, (14)

µB(R, θ ) − µBi = 0, (15)

for each value of (T, µB) needed in the QCD phase diagram.
We proceed in the following way: We choose a range of
interest for T and µB, and given a choice of the parameters in
the Ising-QCD map, we solve Eqs. (14) and (15) numerically
for a two-dimensional grid in T and µB in the desired range,
thus providing a discrete inverse map (T, µB) !−→ (R, θ ).

With this solution, although not analytic, it is possible to
transport the thermodynamics of the Ising model [written in
terms of (R, θ )], into the QCD phase diagram, given a choice
of parameters for the map.

IV. THERMODYNAMICS

A. Strategy

The strategy we wish to pursue in order to produce an equa-
tion of state for QCD which meets the requirements stated in
Sec. I is the following. Starting from the Taylor expansion
coefficients up to O(µ4

B) in Eq. (1), available from lattice
QCD simulations, we rewrite them as a sum of an “Ising”
contribution coming from the critical point of QCD and a
“non-Ising” contribution, which would contain the regular
part as well as any other possible criticality present in the
region of interest:

T 4cLAT
n (T ) = T 4cnon-Ising

n (T ) + f (T, µB = 0)cIsing
n (T ), (16)

where f (T, µB) is a regular function of the temperature and
chemical potential, with dimension of energy to the fourth
power. Away from the critical regime, f just reshuffles the
regular terms and can be chosen arbitrarily. Near the critical
point, the choice for f is almost arbitrary, with the only
requirement being that it must not add any leading singular
behavior. In general, though, any term in f beyond a constant
introduces sub-leading behavior in the vicinity of the critical
point. For this reason, the simplest choice is to take f to be a
constant, with the appropriate dimension. This also ensures
that no subleading behavior is introduced near the critical
point, which cannot be predicted through universality. Note
that Eq. (16) is to be understood as a definition for the cnon-Ising

n
coefficients.

Once these coefficients are obtained, we will build a
Taylor expansion in µB analogous to the lattice one, using
the “non-Ising” coefficients. The latter have the advantage
that the critical behavior coming from the critical point has
been removed, so that the expansion can be pushed to larger
values of µB. This provides an expression for the “non-Ising”
pressure over a broad region of the QCD phase diagram. The
assumption here is that the Ising critical point contribution to
the Taylor coefficients from lattice QCD can be reproduced

034901-4
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by using the SMASH hadronic list as input in the HRG
model. Because SMASH has become a standard trans-
port code used within the field, we ensure consistency
across all stages of phenomenological modeling of heavy-
ion collisions. We begin by describing the general proce-
dure for developing an EoS with a critical point in the 3D
Ising model universality class. We then provide details
of the implementation of the new features into the EoS.

In order to study the e↵ect of a critical point that could
potentially be observed during the BES-II at RHIC on
QCD thermodynamics, we utilize the 3D Ising model to
map such critical behavior onto the phase diagram of
QCD. The 3D Ising model was chosen for this approach
because it exhibits the same scaling features in the vicin-
ity of a critical point as QCD, in other words they belong
to the same universality class [49, 50]. We implement the
non-universal mapping of the 3D Ising model onto the
QCD phase diagram in such a way that the Taylor ex-
pansion coe�cients of our final pressure match the ones
calculated on the lattice order by order. This prescrip-
tion can be summarized as follows:

1. Define a parametrization of the 3D Ising model near
the critical point, consistent with what has been
previously shown in the literature [6, 43, 51, 52],

M = M0R
�✓

h = h0R
��h̃(✓)

r = R(1� ✓2)

(1)

where the magnetization M , the magnetic field h,
and the reduced temperature r, are given in terms
of the external parameters R and ✓. The normal-
ization constants for the magnetization and mag-
netic field are M0 = 0.605 and h0 = 0.364, re-
spectively, � = 0.326 and � = 4.8 are critical ex-
ponents in the 3D Ising Model, and h̃(✓)=✓ (1-
0.76201✓2+0.00804✓4).

The singular part of the pressure is described by
the parametrized Gibbs’ free energy:

PIsing = �G(R, ✓)

= h0M0R
2�↵(✓h̃(✓)� g(✓)),

(2)

where

g(✓) = c0 + c1(1� ✓2) + c2(1� ✓2)2 + c3(1� ✓2)3,

c0 =
�

2� ↵
(1 + a+ b),

c1 = �
1

2

1

↵� 1
((1� 2�)(1 + a+ b)� 2�(a+ 2b)),

c2 = �
1

2↵
(2�b� (1� 2�)(a+ 2b)),

c3 = �
1

2(↵+ 1)
b(1� 2�).

Because QCD is symmetric about µB = 0, we re-
quire that PIsing is also matter-anti-matter symmet-
ric. Thus, we perform the calculations in a range

of µB spanning positive and negative values. Fur-
thermore, the equations defined here are subject to
the following constraints on the parameters: R �

0, |✓|  ✓0 ⇠ 1.154.

2. Choose the location of the critical point and map
the critical behavior onto the QCD phase diagram
via a linear map from {T , µB} to {r, h}:

T � Tc

Tc

= !(⇢r sin↵1 + h sin↵2) (3)

µB � µB,c

Tc

= !(�⇢r cos↵1 � h cos↵2) (4)

where (Tc, µB,c) are the coordinates of the critical
point, and (↵1,↵2) are the angles between the axes
of the QCD phase diagram and the Ising model
ones. Finally, ! and ⇢ are scaling parameters for
the Ising-to-QCD map: ! determines the overall
scale of both r and h, while ⇢ determines the rela-
tive scale between them.

3. As previously established in Ref. [43], we reduce
the number of free parameters from six to four, by
assuming the critical point sits on the chiral phase
transition line, and by imposing that the r axis of
the Ising model is tangent to the transition line of
QCD at the critical point:

T = T0 + T0

✓
µB

T0

◆2

+O(µ4
B
). (5)

In this study, we maintain consistency with the
original EoS development of Ref. [43] by utiliz-
ing the same parameters1. The critical point lies
at {Tc ' 143.2 MeV, µB,c=350 MeV}, while the
angular parameters are orthogonal ↵1=3.85°and
↵2=93.85°, and the scaling parameters are !=1 and
⇢=2. However, we remind the reader that such a
choice of parameters only has an illustrative pur-
pose, and that we do not make any statement about
the position of the critical point or the size of the
critical region. As this framework does not serve to
yield a prediction for the critical point, but rather
to provide an estimate of the e↵ect of critical fea-
tures on heavy-ion-collision systems, the users can
pick their preferred choice of the parameters and
test its e↵ect on observables. In particular, we note
that by varying the parameters ! and ⇢ it is possi-
ble to increase or decrease the e↵ects of the critical

1 As in Ref. [43], we assume the transition line to be a parabola,
and utilize the curvature parameter  = �0.0149 from Ref. [4].
Recent results from lattice QCD [33, 53] are consistent with this
value, and predict the next to leading order parameter 4 to be
consistent with 0 within errors.
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The Scaling Equation of State

➤ Criticality is implemented by mapping the critical point from the 3D Ising model 
onto the QCD phase diagram 

➤ Pressure from scaling equation of state: 

➤ Singular and non-singular contributions to the pressure:

P. Parotto et al, PRC (2020) 
A. Bzdak et al, Phys. Rep. (2020) 
C. Nonaka, M. Asakawa, PRC (2005) 
J. Zinn-Justin Quantum Field theory  

 and Critical Phenomena 

P = − G = h0M0R2−α[θH(θ) − g(θ)]

χLat
N (T) = χ Ising

N (T) + χNon−Ising
N (T)
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Isentropic Trajectories and Conserved Charge Constraints

➤ Isentropes show the path of the HIC system through the phase diagram in the 
absence of dissipation 
➤ Different path when conserved charge conditions applied:
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⟨nS⟩ = 0 ⟨nQ⟩ = 0.4⟨nB⟩


