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1 Introduction
Complex Langevin (CL) equation:

Reż(θ) = ReK(z(θ)) + η(θ), Drift term: K(z) = i
dS

dz
, z ∈ MC = CN ,

Imż(θ) = ImK(z(θ)), Noise term: ⟨η(θ)⟩ = 0, ⟨η(θ)η(θ′)⟩ = 2δ(θ − θ′)

▷ Complex Fokker-Planck equation, complexification of degrees of freedom

▷ This allows us to compute oscillatory integrals:

⟨O⟩ = 1

Z

∫
dxO(x) exp [iS(x)] ≈ lim

θ0→∞

1

T

∫ θ0+T

θ0

dθO[z(θ)]

▷ CL suffers from instabilities:

– Runaway instabilities
→ avoided by an adaptive stepsize

– Wrong convergence
→ mitigated by stabilization techniques
→ improvements investigated here

▷ We introduce a CL step for anisotropic lattices

2 Complex Langevin for real-time Yang-Mills simulations

▷ Complexification of the Lie algebra of the gauge group: SU(N) → SL(N,C)
▷ Complex Langevin equation for Yang-Mills theories (continuum SYM):

∂Aa
µ(θ, x)

∂θ
= i

δSYM

δAa
µ(θ, x)

+ ηaµ(θ, x), SYM = −1

4

∫
C

d4xFµν
a F a

µν

⟨ηaµ(θ, x)⟩ = 0, ⟨ηaµ(θ, x)ηbν(θ′, y)⟩ = 2δ(θ − θ′)δ(d)(x− y)δabδµν .

▷ CL step using anisotropic aµ (discrete SW on Nt ×N3
s lattice):

U ′
xµ = exp

[
−iλa(ϵµD

a
x,µSW [U ]−√

ϵµη
a
x,µ)

]
Uxµ, ϵ0 = ϵ

|at|2

a2s
, ϵi = ϵ

▷ Our observation: Partial continuum limit with |at| ≪ as and Nt|at| = const. improves
convergence for real-time CL-simulations

3 Methods

▷ Path integral is regularized by tilting
the time contour

▷ Our focus: Stabilizing the tilted part
of the contour

Figure 1: Cont. and discr. Schwinger-Keldysch contour.

Modern stabilization techniques:

▷ Adaptive stepsize (AS) [2] counter-
acts runaways:

ϵ 7→ ϵ̃ = ϵ
B

max
x,µ,a

|Ka
x,µ|

▷ Gauge cooling (GC) [3] reduces “dis-
tance” F [U ] to the SU(N) group:

Ux,µ 7→ UV
x,µ = Vx,µUx,µV

−1
x+µ,µ,

F [U ] =
∑
x,µ

Tr
[
(Ux,µU

†
x,µ − 1)2

]
→ min

▷ Dynamical stabilization (DS) [4]
reduces excursions to SL(N):

Ka
x,µ 7→ K̃a

x,µ = Ka
x,µ + iαMa

x ,

Ma
x ∝ F [U ],

dO
dα

≈ 0

Sampling uncorrelated measurements:
autocorrelation time

▷ Autocorrelation function:

RO(τ) =
⟨(Oθ − ⟨Oθ⟩) (Oθ+τ − ⟨Oθ+τ ⟩)⟩

σθσθ+τ

▷ Autocorrelation time TO:

RO(τ) ≈ exp (−τ/TO)

4 Progress on the stabilization of real-time YM simulations
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Figure 2: O for different contour tilt angles of
C0 and stabilization techniques. If not men-
tioned otherwise Nt = 16.

Fig. 2 reproduces results of [1] for the average spatial
plaquette (O = ReTrUij). We use AS (always), GC and
DS to overcome runaways and wrong convergence.

▷ O without stabilization: short stability region or
wrong convergence

▷ ⟨O⟩ should be ind. of contour (time transl. inv.)

▷ Stabilization techniques and partial continuum
limit improve convergence

▷ DS can improve stability but introduces bias

▷ Autocorrelation time grows with increasing Nt
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Figure 3: Observable (top) and unitar-
ity norm (bottom) as functions of rescaled
Langevin time (AS + GC, no DS).

Fig. 3 shows CL evolution scaled by the autocorr. time.

▷ Stable θ-region grows faster with Nt than TO

▷ No dynamical stabilization is needed
⇒ biased results are avoided

▷ Novel ϵµ prescription in CL step effectively en-
larges stable θ-region

5 Conclusion
▷ Stabilization techniques extend the applicability of CL by mitigating known instabilities

▷ Anisotropic lattice discretization can enlarge the stable θ-regions

▷ Stability region increases faster with respect to Nt than the autocorrelation time TO

⇒ Extrapolation to Schwinger-Keldysh contour might be possible

⇒ Application to real-time observables
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