

Progress on stabilisation of complex Langevin for real-time simulations of non-abelian gauge theories Kirill Boguslavski, **Paul Hotzy**, David I. Müller

1 Introduction

Complex Langevin (CL) equation:

- $\text{Re}\dot{z}(\theta) = \text{Re}K(z(\theta)) + \eta(\theta),$ dS dz $,\;z\in\mathcal{M}_{C}=\mathbb{C}^{N},$ $\text{Im}\dot{z}(\theta) = \text{Im}K(z(\theta)),$ **Noise term:** $\langle \eta(\theta) \rangle = 0, \langle \eta(\theta) \eta(\theta') \rangle = 2\delta(\theta - \theta')$
- [▷] Complex Fokker-Planck equation, complexification of degrees of freedom
- \triangleright This allows us to compute oscillatory integrals:

$$
\langle \mathcal{O} \rangle = \frac{1}{Z} \int dx \, \mathcal{O}(x) \exp[iS(x)] \approx \lim_{\theta_0 \to \infty} \frac{1}{T} \int_{\theta_0}^{\theta_0 + T} d\theta \, \mathcal{O}[z(\theta)]
$$

▷ **Our observation:** Partial continuum limit with $|a_t| \ll a_s$ and $N_t |a_t| = const.$ improves convergence for real-time CL-simulations

2 Complex Langevin for real-time Yang-Mills simulations

- \triangleright CL suffers from instabilities:
	- **–** Runaway instabilities \rightarrow avoided by an adaptive stepsize
	- **–** Wrong convergence
		- \rightarrow mitigated by stabilization techniques \rightarrow improvements investigated here
- \triangleright We introduce a CL step for anisotropic lattices

- [▷] **Gauge cooling (GC) [3]** reduces "distance" $F[U]$ to the $SU(N)$ group:
	- $U_{x,\mu} \mapsto U^V_{x_\mu}$ $\tau^V_{x,\mu} = V_{x,\mu} U_{x,\mu} V_{x+\mu}^{-1}$ $\begin{array}{l} \scriptstyle{\tau-1} \ x+\mu,\mu \, , \end{array}$ $F[U]=$ \sum x,μ $\text{Tr}\left[(U_{x,\mu}U_{x}^{\dagger}\right]$ $\left[\begin{smallmatrix} \frac{1}{x}, \mu \end{smallmatrix} -1 \right)^2 \right] \rightarrow \min$
- [▷] **Dynamical stabilization (DS) [4]** reduces excursions to $SL(N)$:

Sampling uncorrelated measurements: autocorrelation time [▷] **Autocorrelation function**: $R_{\mathcal{O}}(\tau) =$ $\langle\left(\mathcal{O}_{\theta}-\left\langle\mathcal{O}_{\theta}\right\rangle\right)\left(\mathcal{O}_{\theta+\tau}-\left\langle\mathcal{O}_{\theta+\tau}\right\rangle\right)\rangle$ $\sigma_\theta \sigma_{\theta+\tau}$ \triangleright Autocorrelation time $T_{\mathcal{O}}$: $R_{\mathcal{O}}(\tau) \approx \exp(-\tau/T_{\mathcal{O}})$

Contact: **paul.hotzy@tuwien.ac.at Institute for Theoretical Physics, TU Wien** XQCD 2022 – Trondheim, Norway

$$
\frac{\partial A^a_\mu(\theta, x)}{\partial \theta} = i \frac{\delta S_{\text{YM}}}{\delta A^a_\mu(\theta, x)} + \eta^a_\mu(\theta, x), \qquad S_{\text{YM}} = -\frac{1}{4} \int_{\mathscr{C}} d^4 x F_a^{\mu\nu} F^a_{\mu\nu}
$$

$$
\langle \eta^a_\mu(\theta, x) \rangle = 0, \quad \langle \eta^a_\mu(\theta, x) \eta^b_\nu(\theta', y) \rangle = 2\delta(\theta - \theta') \delta^{(d)}(x - y) \delta^{ab} \delta_{\mu\nu}.
$$

 cL step using anisotropic a_μ (discrete S_W on $N_t \times N_s^3$ lattice):

$$
U'_{x\mu} = \exp\left[-i\lambda_a(\epsilon_\mu D_{x,\mu}^a S_W[U] - \sqrt{\epsilon_\mu}\eta_{x,\mu}^a\right]U_{x\mu}, \qquad \epsilon_0 = \epsilon \frac{|a_t|^2}{a_s^2}, \ \epsilon_i = \epsilon
$$

Fig. 2 reproduces results of [1] for the average spatial plaquette ($\mathcal{O} = \text{ReTr} U_{ij}$). We use AS (always), GC and DS to overcome runaways and wrong convergence.

- \triangleright \circ without stabilization: short stability region or wrong convergence
- $\triangleright \langle \mathcal{O} \rangle$ should be ind. of contour (time transl. inv.)

3 Methods

 \triangleright Complexification of the Lie algebra of the gauge group: $\mathrm{SU}(N) \to \mathrm{SL}(N, \mathbb{C})$ \triangleright Complex Langevin equation for Yang-Mills theories (continuum S_{YM}):

- [▷] Path integral is regularized by tilting the time contour
- [▷] **Our focus:** Stabilizing the tilted part of the contour

Figure 1: Cont. and discr. Schwinger-Keldysch contour.

Figure 3: Observable (top) and unitarity norm (bottom) as functions of rescaled Langevin time $(AS + GC, no DS)$.

- \triangleright Stabilization techniques and partial continuum limit improve convergence
- \triangleright DS can improve stability but introduces bias
- \triangleright Autocorrelation time grows with increasing N_t
- Fig. 3 shows CL evolution scaled by the autocorr. time.
	- \triangleright Stable θ -region grows faster with N_t than $T_{\mathcal{O}}$
	- [▷] No dynamical stabilization is needed ⇒ biased results are avoided
	- \triangleright *Novel* ϵ_{μ} *prescription* in CL step effectively enlarges stable θ -region

```
Modern stabilization techniques:
```
Figure 2: \mathcal{O} for different contour tilt angles of \mathscr{C}_0 and stabilization techniques. If not mentioned otherwise $N_t = 16$.

[▷] **Adaptive stepsize (AS) [2]** counteracts runaways:

$$
\epsilon \mapsto \tilde{\epsilon} = \epsilon \frac{B}{\max_{x,\mu,a} |K_{x,\mu}^a|}
$$

$$
K_{x,\mu}^{a} \mapsto \tilde{K}_{x,\mu}^{a} = K_{x,\mu}^{a} + i\alpha M_{x}^{a},
$$

$$
M_{x}^{a} \propto F[U], \frac{dO}{d\alpha} \approx 0
$$

- \triangleright Anisotropic lattice discretization can enlarge the stable θ -regions
- \triangleright Stability region increases faster with respect to N_t than the autocorrelation time $T_{\mathcal{O}}$
- \Rightarrow Extrapolation to Schwinger-Keldysh contour might be possible
- \Rightarrow Application to real-time observables

4 Progress on the stabilization of real-time YM simulations

5 Conclusion

 \triangleright Stabilization techniques extend the applicability of CL by mitigating known instabilities

References:

- [1] Berges, J. et al. (2007). PRD, 75, 045007. [arXiv:0609058]
- [2] Aarts, G. et al. (2010). PLB, 687(2–3), 154–159. [arXiv:0912.3360]
- [3] Seiler, E., Sexty, D., Stamatescu, I.-O. (2013). PLB, 723(1–3), 213–216. [arXiv:1211.3709]
- [4] Attanasio, F., Jäger, B. (2019). EPJC, 79(1), 16. [arXiv:1808.04400]