

# **Progress on stabilisation of complex Langevin for** real-time simulations of non-abelian gauge theories

#### **Paul Hotzy** with Kirill Boguslavski and David Müller

**Complex Langevin equation for Yang-Mills** 

$$\frac{\partial A^{a}_{\mu}(\theta, x)}{\partial \theta} = i \frac{\delta S_{\rm YM}}{\delta A^{a}_{\mu}(\theta, x)} + \eta^{a}_{\mu}(\theta, x),$$
$$S_{\rm YM} = -\frac{1}{4} \int_{\mathscr{C}} d^{4} x F^{\mu\nu}_{a} F^{a}_{\mu\nu}$$

- Application to Schwinger-Keldysh contour, but:
- Runaway instabilities  $\rightarrow$  adaptive stepsize
- Wrong convergence  $\rightarrow$  gauge cooling & dynamical stabilisation

### $\rightarrow$ We introduce an improved CL step for anisotropic lattices to alleviate instabilities!

27.07.2022, Paul Hotzy

- Introduction of auxiliary time (Langevin time)
  - Complexification of degrees of freedom

#### Goal: Calculate oscillatory integrals (sign problem)

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int dx \, \mathcal{O}(x) \exp\left[iS(x)\right] \approx \lim_{\theta_0 \to \infty} \frac{1}{T} \int_{\theta_0}^{\theta_0 + T} d\theta \, \mathcal{O}[z(\theta)]$$











# **Progress on stabilisation of complex Langevin for** real-time simulations of non-abelian gauge theories

### Paul Hotzy with Kirill Boguslavski and David Müller

- Stabilization techniques extend the applicability of Complex Langevin by mitigating instabilities
- Our CL step improves convergence (see  $tan(\alpha) = 0.5$ )
- Note: Autocorrelation length increases with  $N_{t}$



27.07.2022, Paul Hotzy



• Anisotropic lattice discretization can enlarge the stable  $\theta$ -regions

• Stability region increases faster with respect to  $N_t$  than the autocorrelation time  $T_{\odot}$ 

Extrapolation to Schwinger-Keldysh contour may be possible  $\rightarrow$  Calculation of real-time observables





