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We Investigate the leptonic decay of charged pions 7~ — [~ v; In the presence of a static uniform magnetic field. We show that, in this situation, four
iIndependent form factors appear when hadronizing one-pion-to-vacuum matrix elements. We obtain a model independent expression for the decay
width in terms of the form factors. Interestingly, no helicity suppression is found when the magnetic field is present. Using the Nambu-Jona—Lasinio
(NJL) model we estimate the effect of the magnetic field on pion masses, decay constants and on the charged pion leptonic decay width.
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The matrix element of the negatively charged pion hadronic current is We gauge the effective action 7,0, — 7.0, — i U (WX"’ + oy W;;I,a)
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In an external uniform magnetic field, new axial and vector decay Qo T aW,u,C

constants appear [1,2]. In fact, four independent form factors arise when IR 8 (1) A _ (A1)
hadronizing the quark currents In the direction of B only f,;’ and f,;" "’ appear. We define f," " = £~ .
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Similar definitions apply to neutral pions.
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Discrete symmetries (C,P,7 ) of the interaction Lagrangian between light £,
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To obtain meson masses, we bosonize and expand mesons fields around K /
their Mean Field (MF) values. The quadratic contribution is given by
sged = Ly / SM(w)* [ 0@ (e ') — Jua(a!) | M) Charged pion decay Tt~ — 1™y,
M=c,m0 7% T, -
Jeo(z,a') = N, ST [ SMES . GMF f,_)/5}  Tes(n,a!) = 2N, T [ 58E s] We obtain a model independent expresion for the decay width, in both
- o o o Landau and symmetric gauges [2,5].
where S/ , = ¢®r(=) / e?*=*)SI is the MF quark propagator. When B >m&- —mf and B » mj, n = 0 and m;~0 approximately
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Here ®;(z,2') = q;B(z1 + 2})(z2 — 25)/2 is the Schwinger phase. I, (B) s — o Il—(H 2B, ) g Ew—/(zBe)] AN A
Divergent integrals are regulated in the MFIR scheme through a 3D There is no helicity suppression in the m; — 0 limit when B is present.

cutoff. We consider three parametrizations, which reproduce empirical
values m; =138 MeV and f,, =92.4 MeV at B =0.
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\ / The angular distribution of outgoing v, is anisotropic for large B.
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In contrast, charged pions have to be diagonalized in the Ritus basis - S 1 ezf 2 o) .
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Magnetic Catalysis in close I * In the presence of a uniform magnetic field, four form factors appear
agreement with Lattice QCD [3]. " " o - b b h when hadronizing quark currents in pion-to-vacuum amplitudes.
\ / * Pion properties are estimated using the NJL model. Diagonalization of
neutral and charged pions require different quantum basis.
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