

Pion properties under strong magnetic fields M. Coppola^{1,2}, D. Gómez Dumm³, S. Noguera⁴, N. N. Scoccola^{1,2}

¹Department of Theoretical Physics, CNEA, Av. Libertador 8250, 1429 Buenos Aires, Argentine ²CONICET, Rivadavia 1917, 1033 Buenos Aires, Argentine ³IFLP, CONICET, DF, FCE, UNLP, C. C. 67, 1900 La Plata, Argentine ⁴Departamento de Física Teórica and IFIC, Centro Mixto UV-CSIC, E-46100 Valencia, Spain coppola@tandar.cnea.gov.ar

We investigate the leptonic decay of charged pions $\pi^- \rightarrow l^- \bar{\nu}_l$ in the presence of a static uniform magnetic field. We show that, in this situation, four independent form factors appear when hadronizing one-pion-to-vacuum matrix elements. We obtain a model independent expression for the decay width in terms of the form factors. Interestingly, no helicity suppression is found when the magnetic field is present. Using the Nambu-Jona—Lasinio (NJL) model we estimate the effect of the magnetic field on pion masses, decay constants and on the charged pion leptonic decay width.

Pion-to-vacuum amplitudes

The matrix element of the negatively charged pion hadronic current is $H^{-}_{\mu,L} = H^{-}_{\mu,V} - H^{-}_{\mu,A} = \langle 0 | \, \bar{\psi}_u \, \gamma^{\mu} (1 - \gamma_5) \, \psi_d | \pi^- \, \rangle$

In an external uniform magnetic field, new axial and vector decay constants appear **[1,2]**. In fact, four independent form factors arise when hadronizing the quark currents

Pion decay constants

We gauge the effective action
$$\gamma_{\mu}\partial_{\mu} \rightarrow \gamma_{\mu}\partial_{\mu} - i\frac{\tau^{a}}{2}\gamma_{\mu}\left(W^{V,a}_{\mu} + \gamma_{5}W^{A,a}_{\mu}\right)$$

Then (similarly for π^{0}) $H^{\pm}_{\mu,C} = -\sqrt{2}\frac{\partial S_{\pi W}}{\partial \delta \pi^{\mp} \partial W^{\pm}_{C}}$, $C = V, A$

$$H_{\mu,L}^{\pm} = \left[\epsilon^{\mu\nu\alpha\beta} F_{\nu\alpha} D_{\beta} \frac{f_{\pi^{\pm}}^{(V)}}{2B} - D^{\mu} f_{\pi^{\pm}}^{(A1)} + iF^{\mu\nu} D_{\nu} \frac{f_{\pi^{\pm}}^{(A2)}}{B} - F^{\mu\nu} F_{\nu\alpha} D^{\alpha} \frac{f_{\pi^{\pm}}^{(A3)}}{B^2} \right] \sqrt{2} \left\langle 0 | \Phi_{\pi^{\pm}} | \pi^{\pm} \right\rangle$$

Similar definitions apply to neutral pions.

Discrete symmetries (C, P, T) of the interaction Lagrangian between light quarks and the external magnetic field constrain these form factors. As a result, all form factors are real, $f_{\pi^-}^{(V,Ai)} = f_{\pi^+}^{(V,Ai)}$ and $f_{\pi^0}^{(A2)} = 0$.

Two-flavor NJL model with B (Schwinger form)

In the NJL model, the Euclidean Lagrangian density in an external uniform $\overline{B} = B\hat{z}$ magnetic field is given in the Landau gauge by

 $\mathcal{L}_{\rm NJL} = \bar{\psi} \left(-i\not\!\!\!D + m_0 \right) \psi - G \left[(\bar{\psi}\,\psi)^2 + (\bar{\psi}\,i\gamma_5\vec{\tau}\,\psi) \right], \quad D_\mu = \partial_\mu - i\hat{Q}Bx_1\delta_{\mu 2}$

To obtain meson masses, we bosonize and expand mesons fields around their Mean Field (MF) values. The quadratic contribution is given by

$$S_{\text{Bos}}^{\text{quad}} = \frac{1}{2} \sum_{M=\sigma,\pi^0,\pi^{\pm}} \int_{x,x'} \delta M(x)^* \left[\frac{1}{2G} \delta^{(4)}(x-x') - J_M(x,x') \right] \delta M(x')$$

 μ, C In the direction of \vec{B} only $f_{\pi}^{(V)}$ and $f_{\pi}^{(A1)}$ appear. We define $f_{\pi}^{(A_{\parallel})} \equiv f_{\pi}^{(A1)}$. Perpendicular to \vec{B} , it is convenient to define the following combinations

 $f_{\pi^0}^{(A_{\perp})} \equiv f_{\pi^0}^{(A1)} - f_{\pi^0}^{(A3)} , \quad f_{\pi^-}^{(A_{\perp}\pm)} \equiv f_{\pi^-}^{(A1)} \pm f_{\pi^-}^{(A2)} - f_{\pi^-}^{(A3)}$

When the charged pion lies on the lowest Landau level (n = 0), the hadronic matrix element associated to $f_{\pi^-}^{(A_{\perp}^-)}$ vanishes.

Results are shown for the same three sets within NJL model [4].

Charged pion decay $\pi^- \rightarrow l^- \bar{\nu}_l$

 $J_{\pi^0}(x,x') = N_c \sum \operatorname{Tr} \left[\mathcal{S}_{x,x'}^{MF,f} \gamma_5 \mathcal{S}_{x',x}^{MF,f} \gamma_5 \right], \quad J_{\pi^{\pm}}(x,x') = 2N_c \operatorname{Tr} \left[\bar{\mathcal{S}}_{x,x'}^u \gamma_5 \bar{\mathcal{S}}_{x',x}^d \gamma_5 \right]$ where $\bar{S}_{x,x'}^f = e^{i\Phi_f(x,x')} \int_{\mathbb{T}} e^{ip(x-x')} \bar{S}_p^f$ is the MF quark propagator. Here $\Phi_f(x, x') = q_f B(x_1 + x'_1)(x_2 - x'_2)/2$ is the Schwinger phase.

Divergent integrals are regulated in the MFIR scheme through a 3D cutoff. We consider three parametrizations, which reproduce empirical values $m_{\pi} = 138$ MeV and $f_{\pi} = 92.4$ MeV at B = 0.

Pion masses

For π^0 , Schwinger phases cancel out and J_{π^0} is diagonal in the Fourier basis. We have $E_{\pi^0} = \sqrt{m_{\pi^0}^2 + u_{\pi^0}^2 q_{\perp}^2 + q_3^2}$ (anisotropy due to \vec{B}).

In contrast, charged pions have to be diagonalized in the Ritus basis since Schwinger phases do not cancel. Here $E_{\pi^-} = \sqrt{m_{\pi^-}^2 + (2n+1)eB + q_3^2}$

We define the π^- mass as the lowest energy state, $E_{\pi^{-}} = \sqrt{m_{\pi^{-}}^2 + eB}$.

We obtain a model independent expresion for the decay width, in both Landau and symmetric gauges [2,5].

When $B > m_{\pi}^2 - m_l^2$ and $B \gg m_l^2$, n = 0 and $m_l \sim 0$ approximately $\Gamma_l^-(B)\Big|_{\substack{n_{\max}=0\\m_l=0}} = \frac{G_F^2 \cos^2 \theta_c}{\pi} \frac{B_e^2}{E_{\pi^-}} \Big[1 - \left(1 + \frac{E_{\pi^-}^2}{2B_e}\right) e^{-E_{\pi^-}^2/(2B_e)} \Big] \Big| f_{\pi^-}^{(V)} - f_{\pi^-}^{(A2)} + f_{\pi^-}^{(A3)} \Big|^2$ There is no helicity suppression in the $m_l \rightarrow 0$ limit when \vec{B} is present. Chirality, $\gamma_5 |l\rangle_{m_l=n=0} = -\operatorname{sign}(q_z)|l\rangle_{m_l=n=0}$, implies $k_z = -q_z < 0$.

The angular distribution of outgoing \bar{v}_l is anisotropic for large *B*.

Quark condensates reproduce Magnetic Catalysis in close agreement with Lattice QCD [3].

REFERENCES

[1] G. S. Bali, B. B. Brandt, G. Endrődi and B. Gläßle, PRL 121 (2018) 072001. [2] M. Coppola, D. Gomez Dumm, S. Noguera and N.N. Scoccola, PRD 99 (2019) 054031. [3] M. Coppola, D. Gomez Dumm and N.N. Scoccola, PLB 782 (2018) 155. [4] M. Coppola, D. Gomez Dumm, S. Noguera and N.N. Scoccola, PRD 100 (2019) 054014. [5] M. Coppola, D. Gomez Dumm, S. Noguera and N.N. Scoccola, PRD 101 (2020) 034003. [6] M. Coppola, D. Gomez Dumm, S. Noguera and N.N. Scoccola, JHEP 09 (2020) 0581.

We show only Set 350; others sets do not differ by more than 3% [6].

Conclusions

- In the presence of a uniform magnetic field, four form factors appear when hadronizing quark currents in pion-to-vacuum amplitudes.
- Pion properties are estimated using the NJL model. Diagonalization of neutral and charged pions require different quantum basis.
- When *B* is enhanced, the π^0 mass slightly decreases, while E_{π^-} steadily increases, remaining always larger than in the case of a point-like pion.
- The decay width of charged pions is strengthened by the magnetic field, up to 1000 times for $eB = 1 \text{ GeV}^2$.
- No helicity-suppression is found. As a consequence, the ratio Γ_e/Γ_μ is dramatically enhanced from $\sim 10^{-4}$ in vacuum up to ~ 0.5 at eB = 1 GeV². • For large *B*, the \bar{v}_l angular distribution becomes highly anisotropic.