#### Asymptotic safety versus triviality on the lattice

#### Viljami Leino, Tobias Rindlisbacher, <u>Kari Rummukainen</u>, Francesco Sannino, Kimmo Tuominen

University of Helsinki and Helsinki Institute of Physics CP3-Origins and DIAS, University of Southern Denmark Technische Universität München

arXiv:1908.04605



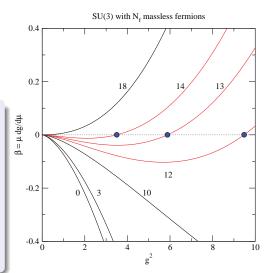
Bridging perturbative and non-perturbative physics

#### The standard picture:

Consider 2-loop perturbative  $\beta$ -function of SU(N) + N<sub>f</sub> fermions:

$$\beta(g) = \mu \frac{dg}{d\mu} = -\beta_0 \frac{g^3}{16\pi^2} - \beta_1 \frac{g^5}{(16\pi^2)^2}$$

- Small N<sub>f</sub>: β<sub>0</sub> > 0, β<sub>1</sub> > 0 running coupling, confinement and χSB (QCD-like)
- Medium  $N_f$ :  $\beta_0 > 0$ ,  $\beta_1 < 0$ IR fixed point, no  $\chi$ SB [Banks,Zaks]: conformal window
- Large N<sub>f</sub>: β<sub>0</sub> < 0 Asymptotic freedom lost
  - $\rightarrow$  Landau pole
  - $\rightarrow~$  Theory is trivial



#### Does this really happen at large $N_f$ ?

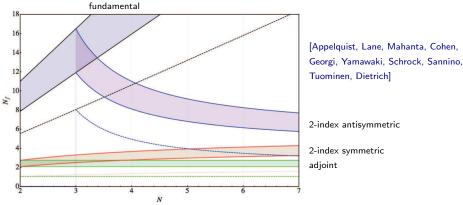
Consider SU(N) gauge with  $N_f$  (fundamental) fermions:

- Standard lore: as the asymptotic freedom is lost, theory has a Landau pole.
- However:  $N_f \rightarrow \infty$  calculations suggest that there may be an UVFP at strong enough coupling (Asymptotic safety) [Antipin,Sannino 17], see also [Gracey 96]

In this talk: first attempts to study the behaviour on the lattice

- SU(2) gauge with  $N_f = 24$  and 48 at  $m_{\text{fermion}} = 0$
- Measure the evolution of the coupling constant
- Use similar methods as used earlier within the conformal window

# Conformal window in SU(N) gauge



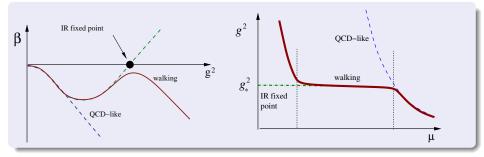
- Upper edge of band: asymptotic freedom lost
- Lower edge of band: ladder approximation
- Walking can be found near the lower edge of the conformal window: large coupling, non-perturbative - lattice simulations needed!
- Building BSM models using higher reps: easier to satisfy EW constraints [Sannino,Tuominen,Dietrich] → recent interest

K. Rummukainen (Helsinki)

## Walking coupling

• Just below the conformal window  $\beta$ -function may get close to zero at finite coupling





- Building blocks for strongly coupled BSM scenarios
- CP3-Origins very active!

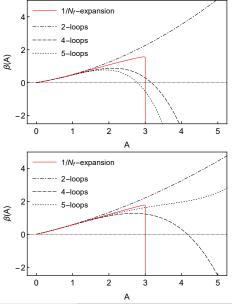
## Large N<sub>f</sub>:

Let  $A = N_f \frac{\alpha}{2\pi}$  (for fundamental fermions). At large  $N_f$ :

$$\frac{3}{2}\frac{\beta(A)}{A} = 1 + \frac{H_1(A)}{N_f} + \frac{H_2(A)}{N_f^2} + \dots$$

 $H_1(A)$  has a logarithmic singularity at A = 3 $\Rightarrow \beta$ -function vanishes, UVFP. [Antipin, Sannino 17; Gracey 95; Litim, Sannino 14]

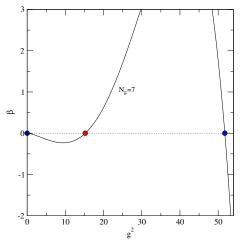
SU(2) with  $N_f = 24$  (top) and 48 (bottom): Large- $N_f$  result compared with 2-loop and 5-loop  $\overline{MS}$ .



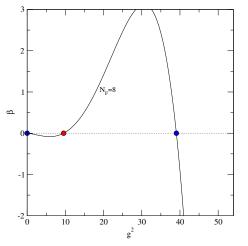
- We illustrate possible UVFP behaviour using perturbative 4-loop β-function for SU(2)+N<sub>F</sub> fermions:
- This is just a cartoon!



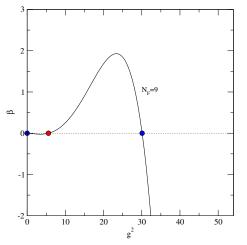
- We illustrate possible UVFP behaviour using perturbative 4-loop β-function for SU(2)+N<sub>F</sub> fermions:
- This is just a cartoon!



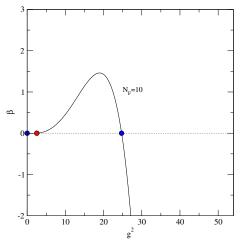
- We illustrate possible UVFP behaviour using perturbative 4-loop β-function for SU(2)+N<sub>F</sub> fermions:
- This is just a cartoon!



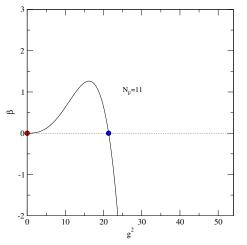
- We illustrate possible UVFP behaviour using perturbative 4-loop β-function for SU(2)+N<sub>F</sub> fermions:
- This is just a cartoon!



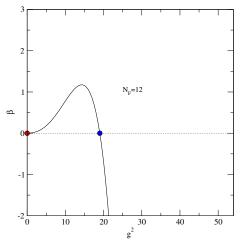
- We illustrate possible UVFP behaviour using perturbative 4-loop β-function for SU(2)+N<sub>F</sub> fermions:
- This is just a cartoon!



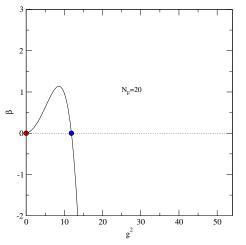
- We illustrate possible UVFP behaviour using perturbative 4-loop β-function for SU(2)+N<sub>F</sub> fermions:
- This is just a cartoon!



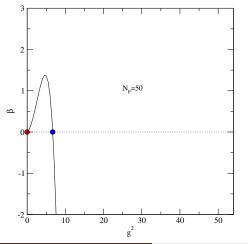
- We illustrate possible UVFP behaviour using perturbative 4-loop β-function for SU(2)+N<sub>F</sub> fermions:
- This is just a cartoon!



- We illustrate possible UVFP behaviour using perturbative 4-loop β-function for SU(2)+N<sub>F</sub> fermions:
- This is just a cartoon!



- We illustrate possible UVFP behaviour using perturbative 4-loop β-function for SU(2)+N<sub>F</sub> fermions:
- This is just a cartoon!



- Note: this does not work at 3-loop or 5-loop level → perturbation theory cannot be trusted
- However: if there is a fixed point, we can expect it to move to smaller coupling as N<sub>f</sub> grows

## How to study the coupling on the lattice?

We use methods successfully used to study conformal window in SU(2) +  $N_f = 6$  and 8:

- Wilson-clover action with HEX smearing
- Oirichlet boundary conditions in time:
  - Allows  $m_{\text{fermion}} = 0$
  - Tuned using axial Ward identity



- Measure coupling through gradient flow [Fritzsch, Ramos]:
  - Cool

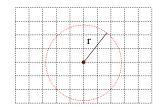
$$\partial_t A_\mu = D_\nu F_{\nu\mu}$$

smooths gauge over radius  $r \approx \sqrt{8t}$ . We use  $\sqrt{8t} = cL$ , with c = 0.3 (+ other values).

Define the gradient flow coupling as

$$g_{
m GF}^2 = rac{t^2}{\mathcal{N}} \langle E(t) 
angle$$

where 
$$E = -\frac{1}{4} \langle F_{\mu\nu} F_{\mu\nu} \rangle$$



#### How to study the system on the lattice?

4 Step scaling function:

$$\Sigma(u, s, L/a) = \left. g_{\rm GF}^2(g_0^2, sL/a) \right|_{g_{\rm GF}^2(g_0^2, L/a) = u} \tag{1}$$

$$\sigma(u,s) = \lim_{a/L \to 0} \Sigma(u,s,L/a),$$
(2)

Step scaling tells us how much the coupling evolves as length scale is increased by a constant factor s.

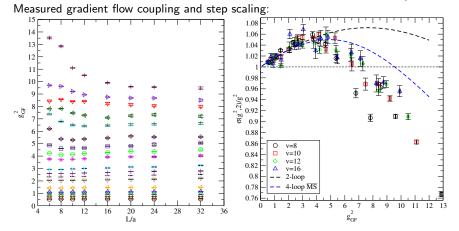
System size is increased by the same factor: finite volume effects cancel

Note: coupling constant definition is not unique on the lattice! (Except near g = 0, universality).

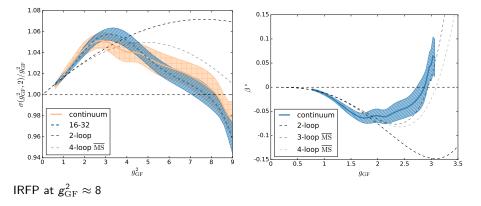
The existence of a FP is universal.

#### Example: what happens at $N_f = 8$ ?





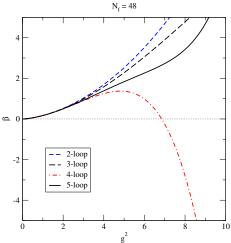
#### $N_f = 8$ Interpolation to continuum



Works well! Let us now try the same method for large  $N_f$ 

#### What to expect at large $N_f$ ?

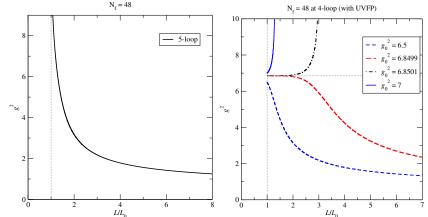
Perturbative  $\overline{MS} \beta$ -function for  $N_f = 48$ :



At 4 loops, there appears an UVFP, at 5 loops Landau pole. We can take these as "toy models" for UVFP and Landau pole

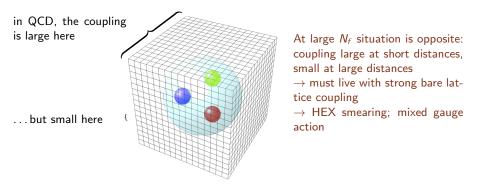
#### What to expect at large $N_f$ ?

Integrate the 5- and 4-loop  $\beta$ -functions to obtain evolution as a function of length scale L:



 $\Rightarrow$  On the lattice: if there is UVFP, expect dramatic change in behaviour if the short-distance (bare) coupling is large enough.

## Qualitative difference vs. lattice QCD:



On the lattice gauge action (plaquette action) is parametrized with inverse bare coupling

$$\beta_L = \frac{4}{g_0^2}$$

Large coupling  $\rightarrow$  small  $\beta_L$ .

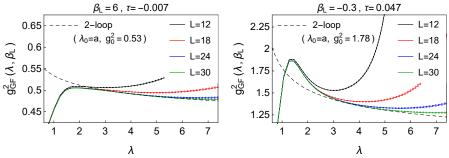
Wilson fermions make the effective coupling weaker [DeGrand, Hasenfratz].

 $\rightarrow$  compensate at large  $N_f$  by making bare *beta*<sub>L</sub> smaller, even negative!

K. Rummukainen (Helsinki)

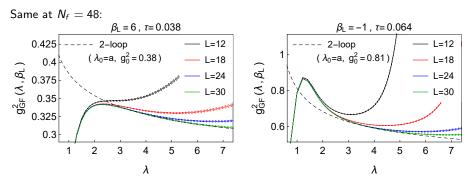
## Gradient flow coupling

 $N_f = 24$  gradient flow coupling vs. distance  $\lambda$  at weak (left) and strong (right) bare lattice coupling.



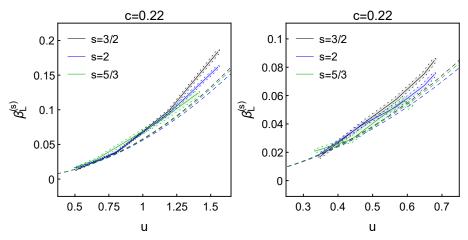
- Lattice volume  $V = L^4$
- As  $V o \infty$ ,  $g_{
  m GF}^2 o g_{
  m pert.}^2$ . Very large finite volume effects at small L
- At small  $\lambda$  gradient flow coupling does not make sense min distance  $\lambda_{\min} \sim 3$ .

## Gradient flow coupling



- Note: measured gradient flow coupling is very small even at strong bare lattice coupling.
- Can be explained by very rapid evolution at small  $\lambda$ : Landau pole?

#### Discrete beta function



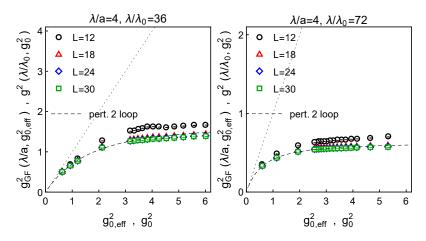
 $N_f = 24$  (left) and  $N_f = 48$  (right) discrete beta-functions, compared with perturbation theory.

Measured using c = 0.22L, and at  $s = L_1/L_2 = 18/12, 24/12$  and 30/18

## Effective "bare" lattice coupling

- $\bullet~$  Using gradient flow  $g^2_{\rm GF}$  we cannot measure coupling at very small distance
- We can define an effective UV-scale (1 lattice unit, "plaquette scale") coupling as follows:
  - measure plaquette (the most UV quantity)
  - ► simulate pure gauge theory, and find bare coupling g<sup>2</sup><sub>0,gauge</sub> which gives the same plaquette as the measurement above.
  - define the effective coupling  $g_{0,eff}^2 = g_{0,gauge}^2$ .

## Effective "bare" lattice coupling



- x-axis: effective UV coupling; y-axis: GF coupling at length scale  $\lambda = 4a$ .
- Matches 2-loop beta-function very well, despite different scheme
- Flattening out: consistent with Landau pole

#### Conclusions

- In these initial studies, behaviour compatible with a Landau pole both at  $N_f = 24$  and  $48 \rightarrow$  standard picture.
- Nevertheless:
  - We cannot "prove" the absence of the UV fixed point. (It would be easier to demonstrate its existence.)
  - Coupling strong at short distances, weak at large distances: this is not an application to which lattice methods have been developed and tuned!
  - Ambiguities in defining the coupling at very small (in lattice units) distances, but the effective plaquette coupling seems to work
  - Larger lattice scale (short distance) effective couplings required
- Further development: optimize the lattice action and measurements?
- Experiment with other theories, for example with added scalars.